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1 Linear Programming

In general, linear programming (LP) can be expressed as:

maximize cTx

subject to: Ax ≤ b
x ≥ 0,

where x is a vector of n variables, c is the linear objective, A is an m × n matrix and b is an m
dimensional vector.
Theorem 1.1. Any linear program in n variables and m constraints can be solved optimally in
poly(n,m, logD) time, where D is the largest entry in c, A, b.

There are two methods to solve linear programs in polynomial time: ellipsoid and interior
point. In most practical instances, the simplex method does better; although its runtime is not
polynomial.

An integer program is similar to an LP, except that variables may be restricted to integer values.
IPs are NP-hard to solve. However many approximation algorithms work by (1) formulating an
integer program, (2) relaxing integrality to obtain an LP relaxation which can be solved efficiently,
and (3) rounding the optimal LP solution to an integral solution.

2 Metric Facility Location Problem

Here we have a set of locations, V = F ∪C, where F denotes facility locations, and C denotes client
locations. We are also given a metric (V, d), where d is denotes the distances between facility/client
locations. Recall that we have dij = dji for all i, j ∈ V and dij ≤ dik+djk for all i, j, k ∈ V . For any
set S ⊆ V and vertex j ∈ V we define d(j, S) = mini∈S dij . There is an opening cost fi associated
to each facility i ∈ F . The goal is to open a set S ⊆ F facilities and connect each client j to some
i ∈ S so as to minimize the sum of opening and connection costs:

min
S⊆F

∑
i∈S

fi +
∑
j∈C

d(j, S)
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Figure 1: Example of metric facility locations

2.1 Integer Program Formulation

Now we introduce an integer programming (IP) formulation. There are two decision variables:

xi =

{
1 if facility i is open

0 if facility i is closed

yij =

{
1 if client j is assigned to facilityi

0 otherwise

Then, the IP is as follows.

min
∑
i∈F

fixi +
∑

i∈C,j∈F
dijyij

s.t.
∑
i∈F

yij = 1 ∀ j ∈ C

yij ≤ xi ∀ i ∈ F, j ∈ C
xi, yij ∈ {0, 1} ∀ i ∈ F, j ∈ C

We obtain a linear programming relaxation from the integer program by replacing the constraints
xi ∈ {0, 1} and yij ∈ {0, 1} with 0 ≤ xi ≤ 1 and 0 ≤ yij ≤ 1. Note that the optimal LP value is
clearly at most the optimal value of the facility location instance. Let (x, y) denote the optimal LP
solution. Then we will round (x, y) to (x̄, ȳ) an integer solution. The main part of the analysis is

to bound the ratio cost(x̄,ȳ)
cost(x,y) .

2.2 Rounding Algorithm

For any vertex v and radius r, define the ball B(v, r) = { u ∈ V : d(v, u) ≤ r }.
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Let Lj denote the the LP connection cost of client j ∈ C, we have:

Lj =
∑
i∈F

dij yij∑
i

yij = 1

We will use the ball around each client j with radius αLj where α > 1 will be set later. We use

B(j, αLj)
∆
= Bj . See Figure 2.

Figure 2: Relation of Jj and αLj

Now, we can follow the procedure to find which facility to open.

(1) Sort clients as: L1 ≤ L2 ≤ L3 ≤ ... ≤ L|C|;

(2) Greedily pick a maximal set of disjoint balls in the order 1, 2, ...|C|. Let {Bj , j ∈ I} be the
chosen balls;

(3) Open the cheapest facility π(j) in each {Bj , j ∈ I}. Let S = {π(j) : j ∈ I}.

2.3 Analysis

Let F ∗ =
∑

i∈F fixi denote the facility cost in the LP solution, and D∗ =
∑

i∈C,j∈F dijyij its
connection cost. We first bound the facility cost of the rounded solution.
Lemma 2.1. The facility cost

∑
i∈S fi ≤

F ∗

1− 1
α

.

Proof. We will show fπ(j) ≤ 1
1− 1

α

∑
k∈Bj fkyjk for each j ∈ C. The would then follow by the

disjointness of {Bj : j ∈ I}, by summing over all j ∈ I.
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We claim that
∑

k∈Bj yjk ≥ 1 − 1
α for each j ∈ C. If not, then we must have

∑
k 6∈Bj yjk >

1
α ,

which implies:

Lj =
∑
i∈F

djiyij ≥
∑
k 6∈Bj

ykj(αLj) > α
Lj
α

= Lj ,

a contradiction!

Now we have:

fπ(j) = min
k∈Bj

fk ≤
∑

k∈Bj fkyjk∑
k∈Bj yjk

≤
∑
k∈Bj

fk
yjk

1− 1
α

As discussed above, this implies the lemma.

Next, we bound the connection cost.
Lemma 2.2. For each client j, the distance d(j, S) ≤ 3αLj. So the connection cost ≤ 3αD∗.

Proof. Suppose j ∈ I. Then d(j, S) ≤ αLj as we open some facility in Bj .

Now suppose j /∈ I. Then there is some p < j with Bp ∩ Bj 6= ∅ and p ∈ I. Let v denote some
vertex in Bp ∩Bj . Using triangle inequality,

d(j, p) ≤ d(j, v) + d(v, p) ≤ αLj + αLp ≤ 2αLj ,

where the last inequality used the greedy ordering on clients. This implies:

d(j, π(p)) ≤ d(j, p) + d(p, π(p)) ≤ 3αLj .

So in either case we have d(j, S) ≤ 3αLj . By adding over all j ∈ C, the total connection cost is at
most 3αD∗.

Based on above lemmas, we have:
Theorem 2.1. There is a 4-approximation algorithm for metric facility location.

Proof. We optimize the choice of the parameter α > 1. From the above, we know that the facility
cost ≤ 1

1− 1
α

F ∗. And the connection cost ≤ 3αLj . Then we have:

ALG ≤ 1

1− 1
α

F ∗ + 3αD∗ ≤ max(
α

α− 1
, 3α) · (F ∗ +D∗).

Setting α = 1
3 + 1, we get ALG ≤ 4(F ∗ + D∗). We see that the overall cost is at most 4 times

optimal.


