
IOE 691: Approximation Algorithms Date: 4/3/2017

Lecture Notes: k-Minimum Spanning Tree (Lagrangian Relaxation)

Instructor: Viswanath Nagarajan Scribe: Cupjin Huang

1 LP Relaxation and Lagrangian Relaxation

Let’s consider a variant of minimum spanning tree problem. We are given a graph G = (V,E),
where r ∈ V is a special root node, a cost function c : E → R+ on edges and a target k ∈ [|V | − 1].
Our goal is to find a Steiner tree (i.e. a tree with minimum weight) connecting r to at least k other
nodes. For an IP formulation, denote xe ∈ {0, 1} as the indicator of whether an edge e ∈ E is chosen,
and zv ∈ {0, 1} as the indicator of whether node v is disconnected from r. We have the following
LP relaxation of the problem, where the constraints on x and z are relaxed to xe, zv ≥ 0:

min
∑
e∈E

cexe

s.t. x(δS) + zv ≥ 1, ∀v, S : v ∈ S ⊆ V \ {r},∑
v∈V \{r}

zv ≤ n− k,

x, z ≥ 0.

Note that in this problem, we have a constraint
∑

v zv ≤ n−k that we are not sure how to deal with.
We can introduce Lagrangian multiplier to get rid of this extra constraint. Namely, define

L(λ) := min
∑
e∈E

cexe + λ · (
∑

v∈V \{r}

zv − (n− k))

s.t. x(δS) + zv ≥ 1, ∀v, S : v ∈ S ⊆ V \ {r},
x, z ≥ 0.

for all λ ≥ 0. We have the following two observations:

• Intuitively, λ represents the penalty one pays for the violation of the constraint
∑

v zv ≤ n−k;
the bigger λ is set, the more “serious” it will be considered by the LP. Let’s look at the two
extreme cases first. When λ = 0, there is no penalty at all, so the optimal solution will be
the trivial one, i.e. no edge will be chosen; when λ→∞, the first term becomes insignificant,
and the fewer vertices are disconnected, the less the value of the objective function would be,
thus in the limit case we recover the ordinary minimum spanning tree.

1

2

• The Lagrangian dual maxλ≥0 L(λ) ≤ LP , where LP is the optimal value for the original LP.

Let’s take a closer look at L(λ) for a fixed λ. The constraints look exactly the same as the ones
in prize-collecting Steiner tree (PCST), and the objective function can be written as

∑
e cexe + λ ·∑

v zv − λ(n − k), where the first two terms are edge costs and and node penalties respectively
(where penalty for each node is λ), and the last term is just a constant shift. Recall the PCST
algorithm from last lecture:
Theorem 1.1. Given any instance of PCST, the algorithm outputs tree F such that

C(F) + 2Π(F) ≤ 2LP,

where C(F) and Π(F) are the sum of edge costs and sum of node penalties respectively, and LP is
the optimal value of the LP relaxation.

So, given an arbitrary λ, there is an efficient algorithm which outputs a Steiner tree rooted at r,
with edge cost C(λ) and connects K(λ) nodes, and

C(λ) + 2λ(n−K(λ)) ≤ 2(L(λ) + (n− k)λ),

i.e. C(λ) ≤ 2L(λ) + 2λ(K(λ) − k) ≤ 2OPT + 2λ(K(λ) − k). Ideally, if we can find λ such that
K(λ) = k, then we can directly get a 2-approximation; however we don’t have the guarantee that
there exists such a λ, or even if we do, it is unclear how to find one in polynomial time. Therefore,
whichever λ we try, it is possible that we either get an infeasible solution K(λ) < k if λ is chosen
too small, or a terrible approximation ratio when K(λ) > k and λ is chosen too large. How can we
balance between these two scenarios?

2 Algorithm

Note that we know K(0) = 0 and limλ→∞K(λ) = n. This means that, there exists a particular
choice λ = θ such that K(λ) transits from less than or equal to k to greater than equal to k in
some small neighborhood of θ. Such a point can be determined efficiently by a binary search on
feasible candidates of λ.

Assume that we have found θ now. Denote c1 = C(θ−), k1 = K(θ−) < k, c2 = C(θ+), k2 = K(θ+) >
k where θ−, θ+ are θ perturbed in both directions respectively. We know that

ci + 2θ(k − ki) ≤ 2L(θ), i = 1, 2.

Thus a convex combination µ1, µ2 such that µ1 + µ2 = 1, µ1k1 + µ2k2 = k would give us

µ1c1 + µ2c2 ≤ 2LP.

Note that this crucially uses the “Lagrangian multiplier preserving property” in Theorem 1.1: that
the multiplier of the penalty term is equal to the approximation ratio.

Still, this is not quite enough; what we have got is a fractional solution which is guaranteed to be
a 2-approximation. More work is needed for rounding it to an integral solution.

Let the two trees be T1 and T2 respectively. Consider the following rounding scheme:

• Take T2 with cost A = c2. Note that T2 is already a feasible solution;

3

• Take T1. This is yet to be a feasible solution, so we need to add more vertices to it. Note
that |T2| − |T1| = k2 − k1, thus |T2 \ T1| ≥ k2 − k1. Take T2 and shortcut it to a cycle on
T2 \ T1. Note that the weight of the cycle is bounded by twice the cost of the tree, hence at
most 2c2. Take the path P on this cycle with k− k1 nodes with the minimum cost, we know
that the cost is lower than the average, i.e. 2c2 · k−k1k2−k1 = 2c2 · µ2. Attach this path P to C1

by connecting an arbitrary node of P to r via the shortest path. The total cost would be
bounded by B = ∆ +C1 + 2C2 · µ2, where ∆ = maxv∈V \{r} drv is the diameter of the graph.

3 Analysis

We prove the following lemma, which gives a 5-approximation given the promise that ∆ ≤ OPT :
Lemma 3.1. min{A,B} ≤ ∆ + 4LP.

Proof. Prove by cases.

• If µ2 ≥ 1/2, then A = c2 ≤ 2µ2 · c2 ≤ 2(µ1c1 + µ2c2) ≤ 4LP ;

• If µ2 ≤ 1/2, then µ1 ≥ 1/2, and

B = C1 + 2µ2c2 + ∆ ≤ 2µ1c1 + 2µ2c2 + ∆ ≤ 4LP + ∆,

finishing the proof.

Our algorithm is proven to give a 5-approximation on all graphs where ∆ ≤ OPT , but are we safe
to assume this, or does that matter at all? Actually it matters for the reason below.

3.1 Getting Rid of ∆

For most of the LP-based approximation algorithm we encountered, we actually proved an approx-
imation ratio of α with respect to the LP value LP , since the approximation ratio follows from the
fact LP ≤ IP . One limitation of this general approach is that our approximation ratio can never
beat the integrality gap of the LP relaxation, which is defined to be sup IP

LP where the supremum
is taken over all instances of the problem. In this k-MST problem, we cannot get rid of this ∆ by
simply arguing with respect to the LP value (i.e. without mentioning ∆) since it actually has an
integrality gap of Ω(n), n := |V |.

Consider one simple example G = ({vi}ni=1∪{r, u}, E), where all vi’s are Steiner nodes. There is an
edge from r to u with weight M , and from u to each vi with weight 1. Set k = 1, it can be observed
that the min-cost spanning tree would be of cost M + 1. However, there is a feasible fractional
solution where zvi = 1 − 1/n, x(u,vi) = 1/n and x(u,r) = 1/n, giving a total cost of M/n + 1. It is
thus impossible or this example and more generally, for k-MST problem, to prove a bound of the
form ALG ≤ αLP for constant α.

However, we are not completely doomed. Notice that our algorithm will still output a solution
close to the optimal one; the only thing that went wrong is the LP value itself. Also the lemma
ALG ≤ 4LP + ∆ always holds, and we can use the argument of guess and verify to get rid of the
∆ ≤ OPT assumption.

4

Figure 1: Illustration of the counterexample

Consider a variant of the problem where we know OPT beforehand as a promise. What can
we do better? It turns out we can preprocess the input graph by first eliminate all nodes v where
drv ≥ OPT , since these nodes are surely not in the optimal solution. Therefore the optimal solution
in the reduced graph is the same as the optimal solution in the original graph, and in the reduced
graph we have ALG ≤ 4LP + OPT since the diameter is bounded by OPT already, giving us a
5-approximation.

To generalize this idea, we can intuitively pretend that we know OPT beforehand by guessing it
roughly. To be more specific, for each B ∈ [0,∆], define GB the subgraph of G restricted to all
nodes within distance B from the root r. Our approximation algorithm will give a value of ALGB
with the promise that

ALGB ≤ 4LPB +B,

where LPB ≤ OPTB is the LP value of the problem restricted on GB. We have the promise that
LPB ≤ OPT given B ≥ OPT by the argument above, so the following algorithm would give a 5+ ε
approximation (assuming every weight is integer):

Algorithm 1 Guess and Verify

1: O ←∞
2: for 0 ≤ i ≤ logn·cmax

log 1+ε do

3: B ← (1 + ε)i

4: if ALGB ≤ O then
5: O ← ALGB
6: end if
7: end for
8: return O

To see the correctness of the algorithm, note that at least one value in B ∈ [OPT, (1 + ε)OPT] will
be chosen in some iteration, and in that iteration, we have found a solution with LPB ≤ OPT and
B ≤ (1 + ε)OPT , resulting in an approximation ratio of 5 + ε due to Lemma 3.1.

The number of iterations of the outer loop is logn·cmax

log 1+ε , where cmax = maxe ce. This is within
poly(n, logD, 1/ε) hence providing an efficient approximation algorithm.

