
IOE 691: Approximation Algorithms Date: 1/9/2017

Lecture Notes: Greedy Algorithms: TSP and k -center

Instructor: Viswanath Nagarajan Scribe: Karmel Shehadeh

1 Traveling Salesman Problem (TSP)

The input is a set of cities V = {1, 2, ..., n}, and a distance function d : V × V → R+ that
satisfies:

• Symmetry: d(u, v) = d(v, u), ∀u, v ∈ V

• Triangular inequality: d(u,w) ≤ d(u, v) + d(v, w), ∀u, v, w ∈ V

Such a distance function is called a metric. We also view (V, d) as a complete graph on vertices V
with edge-costs given by d. The goal is to find a tour of minimum distance that visits each city
exactly once and return to its starting point. We will present two approximation algorithms for
TSP, both relying on the minimum spanning tree algorithm.

Lemma 1.1 For any instance I to the traveling salesman problem, the cost of optimal tour it at
least the cost of the minimum spanning tree on I, i.e., MST (I) ≤ TSP (I)

Proof: We assume instance I has n ≥ 2 cities. Start with the optimal TSP tour of cost TSP (I).
If your remove one edge from the tour (break the cycle), the result is a spanning tree ST(I) with a
cost at most TSP (I). Since the minimum spanning tree (MST) is the one with the minimum cost
over all spanning trees, it follows that MST (I) ≤ TSP (I)

Algorithm 1.1. Double-tree algorithm

1. Compute the minimum spanning tree M on (V, d).

2. Double all edges of M and call the resulting graph D.

3. Find a walk W that uses each edge of D exactly once (see Theorem 1.1 below).

4. Shortcut W by skipping vertices that are re-visited to get a valid TSP tour T .

Analysis of algorithm 1.1

We first need some preliminaries about Eulerian graphs.

Definition 1.1 An Eulerian graph is a graph with the following properties:

1. Connected: there is a path between every pair of vertices.

2. All vertices have even degree. Recall that the degree of a vertex is the number of edges incident
to it, with self-loops counted twice.

Theorem 1.1 ([1]) There is a walk in every Eulerian graph that visits each edge exactly once and
this can be computed in polynomial time.

1



2

Figure 1: Illustrative instance of the resulting TSP tour from the double tree algorithm

Theorem 1.2 The double-tree algorithm for TSP is a 2-approximation algorithm.

Proof: Let OPT be the cost of the optimal TSP tour. By Lemma 1.1, the cost of the minimum
spanning tree M is at most OPT. We then double each edge (replace it with two copies) of M
and the cost of the resulting graph D is at most 2OPT . Also D is Eulerian by construction. By
Theorem 1.1, a walk W of cost at most 2OPT can be constructed via the Eulerian traversal of the
edges in D. Let W be the sequence i0, i1, ..., ik of cities where there may be repetitions. To get a
tour T , we removing all but the first occurrence of each city in this sequence. This tour T contains
each city exactly once (starts at i0 and returns to i0). We now show that the cost of T is at most
that of W . Consider two consecutive cities in T : i` and im (we omitted i`+1, ..., im−1 since these
cities were already visited earlier in T ). It then follows from the triangle inequality (and induction)
that the distance di`,im is upper bounded by the total distance of the edges (i`, i`+1), ..., (im−1, im).
Adding up over all edges in T , the cost of T is at most the cost of W which is at most 2OPT .

We now discuss a better approximation algorithm by building on the above ideas. First we need
the following problem definition.

Matching: The input is a graph G = (U,E) with even number of vertices U and distance function
d : U ×U → R+. The goal is to find edges K ⊆ E such that each vertex has exactly one end-point
in K with minimum cost

∑
e∈K d(e).

Theorem 1.3 ([2]) A minimum cost matching can be found in polynomial time.

Algorithm 1.2 Christofides’ algorithm for TSP.

1. Compute the minimum spanning tree M on (V, d).

2. Compute the minimum cost matching K on odd degree vertices of M .

3. Add the edges of K to M to obtain an Eulerian graph D′.

4. Find a walk W ′ that uses each edge of D′ exactly once.

5. Shortcut W ′ by skipping vertices that are re-visited to get a valid TSP tour T ′.

Observation 1.1 The number of odd degree vertices in M is even.

Proof: Let Veven ⊂ V and Vodd ⊂ V be the subsets of even and odd degree vertcies in M



3

1

2

3

4

56

7

8

9

10

Figure 2: Illustrative instance the two matchings M1 (thick edges), and M2 (thin edges)

respectively.

2|E| =
∑
ϑ∈V

deg(ϑ) =
∑

ϑ∈Vodd

deg(ϑ) +
∑

ϑ∈Veven

deg(ϑ)︸ ︷︷ ︸
even

= even

Hence |Vodd| is even.

Analysis of algorithm 1.2. The only additional fact we need is:

Observation 1.2 The minimum cost matching on any set U (even number of vertices) is at most
1
2OPT , where OPT is the cost of the optimal TSP tour.

Proof: Consider the optimal TSP tour O and shortcut over all vertices not in U to obtain cycle
O′ containing vertices U . By triangle inequality, the cost of O′ is at most that of O which is OPT .
We define two candidate matchings on U using O′. By renumbering vertices let O′ be the sequence
1, 2, · · · , |U |, 1 of vertices. Let M1 be the matching that pairs vertices as (1, 2), (3, 4) · · · (|U |−1, |U |)
and M2 be (|U |, 1), (2, 3) · · · (|U | − 2, |U | − 1). See Figure 2 for an example. Then Cost(M1) +
Cost(M2) = Cost(O′) ≤ OPT . So min(Cost(M1),Cost(M2)) ≤ OPT/2.

Theorem 1.4 Christofides’ algorithm for TSP is a 3/2-approximation algorithm.

Proof: We know that the Cost(MST ) ≤ OPT , and that the min-cost matching has Cost(K) ≤
OPT/2. So the cost of D′ (and hence T ′) is at most 3

2OPT .

2 The k-center problem

The input is a set V of vertices, distance function d :V ×V → R+ (symmetric and satisfies triangle
inequality) and a bound k. The distances model similarity between these vertices (i.e., closer
vertices are similar to each other). One wants to find k -clusters which group together vertices that
are most similar into the same clusters. Formally, The goal is to choose a set S ⊆ V of k “cluster



4

Algorithm 1 A greedy 2-approximation algorithm for the k -center problem

1: set s1 ∈ V as the first center (arbitrary)
2: S ← {s1}
3: for i = 1, 2, ..., k
. si ← arg maxu∈V

(
mins∈{s1,...,si−1} d(s, u)

)
. S ← S ∪ {si}

centers” so as to minimize the maximum distance of any vertex to its nearest center, i.e.

min
S⊆V :|S|=k

max
ϑ∈V

(
min
s∈S

d(ϑ, s)

)
.

A natural greedy algorithm is to repeatedly pick as a new center the vertex that is as far as possible
from the existing centers.

Theorem 2.1 Algorithm 2.1 is a 2-approximation algorithm for the k-center problem.

Proof: Let O∗ = {o1, ..., ok} be the optimal set of k -centers with optimal cost R∗. Let
X1, X2, ..., Xk be clusters, where, Xi are all vertices that are closet to oi ∈ O∗. Note that
d(u, oi) ≤ R∗ for all u ∈ Xi and i ∈ [k]. Observe that if |S ∩ Xi| 6= φ, ∀i = 1, ..., k, then S is
a 2-approximation. This is because each u ∈ Xi can connect to the center s′ ∈ S ∩ Xi at dis-
tance d(u, s′) ≤ d(u, oi) + d(oi, s

′) ≤ 2R∗ by triangle inequality and definition of cluster Xi; so
mins∈S d(u, s) ≤ 2R∗ for all u ∈ V .

Now suppose in some iteration j, we pick center sj in some cluster X in which an earlier center sr
was already picked (r < j). Since sj , sr ∈ X, the distance between sj and sr is d(sj , sr) ≤ 2R∗ (by
triangular inequality) and thus minj′<jd(sj , sj′) ≤ 2R∗. Now, by the greedy choice of sj , for all
u ∈ V :

min
j′<j

d(u, sj′) ≤ min
j′<j

d(sj , sj′) ≤ 2R∗.

This clearly implies min
s∈S

d(u, s) ≤ min
j′<j

d(u, sj′) ≤ 2R∗ for all u ∈ V .

References

[1] J. A. Bondy and U. S. R. Murty, Graph theory with applications, vol. 290. 1976.

[2] J. Edmonds, “Maximum matching and a polyhedron with 0,1-vertices,” Journal of Research of
the National Bureau of Standards Section B, p. 125–130, 1965.


