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Abstract

This paper provides a unified family of algorithms with performance guarantees for mal-
leable scheduling problems on flows. A flow represents a set of jobs with precedence con-
straints. Each job has a speedup function that governs the rate at which work is done on the
job as a function of the number of processors allocated to it. In our setting, each speedup
function is linear up to some job-specific processor maximum. A key aspect of malleable
scheduling is that the number of processors allocated to any job is allowed to vary with time.
The overall objective is to minimize either the total cost (minisum) or the maximum cost
(minimax) of the flows. Our approach handles a very general class of cost functions, and in
particular provides the first constant-factor approximation algorithms for total and maxi-
mum weighted completion time. Our motivation for this work was scheduling in MapReduce
and we also provide experimental evaluations that show good practical performance.

1 Introduction

MapReduce is a fundamentally important programming paradigm for processing big data [9].
This allows for efficiently processing large-scale tasks in a computing cluster. There are a
number of different MapReduce implementations: a very popular open-source implementation
is Hadoop [19]. An important component of any MapReduce implementation is its scheduler,
which allocates work to different processors in the cluster. A good scheduler is essential in
utilizing available computing resources well.

There has been a significant amount of work [42, 43, 44, 45] on designing practical MapRe-
duce schedulers: however, all these papers focus on singleton MapReduce jobs. Indeed, single
MapReduce jobs were the appropriate atomic unit of work early on. Lately, however, flows of
interconnected MapReduce jobs are commonly employed. Each flow corresponds to a directed
acyclic graph whose nodes are singleton MapReduce jobs and whose arcs represent precedence
constraints. Such a MapReduce flow can result, for example, from a single user-level Pig [16],
Hive [39] or Jaql [2] query. In these settings, it is the completion times of the flows that matter
rather than the completion times of the individual MapReduce jobs.

In this paper, we model the problem of scheduling flows of MapReduce jobs as a mal-
leable scheduling problem with precedence constraints [12]. Because the terminology of parallel
scheduling is not standard, we clarify what we mean by the word malleable now. In malleable
scheduling, jobs can be executed on an arbitrary number of processors and this number can
vary throughout the runtime of the job. A different parallel scheduling model known as mold-
able scheduling also involves jobs that can be executed on an arbitrary number of processors:
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however, the number of processors used for any job can not vary over time. Some papers such
as [5, 18, 22, 23, 28, 30] refer to moldable scheduling also as malleable: we emphasize that the
scheduling model in these papers is different from ours.

We provide a unified family of algorithms for malleable scheduling with provable performance
guarantees for minimizing either the sum or the maximum of cost functions associated with each
flow. Our approach simultaneously handles a variety of standard scheduling objectives, such as
weighted completion time, number of tardy jobs, weighted tardiness and stretch. Apart from
the theoretical results, we provide two sets of experimental evaluations comparing our algorithm
to other practical MapReduce schedulers: (i) simulations based on our model that compare the
objective value of each of these schedulers to the optimum; and (ii) real cluster experiments that
compare the relative performance of these schedulers. The experimental results demonstrate
good practical performance of our algorithms. Our algorithms have also been incorporated in
IBM’s BigInsights [4].

1.1 The Model

There are P identical processors in our scheduling environment. Each flow j is described by
means of a directed acyclic graph. The nodes in each of these directed acyclic graphs are jobs,
and the directed arcs correspond to precedence relations. We use the standard notation i1 ≺ i2
to indicate that job i1 must be completed before job i2 can begin. Each job i must perform a
fixed amount of work si (also referred to interchangeably as the job size or area), and can be
performed on a maximum number δi ∈ [P ] of processors at any point in time. (Throughout
the paper, for any integer ` ≥ 1, we denote by [`] the set {1, . . . , `}.) We consider jobs with
linear speedup through their maximum numbers of processors: the rate at which work is done
on job i at any time is proportional to the number of processors p ∈ [δi] allocated to it. Job i
is complete when si units of work have been performed.

We are interested in malleable schedules. In this setting, a schedule for job i is given by
a function τi : [0,∞) → {0, 1, . . . , δi} where

∫∞
t=0 τi(t) dt = si. Note that this corresponds to

both linear speedup and processor maxima. We denote the start time of schedule τi by S(τi) :=
arg min{t ≥ 0 : τi(t) > 0}; similarly the completion time is denoted C(τi) := arg max{t ≥
0 : τi(t) > 0}. A schedule for flow j (consisting of jobs Ij) is given by a set {τi : i ∈ Ij} of
schedules for its jobs, where C (τi1) ≤ S (τi2) for all i1 ≺ i2. The completion time of flow j
is maxi∈Ij C (τi), the maximum completion time of its jobs. Our algorithms make use of the
following two natural and standard lower bounds on the minimum possible completion time of
a single flow j. (See, for example, [12].)

• Squashed area: 1
P

∑
i∈Ij si.

• Critical path: the maximum of
∑`

r=1
sir
δir

over all chains i1 ≺ · · · ≺ i` in flow j. (Recall
that a chain in a directed acyclic graph is any sequence of nodes that lie on some directed
path.)

Each flow j also specifies an arbitrary non-decreasing cost function wj : R+ → R+ where
wj(t) is the cost incurred when flow j is completed at time t. We consider both minisum and
minimax objective functions. The minisum (resp. minimax) objective minimizes the sum (resp.
maximum) of the cost functions over all flows. In the notation of [12, 29] this scheduling environ-

ment is P |var, pi(k) = pi(1)
k , δi, prec|∗; here var stands for malleable scheduling, pi(k) = pi(1)

k
denotes linear speedup, δi is processor maxima and prec denotes precedence. The * denotes
general cost functions, though we should point out that our cost functions are always based
on the completion times of the flows rather than the jobs. We refer to these problems collec-
tively as precedence constrained malleable scheduling. Our cost model handles all the commonly
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used scheduling objectives: weighted average completion time, makespan (maximum completion
time), average and maximum stretch, and deadline-based objectives associated with number of
tardy jobs, service level agreements (SLAs) and so on. (Stretch is a fairness objective in which
each flow weight is the reciprocal of the size of the flow. SLA cost functions are sometimes
called Post Office metrics.) Figure 1 illustrates 4 basic types of cost functions.

Figure 1: Typical Cost Functions Types.

Recall that a polynomial time algorithm for a minimization problem is said to be an α-
approximation algorithm (for a value α ≥ 1) if it always produces a solution with objective
value at most α times the optimal. It is known [13] that unless P=NP there are no finite
approximation ratios for either the minisum or minimax malleable scheduling problems defined
above (even in the special case of chains with length three). In order to circumvent this hardness,
we use resource augmentation [24] and focus on bicriteria approximation guarantees, defined as
follows.

Definition 1 A polynomial time algorithm for a scheduling problem is said to be an (α, β)-
bicriteria approximation (for values α, β ≥ 1) if it produces a schedule using β speed processors
that has objective value at most α times the optimal (under unit speed processors).

1.2 Our Results

For minisum objectives we have the following:

Theorem 1 The precedence constrained malleable scheduling problem admits a (2, 3)-bicriteria
approximation algorithm for general minisum objectives. Hence we obtain (i) 6-approximation
algorithm for total weighted completion time (which includes total stretch) and (ii) (3 · 21/p)-
approximation algorithm for `p-norm of completion times.

This approach also provides a smooth tradeoff between the approximation ratios in the two crite-

ria: cost and speed. For any value α ∈ (0, 1) we obtain a
(

1
1−α , 1 + 1

α

)
-bicriteria approximation

algorithm. By optimizing the parameter α, we can obtain a slightly better 5.83-approximation
for weighted completion time.

For minimax objectives we have:

Theorem 2 The precedence constrained malleable scheduling problem admits a (1, 2)-bicriteria
approximation algorithm for general minimax objectives. Hence we obtain a 2-approximation
algorithm for maximum weighted completion time (which includes makespan and maximum
stretch).

Our minisum algorithm in Theorem 1 requires solving a minimum cost network flow problem.
Although minimum cost flow can be solved in polynomial time and there are theoretically
efficient exact [8] as well as approximation algorithms [14], these algorithms are too complex
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for our implementation in the MapReduce setting. Therefore, we provide an alternative simpler
approximation algorithm for minisum scheduling that does not rely on a network flow solver.

Theorem 3 There is a simple (1 + o(1), 6)-bicriteria approximation algorithm for precedence
constrained malleable scheduling with any minisum objective.

By modifying a parameter used in this algorithm, we can obtain a better guarantee of 5.83 in
the speedup required; for simplicity we focus mainly on the slightly weaker result in Theorem 3.
The approximation guarantee in Theorem 3 is incomparable to that in Theorem 1. We note
however that for weighted completion time, both algorithms provide the same approximation
ratio (even after optimizing their parameters).

An interesting consequence of Theorem 3 is for the special case of uniform minisum objec-
tives, where each flow has the same cost function w : R+ → R+. Examples of such objectives
include total completion time and the sum of pth powers of the completion times. We show that
our algorithm finds a “universal” schedule that is simultaneously near-optimal for all uniform
minisum cost functions w.

Theorem 4 There is an algorithm for precedence constrained malleable scheduling under uni-
form minisum objectives that given any instance, produces a single schedule which is simulta-
neously a (1 + o(1), 6)-bicriteria approximation for all objectives.

The minimax algorithm (Theorem 2) and the simpler minisum algorithm (Theorem 3) are
implemented in our MapReduce scheduler. We provide two types of experimental results under
various standard scheduling objectives. Both experiments compare our scheduler to two other
commonly used MapReduce schedulers, namely FIFO (which schedules flows in their arrival
order) and Fair (which essentially divides processors equally between all flows). We note that
these experiments may be somewhat unfair to FIFO and Fair since they are each agnostic with
respect to particular objective functions. Nevertheless, we think this comparison is useful since
FIFO and Fair are the most commonly employed practical MapReduce schedulers. (They are
both implemented in Hadoop.) Moreover, as Theorem 4 shows, for a subclass of objectives our
algorithm is also agnostic to the specific objective.

The first set of experiments is based on random instances and compares the performance of
each of these algorithms relative to lower bounds on the optimum, which we compute during
the algorithm. On most minisum objectives, the average performance of our algorithm is within
52% of these lower bounds. And for most minimax objectives, the average performance of our
algorithm is within 12% of these lower bounds. In all cases, our algorithm performs much better
than FIFO and Fair.

The second set of experiments is based on an implementation in a real computer cluster. So
this does not rely on any assumptions of our model. The input here consists of MapReduce jobs
from an existing benchmark [17] which are represented as flows by adding random precedence
constraints. We tested the three schedulers (ours, FIFO and Fair) on the following four standard
objectives: average completion time, average stretch, makespan and maximum stretch. The
performance of our algorithm was at least 50% better than both FIFO and Fair on all objectives
except makespan. (For makespan, all three schedulers produced schedules of almost the same
objective.)

We note that some of these results (Theorems 1 and 2) were reported without full proofs
in [33]. That paper focused on MapReduce system aspects rather than theory. Other than
providing detailed proofs of Theorems 1 and 2, this paper provides the following new results.
(i) A faster and simpler approximation algorithm for minisum objectives (Theorem 3), (ii) a
near-optimal universal schedule for all uniform minisum objectives (Theorem 4), and (iii) an
improved approximation ratio of 5.83 for total weighted completion time (Corollary 1).
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1.3 Related Work

In order to place our scheduling problem in its proper context, we give a brief, somewhat
historically oriented overview of theoretical parallel scheduling. There are essentially three
different models in parallel scheduling: rigid, moldable and malleable.

The first parallel scheduling results involved rigid jobs. Each such job runs on some fixed
number of processors and each processor is presumed to complete its work simultaneously. One
can thus (with a slight loss of accuracy) think of a job as corresponding to a rectangle whose
height corresponds to the number of processors p, whose width corresponds to the execution
time t of the job, and whose area s = p · t corresponds to the work performed by the job. Early
papers, such as [1, 7, 15, 37], focused on the makespan objective and obtained constant-factor
approximation algorithms.

Subsequent parallel scheduling research took a variety of directions. One such direction
involved moldable scheduling: each job here can be run on an arbitrary number p of processors,
but with an execution time t(p) which is a function of the number of processors. (One can
assume without loss of generality that this function is nonincreasing.) Thus the height of a job
is turned from an input parameter to a decision variable. And the rectangle is moldable in the
sense that pulling it higher also has the effect of shrinking its width. Clearly rigid scheduling is a
special case of moldable scheduling. The first approximation algorithms for moldable scheduling
with a makespan objective appeared in [30, 40].

In a different direction, [36] found the first approximation algorithm for both rigid and
moldable scheduling problems with a (weighted) average completion time objective.

The notion of malleable scheduling is more general than moldable. Here the number of
processors allocated to a job is allowed to vary over time. However, each job must still perform
a fixed total amount of work. In its most general variant, there is a speedup function (as in
the moldable case) which governs the rate at which work is done as a function of the number
of allocated processors; so the total work completed is the integral of these rates over time.
However, this general problem is very difficult, and so the literature to date [10, 11, 12, 29, 41]
has focused on the special case where the speedup function is linear through a given maximum
number of processors, and constant thereafter. It turns out that malleable scheduling with
linear speedup and processor maxima captures the MapReduce paradigm very well. See the
discussion in Subsection 1.4. This is the setting considered in our paper as well.

In the presence of precedence constraints, there are a large number of papers, eg. [5, 18,
22, 23, 28], dealing with moldable jobs and the makespan objective. None of these results are
directly applicable to malleable jobs considered here.

Aside from the negative result in [13], the literature on malleable scheduling is sparse, even
in this special case of linear speedup functions and processor maxima. (The problem without
processor maxima reduces to the case of single processor scheduling, for which the literature is
well-known [34].) The problem of minimizing maximum lateness with linear speedup, processor
maxima and release dates was solved in polynomial time in [41] via an iterative maximum flow
algorithm based on guesses for the lateness. (The complexity can be improved using techniques
of [27].) A polynomial time algorithm for the online problem of minimizing makespan with
linear speedup and processor maxima appears in [10, 11].

Again, see [12, 29] for many more details on rigid, moldable and malleable scheduling. The
literature on the last is quite limited, and thus this paper is a contribution.

Commonly Used MapReduce schedulers. To the best of our knowledge, all previous
schedulers were designed for singleton MapReduce jobs. The first scheduler was the ubiquitous
First In, First Out (FIFO) which prioritizes jobs in their arrival order. FIFO is obviously very
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simple to implement, but it causes large jobs to starve small jobs that arrive even a small time
later. This unfairness motivated the second scheduler, called Fair [44]. The idea in Fair was
essentially to allocate the cluster resources as equally as possible among all the current jobs.
The third scheduler called Flex [42, 43] is closest to our work, and is also based on the malleable
scheduling model used here. We note that our work handles a much more general setting
with flows of MapReduce jobs. Moreover we obtain algorithms with theoretical performance
guarantees; previously such results were not known even for singleton MapReduce jobs.

1.4 Application to MapReduce

MapReduce [9] is an extensively used parallel programming paradigm. There are many good
reasons for the widespread adoption of MapReduce. Most are related to MapReduce’s inher-
ent simplicity of use, even when applied to large applications and installations. For example,
MapReduce work is designed to be parallelized automatically. It can be implemented on large
computer clusters, and it inherently scales well. Scheduling (based on a choice of plugin sched-
ulers), fault tolerence and necessary communications are all handled automatically, without
direct user assistance. The MapReduce paradigm is sufficiently generic to fit many big data
problems. Finally, and perhaps most importantly, the programming of MapReduce applications
is relatively straight-forward, and thus appropriate for less sophisticated programmers. These
benefits, in turn, result in lower costs.

MapReduce jobs, consist, as the name implies, of two processing phases: Map and Reduce.
Each phase is broken into multiple independent tasks, the nature of which depends on the
phase. In the Map phase the tasks consist of the steps of scanning and processing (extracting
information) from equal-sized blocks of input data. Each block is typically replicated on disks
for availability and performance reasons. The output of the Map phase is a set of key-value
pairs. These intermediate results are also stored on disk. There is a shuffle step in which all
relevant data from all Map phase output is transmitted to the Reduce phase. Each Reduce
task corresponds to a partitioned subset of keys (from the key-value pairs). The Reduce phase
consists of a sort step and finally a processing step, which may consist of transformation,
aggregation, filtering and/or summarization.

Why does scheduling in MapReduce fit the theory of malleable scheduling with linear
speedup and processor maxima so neatly? One reason is that there is a natural decoupling
of MapReduce scheduling into an Allocation Layer followed by an Assignment Layer. In the
Allocation Layer, quantity decisions are made, i.e. the number of processors assigned to each
MapReduce job. The Assignment Layer then uses the allocation decision as a guideline to assign
individual Map/Reduce tasks to processors. The scheduling algorithms discussed in this paper
reside in the Allocation Layer. The Assignment Layer works locally at each processor in the
cluster. Whenever a task completes on a processor, the Assignment Layer essentially determines
which job is most underallocated according to the Allocation Layer schedule, and assigns a new
task from that job to this processor. (Occasionally, the Assignment Layer overrides this rule due
to data locality concerns. But the deviation from the allocation decision is usually small. We
do not discuss these details here since our model and algorithms are for the Allocation Layer.)

Second, in MapReduce clusters each processing node is partitioned into a number of slots,
typically a small constant times the number of cores in the processor. Processors with more
compute power are given more slots than those with less power, the idea being to create slots
of roughly equal capabilities, even in a heterogeneous environment. In MapReduce, the slot is
the atomic unit of allocation. So the word processor in the theoretical literature corresponds to
the word slot in a MapReduce context. (We will continue to talk of processors here.)

Third, both the Map and Reduce phases are composed of many small, independent tasks.
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Because they are independent they do not need to start simultaneously and can be processed
with any degree of parallelism without significant overhead. This, in turn, means that the jobs
will have nearly linear speedup. Because the tasks are many and small, the decisions of the
scheduler can be approximated closely.

One final reason is that processor maxima constraints occur naturally, either because the
particular job happens to be small (and thus have only few tasks), or at the end of a normal
job, when only a few tasks remain to be allocated.

Other Models for MapReduce We note that a number of other models for MapReduce have
been considered in the theoretical literature. Moseley et al. [32] consider a “two-stage flexible
flow shop” [38] model. Berlinska and Drozdowski [3] use “divisible load theory” to model a
single MapReduce job and its communication details. Theoretical frameworks for MapReduce
computation have been proposed in [25, 26]. Compared to our setting, these models are at a
finer level of granularity, that of individual Map and Reduce tasks. Our model, as described
above, decouples the quantity decisions (allocation) from the actual assignment details in the
cluster. We focus on obtaining algorithms for the allocation layer, which is abstracted as a
precedence constrained malleable scheduling problem.

1.5 Paper Outline

The rest of the paper is organized as follows. Section 2 contains our algorithmic framework for
both minisum and minimax objectives. Section 3 describes our simpler algorithm for minisum
objectives. Section 4 provides results from our experimental evaluations. We conclude in
Section 5.

2 Algorithms for Minisum and Minimax Scheduling

In this section, we provide our general algorithms for minisum and minimax objectives (Theo-
rems 1 and 2). In Subsection 2.1 we give a high-level overview of the algorithms, which consist
of three main stages. The following three subsections then contain the details of each of these
stages.

2.1 Technical Overview

Our algorithms for both minisum and minimax objectives are based on suitable “reductions” to
the problem with a deadline-based objective. In the deadline-based scheduling problem, every
flow j is associated with a deadline dj ∈ R+ such that its cost function is:

wj(t) =

{
0 if t ≤ dj
∞ otherwise

.

Notice that in this case both minisum and minimax versions coincide. Even the deadline-
based malleable scheduling problem is NP-hard and hard to approximate. (See Subsection 2.3
for more details.) So we focus on obtaining a bicriteria approximation algorithm. In particular
we show that a simple greedy scheme has a (1, 2)-bicriteria approximation ratio.

The reduction from minisum objectives to deadline-based objectives is based on solving a
minimum cost flow relaxation and “rounding” the optimal flow solution, which incurs some
loss in the approximation ratio. The reduction from minimax objectives to deadlines is much
simpler and uses a “guess and verify” framework that is implemented via a bracket and bisection
search.

Our algorithms have three sequential stages, described at a high level as follows.
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1. Converting general precedence to chains. First we consider each flow j separately, and
convert its precedence constraints into chain precedence constraints. (Recall that a chain
precedence on elements {ei : 1 ≤ i ≤ n} is just a total order, say e1 ≺ e2 ≺ · · · ≺ en.)
In order to do this, we create a pseudo-schedule for each flow that assumes an infinite
number of processors, but respects precedence constraints and the bounds δi on jobs i.
Then we partition the pseudo-schedule into a chain of pseudo-jobs, where each pseudo-job
k corresponds to an interval in the pseudo-schedule with uniform processor usage. Just
like the original jobs, each pseudo-job k specifies a size sk and a bound δk describing the
maximum number of processors on which it can be executed. We note that (unlike jobs)
the bound δk of a pseudo-job may be larger than P .

2. Scheduling chains of pseudo-jobs. Next we design bicriteria approximation algorithms
for the malleable scheduling problem when each flow is a chain. This stage relies on
the above-mentioned reductions from general minisum/minimax objectives to a deadline-
based objective. Then we have a malleable schedule for the pseudo-jobs, satisfying the
chain precedence within each flow as well as the bounds δk.

3. Converting the pseudo-schedule into a valid schedule for jobs. The final stage transforms
the malleable schedule of each pseudo-job k into a malleable schedule for the (portions
of) jobs i that comprise it. This step also ensures that the original precedence constraints
and bounds δi on jobs are satisfied. The algorithm used here is a generalization of an old
scheduling algorithm [31].

2.2 General Precedence Constraints to Chains

We now describe a procedure to convert an arbitrary set of precedence constraints on jobs into
a chain constraint on “pseudo-jobs”. Consider any flow with n jobs where each job i ∈ [n] has
size si and processor bound δi. The precedence constraints are given by a directed acyclic graph
on the jobs. In the algorithm, we make use of the squashed area and critical path lower bounds
on the minimum completion time of a flow.

Construct a pseudo-schedule for the flow as follows. Allocate each job i ∈ [n] its maximal
number δi of processors, and assign job i the smallest start time bi ≥ 0 such that for all i1 ≺ i2 we
have bi2 ≥ bi1 +

si1
δi1

. The start times {bi}ni=1 can be easily computed by dynamic programming.

The pseudo-schedule runs each job i on δi processors, between time bi and bi + si
δi

. Given
an infinite number of processors the pseudo-schedule is a valid schedule satisfying precedence
constraints.

Time

Processors
1

2

3

4

5

P

1

3

3

2
4 5

Figure 2: Converting flows into chains.

Next, we construct pseudo-jobs corresponding to this flow. Let T = maxni=1(bi + si
δi

) denote
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the completion time of the pseudo-schedule; observe that T equals the critical path bound of
the flow. Partition the time interval [0, T ] into maximal intervals I1, . . . , Ih so that the set of
jobs processed by the pseudo-schedule in each interval stays fixed. Note that

∑h
k=1 |Ik| = T .

For each k ∈ [h], if rk denotes the total number of processors being used during Ik, define
pseudo-job k to have processor bound δ(k) := rk and size s(k) := rk · |Ik|, which is the total
work done by the pseudo-schedule during Ik. Note that a pseudo-job consists of portions of
work from multiple jobs; moreover, we may have rk > P , since the pseudo-schedule is defined
independent of P . Finally we enforce the chain precedence constraint 1 ≺ 2 ≺ · · · ≺ h on
pseudo-jobs. Notice that the squashed area and critical path lower bounds remain the same
when computed in terms of pseudo-jobs instead of jobs. Clearly, the total size of pseudo-jobs∑h

k=1 s(k) =
∑n

i=1 si, the total size of the jobs. Moreover, there is only one maximal chain

of pseudo-jobs, which has critical path
∑h

k=1
s(k)
δ(k) =

∑h
k=1 |Ik| = T , the original critical path

bound. Note that pseudo-jobs can be easily constructed in polynomial time, and the number
of pseudo-jobs resulting from any flow is at most the number of original jobs in the flow.

See Figure 2 for an example. On the left is the directed acyclic graph of a particular flow,
and on the right is the resulting pseudo-schedule along with its decomposition into maximal
intervals.

2.3 Malleable Scheduling with Chain Precedence Constraints

Here we consider the malleable scheduling problem on P parallel processors with chain prece-
dence constraints and general cost functions. Each chain j ∈ [m] is a sequence kj1 ≺ kj2 ≺ · · · ≺
kjn(j) of pseudo-jobs, where each pseudo-job k has size s(k) and specifies a maximum number

δ(k) of processors on which it can be run. We note that the δ(k)s may be larger than P . Each
chain j ∈ [m] also specifies a non-decreasing cost function wj : R+ → R+ where wj(t) is the
cost incurred when chain j is completed at time t. The objective is to find a malleable schedule
on P identical parallel processors that satisfies precedence constraints and minimizes the total
or maximum cost. Recall that in the original malleable scheduling problem, each flow corre-
sponds to a set of jobs with arbitrary precedence constraints: the above chain of pseudo-jobs is
obtained as a result of the transformation in Subsection 2.2. Our algorithm here relies on the
chain structure.

Malleable schedules for pseudo-jobs (resp. chains of pseudo-jobs) are defined identically to
jobs (resp. flows) as in Subsection 1.1. To reduce notation, we denote a malleable schedule
for chain j by a sequence τ j = 〈τ j1 , . . . , τ jn(j)〉 of schedules for its pseudo-jobs, where τ jr is a

malleable schedule for pseudo-job kjr for each r ∈ [n(j)]. Note that chain precedence implies
that for each r ∈ {1, . . . , n(j) − 1}, the start time of kjr+1, S(τ jr+1) ≥ C(τ jr ), the completion

time of kjr. The completion time of this chain is C(τ j) := C(τ jn(j)).
Even very special cases of this problem do not admit any finite approximation ratio:

Theorem 5 ([13]) Unless P=NP, there is no finite approximation ratio for precedence con-
strained malleable scheduling, even with chain precedences of length three.

Proof: This follows directly from the NP-hardness of the makespan minimization problem
called P |1any1, pmtn|Cmax of [13]. We state their result in our context: each chain is of length
three, where the first and last pseudo-jobs have maximum δ = 1, and the middle pseudo-job
has maximum δ = P . Then it is NP-hard to decide whether there is a malleable schedule of
makespan equal to the squashed area bound (denoted M).

We create an instance of precedence constrained malleable scheduling as follows. There are
P processors and the same set of chains. The cost function of each chain j is wj : R+ → R+

where w(t) = 0 if t ≤ M and w(t) = 1 if t > M . Clearly, the optimal cost of this malleable
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scheduling instance is zero if and only if the instance of P |1any1, pmtn|Cmax has a makespan
M schedule; otherwise the optimal cost is one. Therefore it is also NP-hard to obtain any
multiplicative approximation guarantee for precedence constrained malleable scheduling. �

Given this hardness of approximation, we focus on bicriteria approximation guarantees. We
first give a (1, 2)-bicriteria approximation algorithm when the cost functions are deadline-based.
Then we obtain a (2, 3)-bicriteria approximation algorithm for arbitrary minisum objectives and
a (1, 2)-bicriteria approximation algorithm for arbitrary minimax objectives.

2.3.1 Deadline-based Objective

We consider the problem of scheduling chains on P parallel processors under a deadline-based
objective. That is, each chain j ∈ [m] has a deadline dj and its cost function is: wj(t) = 0 if t ≤
dj and ∞ otherwise.

We show that a natural greedy algorithm is a good bicriteria approximation. By renumbering
chains, we assume that d1 ≤ · · · ≤ dm. The algorithm schedules chains in non-decreasing order
of deadlines, and within each chain it schedules pseudo-jobs greedily (by allocating the maximum
possible number of processors). A formal description appears as Algorithm 1.

Algorithm 1 Algorithm for scheduling with deadline-based objective

1: initialize utilization function σ : [0,∞)→ {0, 1, . . . , P} to zero.
2: for j = 1, . . . ,m do
3: for i = 1, . . . , n(j) do
4: set S(τ ji )← C(τ ji−1) and initialize τ ji : [0,∞)→ {0, . . . , P} to zero.

5: for each time t ≥ S(τ ji ) (in increasing order), set τ ji (t)← min
{
P − σ(t) , δ(kji )

}
, until∫

t≥S(τ ji )
τ ji (t) dt = s(kji ).

6: set C(τ ji )← max{z : τ ji (z) > 0}.
7: update function σ ← σ − τ ji .

8: set C(τ j)← C(τ jn(j)).

9: if C(τ j) > 2 · dj then
10: instance is infeasible.
11: else
12: output schedules {τj : j ∈ [m]}.

Theorem 6 There is a (1, 2)-bicriteria approximation algorithm for malleable scheduling with
chain precedence constraints and a deadline-based objective.

Proof: We obtain this result by analyzing Algorithm 1. First, notice that this algorithm
produces a valid malleable schedule that respects the chain precedence constraints and the
maximum processor bounds. Next, we prove the performance guarantee. It suffices to show
that if there is any solution that satisfies deadlines {d`}m`=1 then C(τ j) ≤ 2dj for all chains
j ∈ [m]. Consider the utilization function σ : [0,∞) → {0, . . . , P} just after scheduling chains
[j] in the algorithm. Let Aj denote the total duration of times t in the interval [0, C(τ j)]
where σ(t) = P , i.e. all processors are busy with chains from [j]; and Bj = C(τ j)−Aj the total
duration of times when σ(t) < P . Note that Aj and Bj consist of possibly many non-contiguous
intervals. It is clear that

Aj ≤ 1

P

j∑
`=1

n(`)∑
i=1

s(k`i ). (1)
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Since the algorithm always allocates the maximum possible number of processors to each pseudo-
job, at each time t with σ(t) < P we must have τ ji (t) = δ(kji ), where i ∈ [n(j)] is the unique

index of the pseudo-job with S(τ ji ) ≤ t < C(τ ji ). Therefore,

Bj ≤
n(j)∑
i=1

s(kji )

δ(kji )
. (2)

Notice that the right hand side in (1) corresponds to the squashed area bound of the first
j chains, which must be at most dj if there is any feasible schedule for the given deadlines.
Moreover, the right hand side in (2) is the critical path bound of chain j, which must also
be at most dj if chain j can complete by time dj . Combining these inequalities, we have
C(τ j) = Aj +Bj ≤ 2 · dj .

Thus, if the processors are run at twice their speeds, we obtain a solution that satisfies all
deadlines. This proves the (1, 2)-bicriteria approximation guarantee. �

2.3.2 Minisum Objectives

We consider the problem of scheduling chains on P parallel processors under arbitrary minisum
objectives. Recall that there are m chains, each having a non-decreasing cost function wj :
R+ → R+, where wj(t) is the cost of completing chain j at time t. The total number of pseudo-
jobs is denoted N . The goal in the minisum problem is to compute a schedule of minimum total
cost. We obtain the following bicriteria approximation in this case.

Theorem 7 There is a (2, 3+o(1))-bicriteria approximation algorithm for malleable scheduling
with chain precedence constraints under arbitrary minisum cost objectives.

For each chain j ∈ [m], define

Qj := max


n(j)∑
i=1

s(kji )/δ(k
j
i ),

n(j)∑
i=1

s(kji )/P

 (3)

to be the maximum of the critical path and squashed area lower bounds. We may assume,
without loss of generality, that every schedule for these chains completes by time H := 2m ·
dmaxj Qje. In order to focus on the main ideas, we first provide an algorithm where:

A1. Each cost function wj(·) has integer valued breakpoints, i.e. times where the cost changes.

A2. The running time is pseudo-polynomial, i.e. polynomial in m, N and H.

We will show later that both these restrictions can be removed to obtain a truly polynomial
(in m, N and logH) time algorithm for any set of cost functions.

Our algorithm works in two phases. In the first phase, we treat each chain simply as a certain
volume of work, and formulate a minimum cost flow subproblem using the cost functions wjs.
The solution to this subproblem is used to determine candidate deadlines {dj}mj=1 for the chains.
Then in the second phase, we run our algorithm for deadline-based objectives using {dj}mj=1 to
obtain the final solution.
Minimum cost flow. Here, we treat each chain j ∈ [m] simply as work of volume Vj :=∑n(j)

i=1 s(k
j
i ), which is the total size of pseudo-jobs in j. Recall that a network flow instance

consists of a directed graph (V,E) with designated source (r) and sink (r′) nodes. Each arc
e ∈ E has a capacity ue and cost we (per unit of flow). There is also a demand of ρ units.
A network flow is an assignment f : E → R+ of values to arcs such that (i) for any node
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v ∈ V \ {r, r′}, the total flow entering v equals the total flow leaving v, and (ii) for each arc
e ∈ E, fe ≤ ue. The value of a network flow is the net flow out of its source. The objective is to
find a flow f of value ρ having minimum cost

∑
e∈E we · fe. It is well known that this problem

can be solved in polynomial time.

r r′

a1

am

b1

bt

bH

cost wi(t)/Vj

cap Vj
cap P

When unspecified, cost = 0, cap =∞.

aj

Arcs E2

Arcs E1 Arcs E3

The dotted arcs are E4.

Figure 3: The Minimum Cost Flow Network.

The min-cost flow subproblem. The nodes of our flow network are {a1, . . . , am}∪{b1, . . . , bH}∪
{r, r′}, where r denotes the source and r′ the sink. The nodes ajs correspond to chains and bts
correspond to intervals [t− 1, t) in time. The arcs are E = E1 ∪ E2 ∪ E3 ∪ E4, where:

E1 := {(r, aj) : j ∈ [m]}, arc (r, aj) has cost 0 and capacity Vj ,

E2 := {(aj , bt) : j ∈ [m], t ∈ [H], t ≥ Qj}, arc (aj , bt) has cost
wj(t)
Vj

and capacity ∞,

E3 := {(bt, r′) : t ∈ [H]}, arc (bt, r
′) has cost 0 and capacity P , and

E4 = {(bt+1, bt) : t ∈ [H − 1]}, arc (bt+1, bt) has cost 0 and capacity ∞.
See also Figure 3. We set the demand ρ :=

∑m
j=1 Vj , and compute a minimum cost flow

f : E → R+. We use I to denote this network flow instance. Notice that, by definition of the
arc capacities, any ρ-unit flow must send exactly Vj units through each node aj (j ∈ [m]).

The next claim relates instance I to the malleable scheduling instance.

Claim 1 The minimum cost of a network flow in instance I is at most the optimal value of
the malleable scheduling instance.

Proof: Consider any feasible malleable schedule having completion time Cj for each chain j ∈
[m]. By definition, Qj is a lower bound for chain j, i.e. Cj ≥ Qj and hence edge (aj , bCj ) ∈ E2

for all j ∈ [m]. We will prove the existence of a feasible network flow of ρ units having cost at
most

∑m
j=1wj(Cj). Since the cost functions wj(·) are monotone, it suffices to show the existence

of a feasible flow of ρ units (no costs) in the sub-network N ′ consisting of edges E1∪E′2∪E3∪E4,
where E′2 := {(aj , bt) : j ∈ [m], Qj ≤ t ≤ Cj}. By max-flow min-cut duality, it now suffices to
show that the minimum r − r′ cut in this network N ′ is at least ρ. Observe that any finite
capacity r − r′ cut in N ′ is of the form {r} ∪ {aj : j ∈ S} ∪ {bt : 1 ≤ t ≤ maxj∈S Cj}, where
S ⊆ [m] is some subset of chains. The capacity of edges crossing such a cut is:∑

j 6∈S
Vj + P ·max

j∈S
Cj . (4)
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Notice that all the chains in S are completed by time T := maxj∈S Cj in the malleable schedule:
so the total work assigned to the first T time units is at least

∑
j∈S Vj . On the other hand, the

malleable schedule only has P processors: so the total work assigned to the first T time units
must be at most P · T . Hence P ·maxj∈S Cj ≥

∑
j∈S Vj . Combined with (4) this implies that

the minimum cut in N ′ is at least
∑m

j=1 Vj = ρ. This completes the proof. �

Obtaining candidate deadlines Now we round the flow f to obtain deadlines dj for each
chain j ∈ [m]. We define dj := arg min

{
t :
∑t

s=1 f(aj , bs) ≥ Vj/2
}

, for all j ∈ [m]. In other
words, dj corresponds to the “half completion time” of chain j given by the network flow f .
Since wj(·) is non-decreasing and

∑
t≥dj f(aj , bt) ≥ Vj/2, we have

wj(dj) ≤ 2 ·
∑
t≥dj

wj(t)

Vj
· f(aj , bt), ∀j ∈ [m]. (5)

Note that the right hand side above is at most twice the cost of arcs leaving node aj . Thus,
if we obtain a schedule that completes each chain j by its deadline dj , using (5) the total cost∑m

j=1wj(dj) ≤ 2 · OPT. Moreover, by definition of the arcs E2,

dj ≥ Qj ≥ (critical path of chain j), ∀j ∈ [m]. (6)

By the arc capacities on E3 we have
∑m

j=1

∑t
s=1 f(aj , bs) ≤ P · t, for all t ∈ [H].

Let us renumber the chains in deadline order so that d1 ≤ d2 ≤ · · · ≤ dm. Then, using the
definition of deadlines (as half completion times) and the above inequality for t = dj ,

j∑
`=1

V` ≤ 2 ·
j∑
`=1

dj∑
s=1

f(a`, bs) ≤ 2P · dj , ∀j ∈ [m]. (7)

Solving the subproblem with deadlines. Now we apply the algorithm for scheduling with
a deadline-based objective (Theorem 6) using the deadlines {dj}mj=1 computed above. Notice
that we have the two bounds required in the analysis of Theorem 6:

• The squashed area of the first j chains is 1
P ·
∑j

`=1 V` ≤ 2 · dj for all j ∈ [m] by (7).

• The critical path bound is at most dj for all j ∈ [m], by (6).

By an identical analysis, it follows that the algorithm in Theorem 6 produces a malleable
schedule that completes each chain j by time 3 · dj . So, running this schedule using processors
three times faster results in total cost at most

∑m
j=1wj(dj) ≤ 2 · OPT.

Handling restrictions A1 and A2. We now show that both restrictions made earlier can
be removed, while incurring an additional 1 + o(1) factor in the processor speed. Recall the
definitions of lower bounds Qj for chains j ∈ [m], and the horizon H = 2m · dmaxj Qje. By
scaling up sizes, we may assume (without loss of generality) that minj Qj ≥ 1. So the completion
time of any chain in any schedule lies in the range [1, H]. Set ε := 1/m, and partition the [1, H]
time interval as:

T` :=
[
(1 + ε)`−1, (1 + ε)`

]
, for all ` = 1, . . . , log1+εH.

Note that the number of parts above is R := log1+εH which is polynomial. We now define
a polynomial size network on nodes {a1, . . . , am} ∪ {b1, . . . , bR} ∪ {r, r′}, where r denotes the
source and r′ the sink. The nodes ajs correspond to chains and b`s correspond to time intervals
T`s. The arcs are E = E1 ∪ E2 ∪ E3 ∪ E4, where:

E1 := {(r, aj) : j ∈ [m]}, arc (r, aj) has cost 0 and capacity Vj ,
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E2 :=
{

(aj , b`) : j ∈ [m], ` ∈ [R], Qj ≤ (1 + ε)`
}
, arc (aj , b`) has cost wj

(
(1 + ε)`−1

)
/Vj and capacity ∞,

E3 := {(b`, r′) : ` ∈ [R]}, arc (b`, r
′) has cost 0 and capacity |T`| · P , and

E4 = {(b`+1, b`) : ` ∈ [H − 1]}, arc (b`+1, b`) has cost 0 and capacity ∞.

Above, |T`| = ε · (1 + ε)`−1 denotes the length of interval T`. As before, we set the demand
ρ :=

∑m
j=1 Vj , and compute a minimum cost flow f : E → R+. Notice that any ρ-unit flow

must send exactly Vj units through each node aj (j ∈ [m]). Exactly as in Claim 1 we can show
that this network flow instance is a valid relaxation of any malleable schedule. The next two
steps of computing deadlines and solving the subproblem with deadlines are also the same as
before. The only difference is that the squashed area (7) and critical path (6) lower bounds are
now larger by a 1 + ε factor, due to the definition of intervals T`s.

Thus the algorithm is a (2, 3(1 + ε))-bicriteria approximation, which proves Theorem 7.

Tradeoff between speed and objective. We can use the technique of α-point rounding
(see eg. [6]) and choose deadlines in the network flow f based on “partial completion times”
other than just the halfway point used above. This leads to a continuous tradeoff between the
approximation bound on the speed and objective.

Theorem 8 For any α ∈ (0, 1) there is a
(

1
1−α , 1 + 1

α

)
-bicriteria approximation algorithm for

malleable scheduling with chain precedence constraints under any minisum objective.

This algorithm generalizes that in Theorem 7 by selecting deadlines as:

dj := arg min

{
t :

t∑
s=1

f(aj , bs) ≥ α · Vj
}
, ∀j ∈ [m].

By an identical analysis we obtain

wj(dj) ≤ 1

1− α ·
∑
t≥dj

wj(t)

Vj
· f(aj , bt), ∀j ∈ [m],

in place of (5). And

j∑
`=1

V` ≤ 1

α
·

j∑
`=1

dj∑
s=1

f(a`, bs) ≤ 1

α
P · dj , ∀j ∈ [m],

in place of (7). As before we also have the bound (6) on critical paths. Combining these bounds
with the algorithm for deadlines (Theorem 6) we obtain a malleable schedule with speed 1 + 1

α
that has cost at most 1

1−α times the optimum. This proves Theorem 8.

We note that in some cases the bicriteria approximation guarantees can be combined.

Corollary 1 There is a 3 + 2
√

2 ≈ 5.83 approximation algorithm for minimizing total weighted
completion time in malleable scheduling with chain precedence constraints.

Proof: This follows directly by observing that if a 1 + 1
α speed schedule is executed at unit

speed then each completion time scales up by exactly this factor. Therefore, the algorithm from

Theorem 8 for any value of α yields a
(

1+α
α−α2

)
-approximation algorithm for weighted completion

time. Optimizing for α ∈ (0, 1) gives the result (choosing α =
√

2− 1). �
We also have the following result for `p-norm objectives.
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Corollary 2 There is a (3 · 21/p)-approximation algorithm for minimizing the `p-norm of com-
pletion times in malleable scheduling with chain precedence constraints.

Proof: Recall that for a schedule with completion times {Cj}mj=1, the `p-norm objective equals(∑m
j=1C

p
j

)1/p
. We use the minisum cost function wj(t) = tp in Theorem 7. The algorithm

in Theorem 7 then gives a (2, 3)-bicriteria approximation for the minisum objective
∑m

j=1C
p
j .

Viewed as a unit speed schedule this is a (2 · 3p)-approximation, and hence for the `p norm
objective we obtain the claimed (3 · 21/p)-approximation algorithm. �

2.3.3 Minimax Objectives

Here we obtain the following result.

Theorem 9 There is a (1, 2+o(1))-bicriteria approximation algorithm for malleable scheduling
with chain precedence constraints under arbitrary minimax cost objectives.

Proof: The algorithm assumes a bound M such that M ≤ OPT ≤ (1 + ε)M for some small
ε > 0 and attempts to find a schedule of minimax cost at most M . The final algorithm
performs a bracket and bisection search on M and returns the solution corresponding to the
smallest feasible M . (This is a common approach to many minimax optimization problems, for
example [20].) As with the minisum objective in Theorem 7, our algorithm here also relies on
a reduction to deadline-based objectives. In fact the algorithm here is much simpler:

1. Obtaining deadlines. Define for each chain j ∈ [m], its deadline Dj := arg max{t : wj(t) ≤
M}.

2. Solving deadline subproblem. We run the algorithm for deadline-based objectives (Theo-
rem 6) using these deadlines {Dj}mj=1. If the deadline algorithm declares infeasibility, our
estimate M is too low; otherwise we obtain a 2-speed schedule having minimax cost M .

Setting ε = 1/m, the binary search on M requires O(m log(wmax/wmin)) iterations where wmax
(resp. wmin) is the maximum (resp. minimum) cost among all chains. So the overall runtime
is polynomial. �
As in Corollaries 1 and 2, the bicriteria guarantees can be combined for some objectives, in-
cluding makespan.

Corollary 3 There is a 2-approximation algorithm for minimizing maximum weighted comple-
tion time in malleable scheduling with chain precedence constraints.

2.4 Converting Pseudo-Job Schedule into a Valid Schedule

The final stage converts any malleable schedule of chains of pseudo-jobs into a valid schedule of
the original instance (consisting of flows of jobs). We convert the schedule of each pseudo-job
k separately. Recall that each pseudo-job consists of portions of jobs. We will construct a
malleable schedule for these job-portions that has the same cumulative processor-utilization as
the schedule for pseudo-job k. The original precedence constraints are satisfied since the chain
constraints are satisfied on pseudo-jobs, and the jobs participating in any single pseudo-job are
independent.

Consider any pseudo-job k that corresponds to an interval Ik in the pseudo-schedule of some
flow. (Recall Subsection 2.2.) Let pseudo-job k consist of portions of the jobs S ⊆ [n]; then
the processor maximum of pseudo-job k is rk =

∑
i∈S δi. See Figure 4. The left side shows an
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example of a pseudo-job. Consider also any malleable schedule σ : [0,∞) → {0, 1, · · · , rk} of
pseudo-job k; note that this schedule has area

∫
σ(t)t = sk = |Ik| · rk. We now describe how to

“partition” this schedule σ into a set of schedules for the portions of jobs in S corresponding to
Ik.

Time

Processors

P

Pseudo-job Ik Pseudo-schedule σ is “partitioned” into valid schedule.

Intervals in J
Intervals in Ik(J )

Figure 4: Converting pseudo-schedule into valid schedule.

The algorithm first decomposes σ into maximal intervals of time J each of which involves a
constant number of processors. For each interval J ∈ J , we let |J | denote its length and σ(J)
denote the number of processors used during J . So the work done by σ during J ∈ J is σ(J)·|J |.
Based on J we partition the interval Ik into {Ik(J) : J ∈ J }, where each |Ik(J)| = |J |·σ(J)

rk
;

note that this is indeed a partition as
∑

J∈J |Ik(J)| = ∑J∈J
|J |·σ(J)
rk

= sk
rk

= |Ik|. See Figure 4.

Next, the algorithm schedules the work from each interval Ik(J) of the pseudo-job during
interval J of schedule σ. Taking such schedules over all J ∈ J gives a full schedule for Ik.
For each J ∈ J , we apply McNaughton’s Rule [13, 31] to find a valid schedule for Ik(J) which
consists of portions of jobs S. This schedule will use σ(J) processors for |J | units of time. We
consider the jobs in S in arbitrary order, say i1, i2, · · · , i|S|. For each job i` we allocate its
work to one processor at a time (moving to the next processor when the previous one has been
utilized fully) until i` is fully allocated; then we continue allocating the next job i`+1 from the
same point. It is easy to see that each job i ∈ S is allocated at most δi processors at any point
in time. So we obtain a valid malleable schedule for the job-portions in Ik(J). See the right
side of Figure 4 for an example of this valid schedule for the first interval in J .

3 Faster Algorithm for Minisum Scheduling

Consider again the malleable minisum scheduling problem with chain precedence constraints
as in Subsection 2.3. There are P parallel processors and m chains. Each chain j has a non-
decreasing cost function wj : R+ → R+, where wj(t) is the cost of completing chain j at time
t. The goal in the minisum problem is to compute a schedule of minimum total cost. Here we
provide a simpler bicriteria approximation algorithm for this problem. The high level idea is
to iteratively solve a knapsack-type problem to obtain deadlines for the chains. Then we will
apply the algorithm for deadline-based objectives (Theorem 6). For each chain j, recall from (3)
that Qj is a lower bound on its completion time; let Rj and Uj denote the critical path and
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squashed area bounds, so Qj = max{Rj , Uj}. Let ` = minj∈[m] Qj denote a lower bound on
the completion time of any chain. We will focus on the following geometrically spaced times:

ai := ` · 2i, for all i ≥ 0. (8)

We also define for each chain j ∈ [m], the following incremental costs:

∆ji :=

{
wj(a0) if i = 0
wj(ai)− wj(ai−1) if i ≥ 1

, ∀i ≥ 0.

Note that wj(ai) =
∑i

k=0 ∆jk for all chains j ∈ [m] and i ≥ 0.

Our algorithm relies on solving many instances of a knapsack-type problem. An instance
of the min-loss knapsack problem consists of (i) a set T of items where item j ∈ T has size vj
and profit pj , and (ii) a budget B. The goal is to select a subset S ⊆ T that has total size∑

j∈S vj ≤ B and minimizes the “unselected” profit
∑

j∈T\S pj . This problem can be reduced
to the minimization knapsack problem: given items T with profits and sizes as above and some
target B′, the goal is to select a minimum profit subset S′ of items such that the total size in S′

is at least B′. The reduction involves an instance of minimum knapsack with items T , profits
pj , sizes vj and target B′ =

∑
j∈T vj − B. Every solution S′ ⊆ T to the minimum knapsack

instance corresponds to a solution S = T \ S′ to the min-loss knapsack instance with the same
objective, and vice-versa. Since there is a fully polynomial time approximation scheme (FPTAS)
for minimum knapsack [21], we obtain one for min-loss knapsack as well. In particular, we have
an α = 1 + o(1) approximation algorithm for min-loss knapsack.

Algorithm 2 is our simpler approximation algorithm for minisum objectives. We will show:

Theorem 10 If there is an α-approximation algorithm for the minimum knapsack problem
then there is an (α, 6)-bicriteria approximation algorithm for malleable scheduling with chain
precedence constraints under arbitrary minisum objectives.

Using the FPTAS for minimum knapsack [21] and the framework in Section 2 which reduces
general precedence constraints to chain precedence, this also implies Theorem 3.

Algorithm 2 Simpler Algorithm for Minisum Objectives

1: initialize unscheduled chains T ← [m].
2: for i = 0, 1, . . . do
3: set Ti ← {j ∈ T : Rj ≤ ai}, i.e. chains whose critical path bound is at most ai.
4: define an instance of min-loss knapsack as follows. The items correspond to chains j ∈ Ti

each of which has size Vj (total size of jobs in j) and profit ∆ji. The budget on size is
P · ai.

5: let Si ⊆ Ti be an α-approximately optimal solution to this instance of min-loss knapsack.
6: set T ← T \ Si.
7: if T = ∅ then break.
8: run the algorithm from Theorem 6 with deadline dj := ai for all j ∈ Si.

Analysis. Fix any optimal solution to the given instance. For any i ≥ 0 let Ni be the set of
chains which are not completed in the optimal solution before time ai.

Claim 2 The optimal cost OPT ≥∑i≥0
∑

j∈Ni
∆ji.
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Proof: Note that
∑

i≥0
∑

j∈Ni
∆ji =

∑
j∈[m]

∑
i:j∈Ni

∆ji. And for any chain j ∈ [m], its
completion time C∗j is at least max{ai : j ∈ Ni}. So we have wj(C

∗
j ) ≥∑i:j∈Ni

∆ji. The claim
now follows by adding over all j ∈ [m]. �

Consider any iteration i ≥ 0 in our algorithm. Recall that Si (for any i ≥ 0) is the set of
chains with deadline ai. Let T ′i = ∪k≥iSi denote the set of chains which have deadline at least
ai; note that T ′i equals the set T at the start of iteration i. And Ti ⊆ T ′i are those chains whose
critical path bounds are at most ai. The next claim shows that the incremental cost of chains
T ′i \Si that have deadline more than ai is not much more than that of the chains in Ni (for the
optimal solution).

Claim 3 For each i ≥ 0,
∑

j∈Ti\Si
∆ji ≤ α ·

∑
j∈Ti∩Ni

∆ji; hence
∑

j∈T ′i\Si
∆ji ≤ α ·

∑
j∈Ni

∆ji.

Proof: Let Oi = Ti \Ni. Since all chains in Oi complete before time ai in the optimal solution,
we have

∑
j∈Oi

Vj ≤ P · ai. Hence Oi is a feasible solution to the min-loss knapsack instance in
iteration i. The objective value of solution Oi is

∑
j∈Ti\Oi

∆ji =
∑

j∈Ti∩Ni
∆ji. The first claim

now follows since we use an α-approximation algorithm for min-loss knapsack.
To see the second claim, notice that T ′i \ Si = (Ti \ Si) ∪ (T ′i \ Ti). So∑

j∈T ′i\Si

∆ji =
∑

j∈Ti\Si

∆ji+
∑

j∈T ′i\Ti

∆ji ≤ α ·
∑

j∈Ti∩Ni

∆ji+
∑

j∈T ′i\Ti

∆ji ≤ α ·
∑

j∈Ti∩Ni

∆ji+
∑

j∈Ni\Ti

∆ji.

The last inequality uses T ′i \ Ti ⊆ Ni \ Ti: this is because the completion time (in the optimal
schedule) of every chain in T ′i \Ti is at least ai. Now the second claim follows because α ≥ 1. �

Now we bound the completion time of the chains in the algorithm.

Claim 4 For each i ≥ 0, the completion time in Step 8 of any chain in Si is at most 3ai.
Hence, in a 6 speed schedule, the completion time of all chains in Si is at most ai−1.

Proof: Fix any i ≥ 0 and chain j ∈ Si. By the definition of the deadlines we know that the
critical path of chain j is at most dj . By the definition of the min-loss knapsack instances, we
can bound the total size of chains with deadline at most ai as follows:

i∑
k=0

∑
j∈Si

Vj ≤
i∑

k=0

Pak = Pai

i∑
k=0

2−k ≤ 2Pai.

Now we have the two bounds required in the proof of Theorem 6: critical path and the total
size of chains with smaller deadlines. So we obtain that the completion time of chain j is at
most ai + 2Pai

P = 3ai. This completes the proof. �
We are now ready to bound the cost of our algorithm. Let ALG denote the total cost under

a 6 speed schedule. By Claim 4 we have ALG ≤ ∑j∈S0
wj(a0) +

∑
i≥1
∑

j∈Si
wj(ai−1). By

definition of the incremental costs, we can write

ALG ≤
∑
j∈S0

∆j0 +
∑
i≥1

∑
j∈Si

i−1∑
k=0

∆jk =
∑
j∈S0

∆j0 +
∑
k≥0

∑
i≥k+1

∑
j∈Si

∆jk (9)

=
∑
j∈[m]

∆j0 +
∑
k≥1

∑
i≥k+1

∑
j∈Si

∆jk =
∑
j∈[m]

∆j0 +
∑
k≥1

∑
j∈T ′k\Sk

∆jk (10)

≤
∑
j∈[m]

∆j0 + α
∑
k≥1

∑
j∈Nk

∆jk ≤ α
∑
k≥0

∑
j∈Nk

∆jk ≤ α · OPT. (11)

The first inequality in (11) is by Claim 3 and the last inequality is by Claim 2. This completes
the proof of Theorem 10.
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An Improved Approximation. We can obtain an improved (1 + o(1), 5.83)-bicriteria ap-
proximation by a slight variation of this approach. The idea is to use powers of another number
ρ > 1 (instead of 2) in the definition of the points ai in (8). In particular we set ai := ` · ρi
for all i ≥ 0. The rest of the algorithm remains the same. We now outline the changes in the
analysis. Only Claim 4 changes, as follows:

• The completion time of chains in Si in Step 8 is at most 2ρ−1
ρ−1 ·ai. This is because the total

size of chains with deadline at most ai is now bounded by Pai
∑i

k=0 ρ
−k ≤ ρ

ρ−1 · Pai.

• Therefore, in a 2ρ2−ρ
ρ−1 speed schedule, all chains in Si complete by time ai−1.

Altogether we obtain a
(

1 + o(1), 2ρ
2−ρ
ρ−1

)
-bicriteria approximation. Optimizing over ρ > 1, we

obtain a (1 + o(1), 3 + 2
√

2)-bicriteria approximation ratio (when ρ = 1 + 1/
√

2).
This directly translates to an improved approximation in Theorems 3 and 4.

3.1 Minisum Objective with Uniform Costs

Here we consider a special case of minisum objectives where the cost functions wj of all chains
j ∈ [m] is uniform. We let w : R+ → R+ denote the common cost function; so the objective value
of a schedule that completes chain j at time Cj is

∑m
j=1w(Cj). Examples of such objectives

include total completion time and the sum of the pth powers of completion times.
An interesting consequence of the algorithm in Theorem 10 is that we obtain a “universal”

schedule that is simultaneously near-optimal for all cost functions w.

Theorem 11 There is an algorithm for malleable scheduling with chain precedence constraints
and uniform minisum objectives that given any instance, produces a schedule which is simulta-
neously a (1 + o(1), 6)-bicriteria approximation for all objectives.

Again, using the reduction from general precedence constraints to chain precedence in Sec-
tion 2, this implies Theorem 4.

Algorithm 3 Universal Schedule for Uniform Minisum Objectives

1: initialize unscheduled chains T ← [m].
2: for i = 0, 1, . . . do
3: set Ti ← {j ∈ T : Rj ≤ ai}, i.e. chains whose critical path bound is at most ai.
4: sort the chains in Ti by non-decreasing size Vj .
5: let Si ⊆ Ti be the maximum prefix in this sorted order with total size at most P · ai.
6: set T ← T \ Si.
7: if T = ∅ then break.
8: run the algorithm from Theorem 6 with deadline dj := ai for all j ∈ Si.

The algorithm here is just Algorithm 2 specialized to the case of uniform minisum objectives
(setting each wj = w). The key observation is that the resulting algorithm does not depend on
the cost function w. Notice that with uniform costs, the incremental costs ∆ji are also uniform,
i.e. for each i ≥ 0 we have ∆ji = ∆i for all chains j ∈ [m].

Recall that the min-loss knapsack instance in any iteration i of Algorithm 2 is as follows.
The items correspond to chains j ∈ Ti each of which has size Vj and profit ∆ji = ∆i; and the
budget on size is P ·ai. Since all item profits are uniform, an optimal solution to such an instance
has no dependence on ∆i (and the cost function w). Moreover, there is a straightforward exact
algorithm for such instances: sort the items in non-decreasing size and select the largest prefix
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Squashed area

Critical path

Figure 5: Chains ordered by deadlines in the universal solution of Algorithm 3.

that has total size at most the budget. See Algorithm 3 for a formal description. Figure 5
illustrates Algorithm 3. The axes measure the critical path and squashed area bounds of each
chain. The directed path depicts the ordering of the chains by non-decreasing deadlines in
Algorithm 3; this is independent of the cost function w.

4 Experimental Results

In this section we evaluate the performance of our family of algorithms via a variety of experi-
ments. We have implemented the faster and simpler minisum algorithm from Section 3, and the
minimax algorithm from Section 2.3. The computational tests are in the context of a MapRe-
duce scenario, our motivating practical example. In this context our algorithms are collectively
known as FlowFlex. We consider its two previously mentioned competitors, Fair [44] and FIFO.
We discuss simulation and real cluster experiments in the next two subsections.

4.1 Simulation Experiments

We begin by describing simulation experiments involving FlowFlex, Fair and FIFO. We will
compare the performance of each of these three in terms of the best lower bound that we find.
We consider many choices of scheduling objectives, based on completion time, number of tardy
jobs, tardiness and SLA step functions. (See Figure 1.) They can be either weighted or non-
weighted, and the problem can be to minimize the sum (and hence average) or the maximum
over all flows. So, for example, average and weighted average completion time are included
for the minisum case. So is average stretch, which is simply completion time weighted by
the reciprocal of the amount of work associated with the flow. Similarly, makespan (which is
maximum completion time), maximum weighted completion time, and thus maximum stretch is
included for the minimax case. Weighted or unweighted numbers of tardy jobs, total tardiness,
total SLA costs are included in the minisum case. Maximum tardy job cost, maximum tardiness
and maximum SLA cost are included in the minimax case. (A minimax problem involving
unit weight tardy jobs would simply be 1 if tardy flows exist, and 0 otherwise, so we omit
that objective.) We note that that these experiments are somewhat unfair to both Fair and
FIFO, since both are agnostic with respect to the objective and they focused also on singleton
MapReduce jobs rather than flows.

The calculation of the lower bound depends on whether the problem is minisum or minimax.
For minisum problems the solution to the minimum cost flow problem provides the lower bound,
as does the sum of the critical path objective function values for each chain. For minimax prob-
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Algorithm FlowFlex Fair FIFO

Completion Time 1.23/1.46 2.10/2.25 2.07/ 3.00
Stretch 1.22/1.38 3.79/6.32 7.92/21.03
Weighted Completion Time 1.25/1.52 2.42/3.15 2.30/ 5.39
Number of Tardy Jobs 1.42/2.12 1.88/3.97 1.64/ 3.31
Weighted Number of Tardy 1.65/3.06 2.71/9.31 2.14/ 7.08
Tardiness 1.51/3.11 3.51/8.54 3.74/10.55
Weighted Tardiness 1.77/4.11 4.84/8.99 5.25/16.54
Unit SLA 1.62/3.27 2.62/5.19 2.22/ 4.27
SLA 1.52/2.44 2.56/5.31 2.32/ 4.96

Table 1: Minisum Simulation Results (Average/Worst Case)

lems the maximum of the critical path objective function values provides a lower bound. But we
also improve this bound based on the solution found via a bracket and bisection algorithm. We
perform an additional bisection algorithm between the original lower bound and our solution,
since we know that the partial sums of the squashed area bounds must be met by the successive
deadlines.

Each simulation experiment was created using the following methodology. The number of
flows was chosen from a uniform distribution between 5 and 20. The number of jobs for a given
flow was chosen from a uniform distribution between 2 and 20. These jobs were then assumed
to be in topological order and the precedence constraint between jobs j1 and j2 was chosen
based on a probability of 0.5. Then all jobs without successors were assumed to precede the
last job in the flow, to ensure connectivity. Sampling from a variety of parameters governed the
size and processor maxima of different jobs. Weights in the case of completion time, number of
tardy jobs and tardiness were also chosen from a uniform distribution between 1 and 10. The
one exception was for stretch objectives, where the weights are predetermined by the size of the
flow. Similarly, in the case of SLA objectives, the number of steps and the incremental step
heights were chosen from comparable distributions with a maximum of 5 steps. Single deadlines
for the tardy and tardiness cases were chosen so that it was possible to meet the deadline, with
a uniform random choice of additional time given. Multiple successive deadlines for the SLA
case were chosen similarly. The number P of processors (slots) was set to 100.

Algorithm FlowFlex Fair FIFO

Makespan 1.01/1.07 1.01/ 1.10 1.02/ 1.08
Stretch 1.03/1.14 4.33/13.42 15.67/55.00
Weighted Completion Time 1.05/1.14 2.22/ 3.81 2.15/ 3.81
Weighted Number of Tardy 1.12/1.17 1.50/10.00 1.47/10.00
Tardiness 1.07/1.35 1.13/ 1.81 1.47/ 4.12
Weighted Tardiness 1.08/1.31 2.69/ 5.28 2.92/ 5.92
Unit SLA 1.26/1.50 1.50/ 3.00 1.42/ 2.00
SLA 1.10/1.43 1.59/ 2.63 1.54/ 2.63

Table 2: Minimax Simulation Results (Average/Worst Case)

Table 1 illustrates both average and worst case performance (given 25 simulation experiments
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each) for 9 minisum objectives. Each row represents the ratio of the FlowFlex, Fair or FIFO
algorithms to the best lower bound available. Each table entry consists of two numbers: the
first is the average ratio and the second is the maximum ratio, both taken over the 25 instances.
So by definition each ratio must be at least 1. Ratios close to 1 are by definition very good
solutions, but, of course, solutions with poorer ratios may still be close to optimal. Note that
FlowFlex performs significantly better than either Fair or FIFO, and often is close to optimal.
FIFO performs particularly poorly on average stretch, because the weights can cause great
volatility. FlowFlex also does dramatically better than either Fair or FIFO on the tardiness
objectives.

Similarly, Table 2 illustrates the comparable minimax experiments, for those 8 objectives
which make sense. Here one sees that makespan is fine for all schemes, which is not particularly
surprising. But FlowFlex does far better than either Fair or FIFO on all the others. In all 8
sets of experiments, FlowFlex is within 1.26 of “optimal” on average, and generally quite a lot
better.

4.2 Cluster Experiments

The cluster experiments were performed using the IBM Platform Symphony MapReduce frame-
work within its BigInsights product [4]. There were 20 processing nodes of 10 slots each. One
node was reserved for the scheduler and other MapReduce software. So we had P = 190
processors (slots).

We used a workload based on the standard Hadoop Gridmix2 benchmark [17]. For each
experiment we ran 10 flows, each consisting of 2 to 10 Gridmix jobs of random sizes, randomly
wired into a dependency graph by the same basic procedure we used for our simulation experi-
ments. The experiment driver program submitted a job only when it was ready. That is, all of
the jobs it depended upon were completed. We ran two sets of experiments: one where all flows
arrived at once and another where flows arrived at random intervals chosen from an exponential
distribution. For each type of experiment we ran three different random sets of arrival times
and job sizes.

In these cluster experiments, the schedulers are running in something more like their native
environment. Specifically, they are epoch-based: Every epoch (roughly 2 seconds) they examine
the newly revised problem instance. Thus the job sizes for FlowFlex change from epoch to epoch.
And, of course, flows and jobs arrive and complete. FlowFlex then produces a complete schedule
that corresponds to allocation suggestions. This is then implemented to the extent possible by
the Assignment Layer.

A few comments should be mentioned here. First, we have intentionally not employed
sophisticated schemes for estimating the amount of work of each job in the various flows. We
do know the number of tasks per job, however, and estimate work for unstarted jobs by using
a default work prediction per task. For running jobs we continue to refine our work estimates
by extrapolating based on data from the completed tasks. All of this could be improved, for
example by incorporating the techniques in [35]. Better estimates should improve the quality
of our FlowFlex scheduler, but they are orthogonal to the current paper. The second comment
is that the Reduce phase is ready precisely when some fixed fraction of the Map phase tasks
preceeding it have finished. FlowFlex simply coalesces all such ready tasks within a single
MapReduce job and adjusts the maxima accordingly.

We compared FlowFlex to Fair and FIFO running for submitted jobs. The schedulers were
not aware of jobs that were not yet submitted. Figure 6 reports the relative performance
improvement of FlowFlex for average completion time, makespan, and average and maximum
stretch for both sets of experiments. Essentially, we are evaluating the four most commonly used
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Figure 6: Cluster experiments: relative performance of Fair, FIFO and FlowFlex.

scheduling objectives. Also, all data here for the stretch-based metrics are evaluated based on
an analysis of the actual amount of work in each flow. The results in these cluster experiments
are more or less comparable to those of the simulations. One notes that the effect of releasing
all flows at once or randomly is modest. Makespan, as before, shows all three schemes to be
more or less identical in performance. It appears that makespan is a relatively easy problem
to solve well in practice. For all other objectives, Fair and FIFO are at least 50% worse than
FlowFlex.

We also ran cluster experiments designed to test the robustness of each of the four primary
FlowFlex algorithms to the three other cost functions. Can a FlowFlex algorithm for average
completion time, for example, also perform well on average stretch, makespan and maximum
stretch? Note that the theoretical result (Theorem 4) on universal schedules does not apply
to stretch-based metrics, but finding a universal FlowFlex algorithm still makes good practi-
cal sense. Table 3 describes an additional cluster experiment with 10 flows starting at once,
and Table 4 describes an experiment with random arrivals. The four standard algorithms are
represented by the rows. The four columns correspond to different objectives. The smallest
values in each column should, in theory, be along the diagonal. And this is close to true in most
cases. In the average stretch column of Table 3 FlowFlex using average stretch is 8% worse than
Flowflex using average completion time. The reverse is true (by 6%) for the average completion
time in Table 4. In the maximum stretch column of Table 4 FlowFlex using maximum stretch
is 5% worse than FlowFlex using maximum stretch. We think the proper way to look at these
results is that every one of these four FlowFlex with the exception of makespan produces close
to the best cost function for all four metrics. Why is makespan an outlier? The reason is that
makespan, alone among these four cost functions, is primarily specific to the aggregate of all
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FlowFlex Algorithm Average Average Makespan Maximum
completion time stretch stretch

Average completion time 211 1.97 780 3.53
Average stretch 223 2.13 776 3.55
Makespan 528 8.08 759 14.49
Maximum stretch 230 2.10 854 2.99

Table 3: Cluster experiments: Algorithmic performance on 4 key cost functions, all at once

FlowFlex Algorithm Average Average Makespan Maximum
completion time stretch stretch

Average completion time 170 1.46 788 2.35
Average stretch 161 1.33 787 2.09
Makespan 386 5.38 757 8.77
Maximum stretch 175 1.38 877 2.20

Table 4: Cluster experiments: Algorithmic performance on 4 key cost functions, random arrivals

the flows rather than the individual flows.

5 Conclusion

We considered the problem of scheduling flows of precedence-constrained jobs in a malleable
parallel scheduling setting. Our unified approach handles a wide variety of commonly used
minisum and minimax cost functions. Since no standard approximation ratios are possible for
our general problem (unless P=NP), we obtained constant-factor bicriteria approximations for
both minisum and minimax objectives. We obtained constant-factor (usual) approximation
algorithms in some special cases. We also provided experimental analyses which demonstrate
good performance relative to lower bounds on the optimum (obtained as byproducts of our
algorithms), as well as to other commonly used MapReduce schedulers.
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