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1 Maximum Coverage

We consider a basic maximization problem, where the goal is to cover as many elements as possible
in a set-system. For concreteness, one can think of covering client locations (elements) by opening
facilities (picking sets).

Definition 1.1 Given a universe V = {e1, ..., en} of elements, a list of sets {Si ⊆ V }mi=1 (possibly
overlapping) and a bound K, the goal is to find K sets S′1, ..., S

′
K such that |

⋃K
i=1 S

′
i| is maximized.

Figure 1: Maximum coverage problem

This is an NP-hard problem, and we are going to give a greedy algorithm which has approxima-
tion ratio 1− 1/e.

Data: V : set of all elements; S1, ..., Sm; K
Result: Approximate solution A1, · · · , AK
U = V ;
for i = 1, ...,K do

Let Ai be one of the sets S1, ..., Sm which maximizes |Ai
⋂
U |;

U = U\Ai;
end

Algorithm 1: Greedy Algorithm for Maximum Coverage

The basic idea of the algorithm is to choose the set in each step which contains most of the uncovered
elements. We have the following theorem.
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Theorem 1.1 Algorithm 1 is a (1− 1/e)−approximation algorithm for maximum coverage.

To prove this theorem, let us first prove the following two lemmas. Let Ci denote the set of elements
covered by the end of iteration i in Algorithm 1.

Lemma 1.1 For all i = 1, ...,K, |Ai
⋂
U | = |Ci| − |Ci−1| ≥ OPT−|Ci−1|

K

Proof: The number of elements covered in the optimal solution but not in the algorithm at
the start of iteration i is ≥ OPT − |Ci−1|. Let sets in the optimal solution be S∗1 , ..., S

∗
K . Let

U = V \Ci−1.

Obviously,
⋃K
i=1(S

∗
i

⋂
U) = (

⋃
S∗i )\Ci−1. This implies that

K∑
i=1

|S∗i
⋂
U | ≥ |

K⋃
i=1

(S∗i
⋂
U)| ≥ OPT − |Ci−1|

which further implies
K

max
i=1
|S∗i
⋂
U | ≥ OPT − |Ci−1|

K
.

By definition, |Ai
⋂
U | ≥ maxi |S∗i

⋂
U | and we are done.

Lemma 1.2 |Ci| ≥ OPT
K

∑i−1
j=0(1− 1/K)j for all i = 1, ...,K.

Proof: Prove by induction. The base case i = 1 is trivial as the first choice A1 = C1 has at least
OPT/K elements by Lemma 1.1.

For inductive step, suppose i holds, and we want to prove that it holds for i+ 1.

|Ci+1| ≥ |Ci|+
OPT − |Ci|

K

=
OPT

K
+ (1− 1/K)|Ci|

≥ OPT

K

i∑
j=0

(1− 1/K)j

The first inequality is by Lemma 1.1, and the last inequality is from inductive hypothesis.

Now we are ready to prove Theorem 1.1.

Proof: [of Theorem 1.1]

|CK | ≥
OPT

K

K−1∑
j=0

(1− 1/K)j

=
OPT

K

1− (1− 1/K)K

1− (1− 1/K)

= OPT (1− (1− 1/K)K)

≥ (1− 1/e)OPT

where the first inequality is from Lemma 1.2, and the last inequality uses (1− 1/K)K ≤ (e−1/K)K

which is obtained from 1 + x ≤ ex for all x ∈ R.
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2 Set Cover Problem

We now consider a variant of the above problem, where the goal is to cover all elements using the
minimum number of sets.

Definition 2.1 Given a set of elements {e1, . . . en} (called the universe) and a collection {Si}mi=1

of m sets whose union equals the universe, the set cover problem is to identify the smallest sub-
collection of sets whose union equals the universe.

Notice that there is a close relationship between Set Cover and Maximum Coverage. The setting
of two problems is the same, but the goals are different: in Maximum Coverage, the total number
of sets is given and the goal is to cover as many elements as possible; in Set Cover the goal is to
cover all elements with minimum number of sets.

A natural greedy algorithm for Set Cover problem is:

Data: A universe {e1, . . . en}, a family S = {S1, . . . Sm}.
/* U is a set of uncovered elements. */

U = {e1, . . . en};
while U 6= ∅, iteration i = 1, 2, . . . l do

pick Ai = arg maxj=1,...m |Sj ∩ U |
U ← U\Ai

end
Algorithm 2: Greedy Algorithm for Set Cover Problem

Figure 2: Diagram of first two steps of greedy algorithm for Set Cover problem.

We let l denote the number of iterations taken by the greedy algorithm.

It is clear that the first k iterations of the greedy algorithm for Set Cover are identical to that of
Maximum Coverage (with bound k). In the Maximum Coverage problem, we already proved the
following lemma 2.1. (Although we only had k iterations in max-coverage, the same analysis works
for any number l of iterations.)

Lemma 2.1 If Ci denotes the set of covered elements at the end of iteration i and C∗ denotes the
maximum coverage using k sets, then

|Ci| ≥
C∗

k

i−1∑
j=0

(
1− 1

k

)j
, ∀i = 1, . . . `

Theorem 2.1 The greedy algorithm is (1 + ln(n))-approximation for Set Cover problem.
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Proof: Suppose k = OPT ( set cover ). Since set cover involves covering all elements, we know
that the max-coverage with k sets is C∗ = n. Our goal is to find the approximation ratio α so that
ALG( set cover ) = ` ≤ αk. We apply Lemma 2.1 at the second last iteration, i.e. i = `− 1.

|C`−1| ≤ n− 1

|C`−1| ≥
n

k

∑l−2
j=0(1−

1

k
)j =

n

k

1− (1− 1

k
)`−1

1

k

= n(1− (1− 1

k
)`−1) ≥ n(1− e−

`−1
k )

(1)

The first inequality is because the uncovered set must contain at least one element, otherwise the
algorithm would have stopped before. The second inequality is from Lemma 2.1 and the fact that
1 + x ≤ ex for any x ∈ (−∞,∞).

From inequalities in (1), we have ne−
`−1
k ≥ 1. We can take logarithm on both sides and find the

approximation ratio α ≤ 1 + lnn as claimed.

While α = 1 + ln(n) is not a constant factor, it is still a reasonably good approximation ratio
because it grows slowly with the input size n (refer to figure 3). Actually, one cannot get any
better approximation algorithm for the Set Cover problem unless P = NP [?].

Figure 3: Plot of y = 1 + log(n) solid line, y = n dotted line, n ∈ [1, 1000].

According to the form of approximation ratio α, we can categorize approximation algorithms within
the region of NP-hard problems as in Figure 4. From (a) to (e) the algorithms become more and
more loose in obtaining near-optimal solutions. These ratios in (c) to (e) are only examples and
other functions of input size n are also possible for the approximation ratio depending on the setting
of the problem.

Figure 4: Taxonomy of NP problems (minimization) according to the form of α.
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a. α = 1 + ε with running time of n1/ε, ε > 0. e.g. PTAS for the Knapsack problem.

b. α is constant factor, e.g. k-Center Problem, Maximum Coverage, TSP.

c. α = 1 + log(n). e.g. Set Cover problem.

d. α = 1 + log2(n). e.g. group Steiner on trees.

e. α is linear in n. e.g. independent/stable set.

3 Overview of “Hardness” Results

Consider we have a problem A, it can be either a decision problem (if the output is yes or no)
or an optimization problem (if the output is the maximum or minimum of the problem instance).
However, we generally only consider the decision problem because decision and optimization prob-
lems are somehow “equivalent”. More specifically, think about the max-coverage problem. The
corresponding decision problem is given some target T , and needs to say whether/not there exists
a solution whose objective (number of covered elements) is at least T . Whereas, the optimization
problem of max-coverage asks to find the maximum objective value over all solutions. Obviously, if
we know how to solve the optimization problem, we can immediately answer the decision problem.
On the other hand, if we can answer any decision problem with any T , using a polynomial-time rou-
tine (e.g. binary search), we can find the optimal value of the optimization problem as well.

So consider a decision problem, how do we identify its hardness rigorously? There are two main
classes of decision problems based on its hardness. The first class is called P. A problem is in P
if given a decision instance (e.g. target T in max-coverage), we can answer whether there exists
a solution satisfying this instance (e.g. some solution with objective value ≥ T in max-coverage)
in polynomial time of the input size. The other class is called NP. Loosely speaking, a problem is
in NP if given a decision instance and a solution, we can check whether this solution satisfies the
instance in polynomial time.

Hence, we can obviously see that if A is in P, it is in NP. However, the other direction remains open
till now and whether P=NP is one of the most famous problems in mathematics and computer
science. Currently, it is widely assumed that P 6=NP and this will be the underlying assumption
for us as well.

Till now, we have “defined” two classes of problems with different hardness. Then the next question
is, given a problem B how can we prove its hardness in a rigorous way? This is achieved from the
so-called reduction of problems.

A −→ B

Definition 3.1 Reduction from problem A (of input size n) to problem B is a map from instances
I of A to instances J of B satisfying the following properties.

1. The reduction takes polynomial time in n.

2. I is a yes-instance if and only if J is a yes-instance.

Then we have the important notion of NP-hard. That is, problem B is NP-hard if it can be
reduced from all NP problems. Loosely speaking, if problem B is NP-hard, we believe that there
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is no polynomial time algorithm such that any decision instance can be checked (unless P=NP).
Why? Because otherwise, from the definition of reduction and NP-hard, all NP problems can be
solved in polynomial time, which shows P=NP, a statement which we assume to be wrong. Based
on this argument, we immediately has the following observation.

Observation: Suppose we can reduce A to B. If A is NP-hard, B is also NP-hard.

Remark: The notion of NP-hard can be extended to approximate problems as well. That is,
we can show for some problems that even computing an α approximation to the optimal value is
NP-hard (for a suitable α).


