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Abstract. We study the directed minimum latency problem: given an n-
vertex asymmetric metric (V, d) with a root vertex r ∈ V , find a spanning
path originating at r that minimizes the sum of latencies at all vertices
(the latency of any vertex v ∈ V is the distance from r to v along the
path). This problem has been well-studied on symmetric metrics, and the
best known approximation guarantee is 3.59 [3]. For any 1

log n
< ε < 1,

we give an nO(1/ε) time algorithm for directed latency that achieves an
approximation ratio of O(ρ · nε

ε3
), where ρ is the integrality gap of an LP

relaxation for the asymmetric traveling salesman path problem [13,5].
We prove an upper bound ρ = O(

√
n), which implies (for any fixed ε >

0) a polynomial time O(n1/2+ε)-approximation algorithm for directed
latency.

In the special case of metrics induced by shortest-paths in an un-
weighted directed graph, we give an O(log2 n) approximation algorithm.
As a consequence, we also obtain an O(log2 n) approximation algorithm
for minimizing the weighted completion time in no-wait permutation
flowshop scheduling. We note that even in unweighted directed graphs,
the directed latency problem is at least as hard to approximate as the
well-studied asymmetric traveling salesman problem, for which the best
known approximation guarantee is O(log n).

1 Introduction

The minimum latency problem [17,6,14,2] is a variant of the basic traveling
salesman problem, where there is a metric with a specified root vertex r, and
the goal is to find a spanning path starting from r that minimizes the sum
of arrival times at all vertices (it is also known as the deliveryman problem or
traveling repairman problem). This problem can model the traveling salesman
problem, and hence is NP-complete. To the best of our knowledge, all previous
work has focused on symmetric metrics– the first constant-factor approximation
algorithm was in Blum et al. [2], and the currently best known approximation
ratio is 3.59 due to Chaudhuri et al. [3]. In this paper, we consider the minimum
latency problem on asymmetric metrics.

Network design problems on directed graphs are often much harder to approxi-
mate than their undirected counterparts– the traveling salesman and Steiner tree
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problems are well known examples. The currently best known approximation ra-
tio for the asymmetric traveling salesman problem (ATSP) is O(log n) [9,7], and
improving this bound is an important open question. On the other hand, there
is a 1.5-approximation algorithm for the symmetric TSP.

The orienteering problem is closely related to the minimum latency problem
that we consider– given a metric with a length bound, the goal is to find a
bounded-length path between two specified vertices that visits the maximum
number of vertices. Blum et al. [1] gave the first constant factor approxima-
tion for the undirected version of this problem. Recently, Chekuri et al. [4] and
the authors [15] independently gave O(log2 n) approximation algorithms for the
directed orienteering problem.

1.1 Problem Definition

We represent an asymmetric metric by (V, d), where V is the vertex set (with
|V | = n) and d : V × V → R+ is a distance function satisfying the triangle
inequality. For a directed path (or tour) π and vertices u, v, dπ(u, v) denotes
the distance from u to v along π; if v is not reachable from u along π, then
dπ(u, v) = ∞. The directed minimum latency problem is defined as follows:
given an asymmetric metric (V, d) and a root vertex r ∈ V , find a spanning
path π originating at r that minimizes

∑
v∈V dπ(r, v); the quantity dπ(r, v) is

the latency of vertex v in path π. Another possible definition of this problem
would require a tour covering all vertices, where the latency of the root r is
defined to be the distance required to return to r (i.e. the total tour length);
note that in the previous definition of directed latency, the latency of r is zero.
The approximability of both these versions of directed latency are related as
below (the proof is deferred to the full version).

Theorem 1. The approximability of the path-version and tour-version of di-
rected latency are within a factor 4 of each other.

In this paper, we work with the path version of directed latency.
For a directed graph G = (V, E) and any S ⊆ V , we denote by δ+(S) =

{(u, v) ∈ E | u ∈ S, v �∈ S} the arcs leaving set S, and δ−(S) = {(u, v) ∈ E |
u �∈ S, v ∈ S} the arcs entering set S. When dealing with asymmetric metrics,
the edge set E is assumed to be V × V unless mentioned otherwise. Given an
asymmetric metric and a special vertex r, an r-path (resp. r-tour) is any directed
path (resp. tour) originating at r.

Asymmetric Traveling Salesman Path (ATSP-path). The following prob-
lem is closely related to the directed latency problem. In ATSP-path, we are
given a directed metric (V, d) and specified start and end vertices s, t ∈ V . The
goal is to compute the minimum length s − t path that visits all the vertices.
It is easy to see that this problem is at least as hard to approximate as the
ATSP (tour-version, where s = t). Lam and Newmann [13] were the first to
consider this problem, and they gave an O(

√
n) approximation based on the

Frieze et al. [9] algorithm for ATSP. This was improved to O(log n) in Chekuri
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and Pal [5], which extended the algorithm of Kleinberg and Williamson [12]
for ATSP. Subsequently Feige and Singh [7] showed that the approximability of
ATSP-tour and ATSP-path are within a constant factor of each other. We are
concerned with the following LP relaxation of the ATSP-path problem.

min
∑

e de · xe

s.t.
x(δ+(u)) = x(δ−(u)) ∀u ∈ V − {s, t}
x(δ+(s)) = x(δ−(t)) = 1

(ATSP − path) x(δ−(s)) = x(δ+(t)) = 0
x(δ−(S)) ≥ 2

3 ∀{u} ⊆ S ⊆ V \ {s}, ∀u ∈ V
xe ≥ 0 ∀ arcs e

The most natural LP relaxation for ATSP-path would have a 1 in the right-
hand-side of the cut constraints, instead of 2

3 as above. The above LP further
relaxes the cut-constraints, and is still a valid relaxation of the problem. The
precise value in the right-hand-side of the cut constraints is not important: we
only require it to be some constant strictly between 1

2 and 1.

1.2 Results and Paper Outline

Our main result is a reduction from the directed latency problem to the asymmet-
ric traveling salesman path problem (ATSP-path) [13,5], where the approxima-
tion ratio for directed latency depends on the integrality gap of an LP relaxation
for ATSP-path. We give an nO(1/ε) time algorithm for the directed latency prob-
lem that achieves an approximation ratio of O(ρ · nε

ε3 ) (for any 1
log n < ε < 1),

where ρ is the integrality gap of an LP relaxation for the ATSP-path problem.
The best upper bound we obtain is ρ = O(

√
n) (Section 3); however we con-

jecture that ρ = O(log n). In particular, our result implies a polynomial time
O(n1/2+ε)-approximation algorithm (any fixed ε > 0) for directed latency. We
study the LP relaxation for ATSP-path in Section 3, and present the algorithm
for latency in Section 2. Our algorithm for latency first guesses a sequence of
break-points (based on distances along the optimal path) and uses a linear pro-
gram to obtain an assignment of vertices to segments (the portions between
consecutive break-points), then it obtains local paths servicing each segment,
and finally stitches these paths across all segments.

We also consider the special case of metrics given by shortest paths in an un-
derlying unweighted directed graph, and obtain an O(log2 n) approximation for
minimum latency in this case (Section 4). This algorithm is essentially based on
using the directed orienteering algorithm [15,4] within the framework for undi-
rected latency [10]. On the hardness side, we observe that the directed latency
problem (even in this ‘unweighted’ special case) is at least as hard to approxi-
mate as ATSP, for which the best known ratio is O(log n).

We note that ideas from the ‘unweighted’ case, also imply an O(log2 n) ap-
proximation algorithm for minimizing weighted completion time in the no-wait
permutation flowshop scheduling problem [20,18]– this can be cast as the latency



196 V. Nagarajan and R. Ravi

problem in a special directed metric. We are not aware of any previous results
on this problem.

2 The Directed Latency Algorithm

For a given instance of directed latency, let π denote an optimal latency path,
L = d(π) its length, and Opt its total latency. For any two vertices u, v ∈ V , recall
that dπ(u, v) denotes the length along path π from u to v; note that dπ(u, v) is
finite only if u appears before v on path π. The algorithm first guesses the length
L (within factor 2) and l = 
 1

ε � vertices as follows: for each i = 1, · · · , l, vi is the
last vertex on π with dπ(r, vi) ≤ niε L

n . We set v0 = r and note that vl is the last
vertex visited by π. Let F = {v0, v1, · · · , vl}. Consider now the following linear
program (MLP ):

min
∑l−1

i=0 n(i+1)ε L
n (

∑
u/∈F yi

u)
s.t.

zi(δ+(u)) = zi(δ−(u)) ∀u ∈ V \ {vi, vi+1}, ∀i = 0, · · · , l − 1
zi(δ+(vi)) = zi(δ−(vi+1)) = 1 ∀i = 0, · · · , l − 1
zi(δ−(vi)) = zi(δ+(vi+1)) = 0 ∀i = 0, · · · , l − 1
zi(δ−(S)) ≥ yi

u ∀{u} ⊆ S ⊆ V \ {vi}, ∀u ∈ V \ F,
∀i = 0, · · · , l − 1∑

e de · zi(e) ≤ n(i+1)ε · L
n ∀i = 0, · · · , l − 1

∑l−1
i=0 yi

u ≥ 1 ∀u ∈ V \ F
zi(e) ≥ 0 ∀ arcs e, ∀i = 0, · · · , l − 1
yi

u ≥ 0 ∀u ∈ V \ F, ∀i = 0, · · · , l − 1

Basically this LP requires one unit of flow to be sent from vi to vi+1 (for all
0 ≤ i ≤ l − 1) such that the total extent to which each vertex u is covered (over
all these flows) is at least 1. In addition, the i-th flow is required to have total
cost (under the length function d) at most n(i+1)ε · L

n . It is easy to see that this
LP can be solved in polynomial time for any guess {vi}l

i=1. Furthermore the
number of possible guesses is O(n1/ε), hence we can obtain the optimal solution
of (MLP ) over all guesses, in nO(1/ε) time.

Claim 1. it The minimum value of (MLP ) over all possible guesses of {vi}l
i=0

is at most 2nε · Opt.

Proof: This claim is straightforward, based on the guesses from an optimal
path. Recall that π is the optimal latency path for the given instance. One of
the guesses of the vertices {vi}l

i=0 satisfies the condition desired of them, namely
each vi (for i = 1, · · · , l) is the last vertex on π with dπ(s, vi) ≤ niε L

n . For each
i = 0, · · · , l − 1, define Oi to be the set of vertices that are visited between vi

and vi+1 in path π. Let zi denote the (integral) edge values corresponding to
path π restricted to the vertices Oi ∪ {vi, vi+1}; note that the cost of this flow
d · zi ≤ dπ(r, vi+1) ≤ n(i+1)ε L

n . Also set yi
u = 1 for u ∈ Oi and 0 otherwise,

for all i = 0, · · · , l − 1. Note that each vertex in V \ {vi}l
i=0 appears in some
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set Oi, and each zi supports unit flow from vi to all vertices in Oi; hence this
(integral) solution {zi, yi}l−1

i=0 is feasible for (MLP ). The cost of this solution is
∑l−1

i=0 n(i+1)ε L
n · |Oi| ≤ nεL + nε

∑l−1
i=1 niε L

n · |Oi| ≤ 2nε · Opt, since |O0| ≤ n,
L ≤ Opt, and each vertex u ∈ Oi (for i = 1, · · · , l − 1) has dπ(r, u) > niε L

n .
We now assume that we have an optimal fractional solution {zi, yi}l−1

i=0 to
(MLP ) over all guesses (with objective value as in Claim 1), and show how to
round it to obtain vi − vi+1 paths for each i = 0, · · · , l − 1, which when stitched
give rise to one r-path having a small latency objective. We say that a vertex
u is well-covered by flow zi if yi

u ≥ 1
4l . We partition the vertices V \ F into two

parts: V1 consists of those vertices that are well-covered for at least two values of
i ∈ [0, l], and V2 consists of all other vertices. Note that each vertex in V2 is cov-
ered by some flow zi to the extent at least 3

4 . We first show how to service each of
V1 and V2 separately using local paths, and then stitch these into a single r-path.

Splitting off: A directed graph is called Eulerian if the in-degree equals the out-
degree at each vertex. In our proofs, we make use of the following ‘splitting-off’
theorem for Eulerian digraphs.

Theorem 2 (Frank [8] (Theorem 4.3) and Jackson [11]). Let D = (U +
r, A) be an Eulerian directed multi-graph. For each arc f = (r, v) ∈ A there
exists an arc e = (u, r) ∈ A so that after replacing arcs e and f by arc (u, v),
the directed connectivity between every pair of vertices in U is preserved.
Note that any vector x̃ of rational edge-capacities that is Eulerian (namely
x̃(δ−(v)) = x̃(δ+(v)) at all vertices v) corresponds to an Eulerian multi-graph
by means of a (sufficiently large) uniform scaling of all arcs. Based on this cor-
respondence, one can use the above splitting-off theorem directly on fractional
edge-capacities that are Eulerian.

2.1 Servicing Vertices V1

We partition V1 into l parts as follows: Ui (for i = 0, · · · , l − 1) consists of those
vertices of V1 that are well-covered by zi but not well-covered by any flow zj for
j > i. Each set Ui is serviced separately by means of a suitable ATSP solution
on Ui∪{vi} (see Lemma 1): this step requires a bound on the length of back-arcs
from Ui-vertices to vi, which is ensured by the next claim.
Claim 2. it For each vertex w ∈ Ui, d(w, vi) ≤ 8l · niε L

n .
Proof: Let j ≤ i − 1 be such that yj

w ≥ 1
4l ; such an index exists by the

definition of V1 and Ui. In other words, arc-capacities zj support at least 1
4l flow

from w to vj+1; so 4l ·zj supports a unit flow from w to vj+1. Thus d(w, vj+1) ≤
4l(d · zj) ≤ 4l · n(j+1)ε L

n . Note that for any 0 ≤ k ≤ l, zk supports a unit
flow from vk to vk+1; hence d(vk, vk+1) ≤ d · zk ≤ n(k+1)ε L

n . Now, d(w, vi) ≤
d(w, vj+1) +

∑i−1
k=j+1 d(vk, vk+1) ≤ 4l L

n

∑i−1
k=j n(k+1)ε ≤ 8l · niε L

n .

We now show how all vertices in Ui can be covered by a vi-tour.

Lemma 1. For each i = 0, · · · , l − 1, there is a poly-time computable vi-tour
covering vertices Ui, of length O( 1

ε2 n(i+1)ε log n · L
n ).
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Proof: Fix an i ∈ {0, · · · , l − 1}; note that the arc capacities zi are Eulerian
at all vertices except vi and vi+1. Although applying splitting-off (Theorem 2)
requires an Eulerian graph, we can apply it to zi after adding a dummy (vi+1, vi)
arc of capacity 1, and observing that flows from vi or flows into vi+1 do not use
the dummy arc. So using Theorem 2 on vertices V \ (Ui ∪{vi, vi+1}) and triangle
inequality, we obtain arc capacities α on the arcs induced by Ui ∪{vi, vi+1} such
that: d · α ≤ d · zi ≤ n(i+1)ε · L

n and α supports yi
u ≥ 1

4l flow from vi to u
and from u to vi+1, for every u ∈ Ui. Below we use B to denote the quantity
n(i+1)ε · L

n . Consider adding a dummy arc from vi+1 to vi of length B in the
induced metric on Ui ∪{vi, vi+1}, and set the arc capacity α(vi+1, vi) on this arc
to be 1. Note that α is Eulerian, has total cost at most 2B, and every non-trivial
cut has value at least min{yi

u : u ∈ Ui} ≥ 1
4l . So scaling α uniformly by 4l, we

obtain a fractional feasible solution to ATSP on the vertices Ui∪{vi, vi+1} (in the
modified metric), having cost at most 8l · B. Since the Frieze et al. [9] algorithm
computes an integral tour of length at most O(log n) times any fractional feasible
solution (see Williamson [19]), we obtain a vi-tour τ on the modified metric of
length at most O(l log n)·B. Since the dummy (vi+1, vi) arc has length B, it may
be used at most O(l log n) times in τ . So removing all occurrences of this dummy
arc gives a set of O(l log n) vi − vi+1 paths in the original metric, that together
cover Ui. Ignoring vertex vi+1 and inserting the direct arc to vi from the last
Ui vertex in each of these paths gives us the desired vi-tour covering Ui. Finally
note that each of the arcs to vi inserted above has length O(l · niε)L

n = O(l) · B
(from Claim 2), and the number of arcs inserted is O(l log n). So the length of
this vi-tour is at most O(l log n) · B + O(l2 log n) · B = O( 1

ε2 n(i+1)ε log n · L
n ).

2.2 Servicing Vertices V2

We partition vertices in V2 into W0, · · · , Wl−1, where each Wi contains the ver-
tices in V2 that are well-covered by zi. As noted earlier, each vertex u ∈ Wi

in fact has yi
u ≥ 3

4 > 2
3 . We now consider any particular Wi and obtain a

vi − vi+1 path covering the vertices of Wi. Vertices in Wi are covered by a frac-
tional vi − vi+1 path as follows. Splitting off vertices V \ (Wi ∪ {vi, vi+1}) in
the fractional solution zi gives us edge capacities β in the metric induced on
Wi ∪ {vi, vi+1}, such that: β supports at least 2

3 flow from vi to u and from u to
vi+1 for all u ∈ Wi, and d ·β ≤ d · zi (this is similar to how arc-capacities α were
obtained in Lemma 2.1). Note that β is a fractional feasible solution to the LP
relaxation (ATSP − path) for the ATSP-path instance on the metric induced
by Wi ∪ {vi, vi+1} with start-vertex vi and end-vertex vi+1. So if ρ denotes the
(constructive) integrality gap of (ATSP −LP ), we can obtain an integral vi-vi+1
path that spans Wi of length at most ρ(d · β) ≤ ρ(d · zi) ≤ ρn(i+1)ε L

n . This re-
quires a polynomial time algorithm that computes an integral path of length at
most ρ times the LP value; However even a non-constructive proof of integrality
gap ρ′ implies a constructive integrality gap ρ = O(ρ′ log n), using the algorithm
in Chekuri and Pal [5]. So we obtain:

Lemma 2. For each i = 0, · · · , l − 1, there is a poly-time computable vi-vi+1
path covering Wi of length at most ρ · n(i+1)ε L

n .
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2.3 Stitching the Local Paths

We now stitch the vi-tours that service V1 (Lemma 1) and the vi − vi+1 paths
that service V2 (Lemma 2), to obtain a single r-path that covers all vertices. For
each i = 0, · · · , l − 1, let πi denote the vi-tour servicing Ui, and let τi denote the
vi − vi+1 path servicing Wi. The final r-path that the algorithm outputs is the
concatenation τ∗ = π0 ·τ0 ·π1 · · · πl−1 ·τl−1. From Lemmas 1 and 2, it follows that
for all 0 ≤ i ≤ l − 1, d(πi) ≤ O( 1

ε2 log n) · n(i+1)ε L
n and d(τi) ≤ O(ρ) · n(i+1)ε L

n .
So the length of τ∗ from r until all vertices of Ui ∪ Wi are covered is at most
O(ρ+ 1

ε2 log n) ·n(i+1)ε L
n (as ε ≥ Ω( 1

log n )). This implies that the total latency of
vertices in Ui∪Wi along path τ∗ is at most O(ρ+ 1

ε2 log n)·n(i+1)ε L
n ·(|Wi|+|Ui|).

Moreover, the contribution of each vertex in Ui (resp., Wi) to the LP objective
is at least 1

4l · n(i+1)ε L
n (resp., 3

4 · n(i+1)ε L
n ). Thus the contribution of Ui ∪ Wi to

the LP objective is at least 1
4l ·n(i+1)ε L

n · (|Wi|+ |Ui|). Using the upper bound on
the latency along τ∗ for Ui∪Wi, and summing over all i, we obtain that the total
latency along τ∗ is at most O(1

ε ρ + 1
ε3 log n) times the optimal value of (MLP ).

From Claim 1, it now follows that the latency of τ∗ is O(1
ε ρ + 1

ε3 log n)nε · Opt.

Theorem 3. For any Ω( 1
log n ) < ε < 1, there is an O(ρ+log n

ε3 ·nε)-approximation
algorithm for directed latency, that runs in time nO(1/ε), where ρ is the integrality
gap of the LP (ATSP − path). Using ρ = O(

√
n), we have a polynomial time

O(n
1
2+ε) approximation algorithm for any fixed ε > 0.

We prove the bound ρ = O(
√

n) in the next section. A bound of ρ = O(log n)
on the integrality gap of (ATSP − path) would imply that this algorithm is a
quasi-polynomial time O(log4 n) approximation for directed latency.

Remark: The (ATSP − path) rounding algorithm in Section 3 can be modified
slightly to obtain (for any 0 < δ < 1), an (O(nδ log n), � 1

δ �) bi-criteria approxi-
mation for ATSP-path. This implies the following generalization of Theorem 3.

Corollary 1. For any Ω( 1
log n ) < ε < 1 and 0 < δ < 1, there is an nO(1/ε) time

algorithm for directed latency, that computes � 1
δ � paths covering all vertices,

having a total latency of O( log n
ε3 · nε+δ) · Opt, where Opt is the minimum latency

of a single path covering all the vertices.

3 Bounding the Integrality Gap of ATSP-Path

We prove an upper bound of O(
√

n) on the integrality gap ρ of the linear relax-
ation (ATSP −path) (c.f. Section 1.1). Even for the seemingly stronger LP with
1 in the right-hand-side of the cut constraints, the best bound on the integrality
gap we can obtain is O(

√
n): this follows from the cycle-cover based algorithm

of Lam and Newmann [13]. As mentioned in Chekuri and Pal [5], it is unclear
whether their O(log n)-approximation can be used to bound the integrality gap
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of such a linear program. In this section, we present a rounding algorithm for the
weaker LP (ATSP −path), which shows ρ = O(

√
n). Our algorithm is similar to

the ATSP-path algorithm of Lam and Newmann [13] and the ATSP algorithm
of Frieze et al. [9]; but it needs some more work as we compare the algorithm’s
solution against a fractional solution to (ATSP − path).

Let x be any feasible solution to (ATSP − path). We now show how x can
be rounded to obtain an integral path spanning all vertices, of total length
O(

√
n)(d · x). Let N denote the network corresponding to the directed metric

with the cost of each arc equal to its metric length, and an extra (t, s) arc of cost
0. The capacity of this extra (t, s) arc is set to 3, and all other capacities are set
to ∞. The rounding algorithm for x is as follows.

1. Initialize the set of representatives R ← V \ {s, t}, and the current integral
solution σ = ∅.

2. While R �= ∅, do:
(a) Compute a minimum cost circulation C in N [R ∪ {s, t}] that sends at

least 2 units of flow through each vertex in R (note: C can be expressed
as a sum of cycles).

(b) Repeatedly extract from C all cycles that do not use the extra arc (t, s),
to obtain circulation A ⊆ C. Let R′ ⊆ R be the set of R-vertices that
have degree at least 1 in A.

(c) Let B = C \A; note that B is Eulerian and each cycle in it uses arc (t, s).
(d) If |R′| ≥

√
n, do:

i. Set σ ← σ ∪ A.
ii. Modify R by dropping all but one R′-vertex from each strong com-

ponent of A.
(e) If |R′| <

√
n, do:

i. Take an Euler tour on B and remove all (at most 3) occurrences of
arc (t, s) to obtain s-t paths P1, P2, P3.

ii. Restrict each path P1, P2, P3 to vertices in R \ R′ by short-cutting
over R′-vertices, to obtain paths P̃1, P̃2, P̃3.

iii. Take a topological ordering s = w1, w2, · · · , wh = t of vertices (R \
R′) ∪ {s, t} relative to the arcs P̃1 ∪ P̃2 ∪ P̃3.

iv. Set σ ← σ ∪ {(wj , wj+1) : 1 ≤ j ≤ h − 1}.
v. Repeat for each vertex u ∈ R′: find an arc (w, w′) ∈ σ such that

x supports 1
6 flow from w to u and from u to w′, and modify σ ←

(σ \ (w, w′)) ∪ {(w, u), (u, w′)}.
vi. Set R ← ∅.

3. Output any spanning s-t walk in σ.

We now show the correctness and performance guarantee of the rounding
algorithm. We first bound the cost of the circulation obtained in Step 2a during
any iteration.

Claim 3. itFor any R ⊆ V \ {s, t}, the minimum cost circulation C computed
in step 2a has cost at most 3(d · x).
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Proof: The arc values x define a fractional s − t path in network N . Extend
x to be a (fractional) circulation by setting x(t, s) = 1. We can now apply
splitting-off (Theorem 2) on each vertex in V \ R, to obtain capacities x′ in
network N [R∪{s, t}], such that every pairwise connectivity is preserved and (by
triangle inequality) d · x′ ≤ d · x. Note that the extra (t, s) arc is not modified
in the splitting-off steps. So x′ supports 2

3 flow from s to each vertex in R; this
implies that 3x′ is a feasible fractional solution to the circulation instance solved
in step 2a (note that x′(t, s) remains 1, so solution 3x′ satisfies the capacity
of arc (t, s)). Finally, note that the linear relaxation for circulation is integral
(c.f. Nemhauser and Wolsey [16]). So the minimum cost (integral) circulation
computed in step 2a has cost at most 3d · x′ ≤ 3d · x.

Note that each time step 2d is executed, |R| decreases by at least
√

n/2 (each
strong component in A has at least 2 vertices); so there are at most O(

√
n) such

iterations and the cost of σ due to additions in this step is O(
√

n)(d · x) (using
Claim 3). Step 2e is executed at most once (at the end); the next claim shows
that this step is well defined and bounds the cost incurred.

Claim 4. it In step 2(e)iii, there exists a topological ordering w1, · · · , wh of
(R \ R′) ∪ {s, t} w.r.t. arcs P̃1 ∪ P̃2 ∪ P̃3. Furthermore, {(wj , wj+1) : 1 ≤ j ≤
h − 1} ⊆ P̃1 ∪ P̃2 ∪ P̃3.

Proof: Note that any cycle in P1 ∪ P2 ∪ P3 is a cycle in B that does not use
arc (t, s), which is not possible by the definition of B (every cycle in B uses arc
(t, s)); so P1 ∪P2 ∪P3 is acyclic. It is clear that if P̃1 ∪ P̃2 ∪ P̃3 contains a cycle, so
does P1 ∪ P2 ∪ P3 (each path P̃i is obtained by short-cutting the corresponding
path Pi). Hence P̃1 ∪ P̃2 ∪ P̃3 is also acyclic, and there is a topological ordering
of (R \R′)∪{s, t} relative to arcs P̃1 ∪ P̃2 ∪ P̃3. We now prove the second part of
the claim. In circulation C, each vertex of R has at least 2 units of flow through
it; but vertices R \R′ are not covered (even to an extent 1) in the circulation A.
So each vertex of R\R′ is covered to extent at least 2 in circulation B, and hence
in P1 ∪ P2 ∪ P3. In other words, each vertex of R \ R′ appears on at least two of
the three s − t paths P1, P2, P3. This also implies that (after the short-cutting)
each R \ R′ vertex appears on at least two of the three s − t paths P̃1, P̃2, P̃3.
Now observe that for each consecutive pair (wj , wj+1) (1 ≤ j ≤ h − 1) in the
topological order, there is a common path P̃k (for some k = 1, 2, 3) that contains
both wj and wj+1. Furthermore, in P̃k, wj and wj+1 are consecutive in that
order (otherwise, the topological order would contain a back arc!). Thus each
arc (wj , wj+1) (for 1 ≤ j ≤ h − 1) is present in P̃1 ∪ P̃2 ∪ P̃3, and we obtain the
claim.

We also need the following claim to bound the cost of insertions in step 2(e)v.

Claim 5. itFor any two vertices u′, u′′ ∈ V , if λ(u′, u′′; x) (resp. λ(u′′, u′; x))
denotes the maximum flow supported by x from u′ to u′′ (resp. u′′ to u′), then
λ(u′, u′′; x) + λ(u′′, u′; x) ≥ 1

3 .
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Proof: If either u′ or u′′ is in {s, t}, the claim is obvious since for every vertex
v, x supports 2

3 flow from s to v and from v to t. Otherwise {s, t, u′, u′′} are
distinct, and define capacities x̂ as:

x̂(v1, v2) =
{

x(v1, v2) for arcs (v1, v2) �= (t, s)
1 for arc (v1, v2) = (t, s)

Observe that x̂ is Eulerian; now apply Theorem 2 to x̂ and split-off all vertices
of V except T = {s, t, u′, u′′}, and obtain capacities y on the arcs induced on T .
We have λ(t1, t2; y) = λ(t1, t2; x̂) for all t1, t2 ∈ T . Note that since neither t nor s
is split-off, their degrees in y are unchanged from x̂, and also y(t, s) ≥ x̂(t, s) = 1.
Since the out-degree of t in x̂ (hence in y) is 1 and yt,s ≥ 1, we have y(t, u′) =
y(t, u′′) = 0 and y(t, s) = 1. The capacities y support at least 2

3 flow from s to u′;
so y(s, u′)+y(u′′, u′) ≥ 2

3 . Similarly for u′′, we have y(s, u′′)+y(u′, u′′) ≥ 2
3 , and

adding these two inequalities we get y(u′, u′′)+y(u′′, u′)+(y(s, u′)+y(s, u′′)) ≥ 4
3 .

Note that y(s, u′) + y(s, u′′) ≤ y(δ+(s)) = x̂(δ+(s)) = 1 (the degree of s is
unchanged in the splitting-off). So y(u′, u′′) + y(u′′, u′) ≥ 1

3 . Since y is obtained
from x̂ by a sequence of splitting-off operations, it follows that x̂ supports flows
corresponding to all edges in y simultaneously. In particular, the following flows
are supported disjointly in x̂: F1 that sends y(u′, u′′) units from u′ to u′′, F2
that sends y(u′′, u′) units from u′′ to u′, and F3 that sends y(t, s) = 1 unit from
t to s. Hence the flows F1 and F2 are each supported by x̂ and do not use the
extra (t, s) arc (since x̂(δ+(t)) = x̂(t, s) = 1). This implies that the flows F1 and
F2 are both supported by the original capacities x (where x(t, s) = 0). Hence
λ(u′, u′′; x) + λ(u′′, u′; x) ≥ y(u′, u′′) + y(u′′, u′) ≥ 1

3 .
From Claim 4, we obtain that the cost addition in step 2e(iv) is at most

d(P̃1)+d(P̃2)+d(P̃3) ≤ d(P1)+d(P2)+d(P3) ≤ 3(d ·x) (from Claim 3). We now
consider the cost addition to σ in step 2(e)v. Claim 5 implies that for any pair of
vertices u′, u′′ ∈ V , x supports 1

6 flow either from u′ to u′′ or from u′′ to u′. Also
for every vertex u, x supports 2

3 flow from s to u and from u to t. Since σ always
contains an s− t path in step 2(e)v, there is always some position along this s− t
path to insert any vertex u ∈ R′ as required in step 2(e)v. Furthermore, the cost
increase in any such insertion step is at most 12(d · x). Hence the total cost for
inserting all the vertices R′ into σ is at most 12|R′|(d · x) = O(

√
n)(d · x). Thus

the total cost of σ at the end of the algorithm is O(
√

n)(d · x). Finally note that
σ is connected (in the undirected sense), Eulerian at all vertices in V \{s, t} and
has outdegree 1 at s. This implies that σ corresponds to a spanning s − t walk.
This completes the proof of the following.

Theorem 4. The integrality gap of (ATSP − path) is at most O(
√

n).

4 Unweighted Directed Metrics

In the special case where the metric is induced by shortest paths in an un-
weighted directed graph, we obtain an improved approximation guarantee for
the minimum latency problem. This draws on ideas from the undirected latency
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problem, and the O(log2 n) approximation ratio for directed orienteering ([15]
and [4]). The directed orienteering problem is as follows: given a starting vertex
r in an asymmetric metric and length bound L, find an r-path of length at most
L covering the maximum number of vertices. We note that the reduction from
ATSP to directed latency also holds in unweighted directed metrics, and the
best known approximation ratio for ATSP even on this special class is O(log n).
Here we show the following.

Theorem 5. An α-approximation algorithm for directed orienteering implies an
O(α+γ) approximation algorithm for the directed latency problem on unweighted
digraphs, where γ is the best approximation ratio for ATSP. In particular there
is an O(log2 n) approximation.

Let G = (V, A) denote the underlying digraph that induces the given metric, and
r the root vertex. We first argue (Section 4.1) that if G is strongly connected,
then there is an O(α)-approximation algorithm. Then we show (Section 4.2) how
this can be extended to the case when G is not strongly connected.

4.1 G Is Strongly Connected

In this case, the distance from any vertex to the root r is at most n = |V |.
The algorithm and analysis for this case are identical to those for the undirected
latency problem [2,10,3]. Details are deferred to the full version.

Remark: This ‘greedy’ approach does not work in the general directed case since
it is unclear how to bound the length of back-arcs to the root r (which is required
to stitch the paths that are computed greedily). In the undirected case, back-
arcs can be easily bounded by the forward length, and this approach results in
a constant approximation algorithm. In the unweighted strongly-connected case
(considered above), the total length of back-arcs used by the algorithm could be
bounded by roughly n2 (which is also a lower bound for the latency problem).
By an identical analysis, it also follows that there is an O(α)-approximation for
the directed latency problem on metrics (V, d) with the following property: for
every vertex v ∈ V , the back-arc length to r is within a constant factor of the
forward-arc length from r, i.e. d(v, r) ≤ O(1) · d(r, v). As a consequence, we
obtain an O(α) = O(log2 n) approximation for no-wait flowshop scheduling with
the weighted completion time objective (n is the number of jobs in the given
instance); this seems to be the first approximation ratio for the problem. The
no-wait flowshop problem can be modeled as a minimum latency problem in an
appropriate directed metric [20,18], with the property that all back-arcs to the
root r have length 0; hence the above greedy approach applies.

4.2 G Is Not Strongly Connected

In this case, we show an O(γ + β)-approximation algorithm, where γ is the ap-
proximation guarantee for ATSP and β is the approximation guarantee for the
minimum latency problem on unweighted strongly-connected digraphs. From
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Section 4.1, β = O(α), where α is the approximation ratio for directed orien-
teering. Consider the strong components of G, which form a directed acyclic
graph. If the instance is feasible, there is a Hamilton path in G from r; so we
can order the strong components of G as C1, · · · , Cl such that r ∈ C1 and
any spanning path from r visits the strong components in that order. For each
1 ≤ i ≤ l, let ni = |Ci|, and pick an arbitrary vertex si ∈ Ci as root for each
strong component (setting s1 = r).

Lemma 3. There exists a spanning r-path τ∗ having latency objective at most
7 · Opt such that τ∗ = τ1 · (s1, s2) · τ2 · (s2, s3) · · · (sl−1, sl) · τl, where each τi (for
1 ≤ i ≤ l) is an si-tour covering all vertices in Ci.

Proof: Consider the optimal latency r-path P ∗: this is a concatenation P1 ·
P2 · · · Pl of paths in each strong component (Pi is a spanning path on Ci). For
each 1 ≤ i ≤ l, let Lat(Pi) denote the latency of vertices Ci just along path Pi,
and Di =

∑i−1
j=1 d(Pj) be the distance traversed by P ∗ before Pi. Then the total

latency along P ∗ is Opt =
∑l

i=1(ni · Di + Lat(Pi)).
For each 1 ≤ i ≤ l, let τi denote a spanning tour on Ci, obtained by adding

to Pi the direct arcs: from si to its first vertex and from its last vertex to si.
Each of these extra arcs in τi has length at most ni − 1 (since Ci is strongly
connected), and d(Pi) ≥ ni − 1 (it is spanning on Ci); so d(τi) ≤ 3d(Pi). Let
Lat(τi) denote the latency of vertices Ci along τi; from the above observation we
have Lat(τi) ≤ ni · (ni − 1) + Lat(Pi). Now we obtain τ∗ as the concatenation
τ1 · (s1, s2) · τ2 · · · (st−1, sl) · τl. Note also that for any 1 ≤ i ≤ l − 1, d(si, si+1) ≤
ni + ni+1. So the latency in τ∗ of vertices Ci is:

ni ·
∑i−1

j=1(d(τj) + d(sj , sj+1)) + Lat(τi)
≤ ni ·

∑i−1
j=1(3d(Pj) + nj + nj+1) + ni · (ni − 1) + Lat(Pi)

≤ ni ·
∑i−1

j=1(3d(Pj) + 2nj) + n2
i + ni · (ni − 1) + Lat(Pi)

≤ ni ·
∑i−1

j=1 7d(Pj) + n2
i + ni · (ni − 1) + Lat(Pi)

≤ 7ni · Di + 2n2
i + Lat(Pi)

≤ 7ni · Di + 5 · Lat(Pi)

The last inequality follows from the fact that Lat(Pi) ≥ n2
i /2 (Pi is a path

on ni vertices in an unweighted metric). So the total latency of τ∗ is at most
7

∑l
i=1(ni · Di + Lat(Pi)) = 7 · Opt.

The algorithm for directed latency in this case computes an approximately mini-
mum latency si-path for each Ci separately (using the algorithm in Section 4.1);
by adding the direct arc from the last vertex back to si, we obtain Ci-spanning
tours {σi}l

i=1. We now use the following claim from [2] to bound the length of
each tour σi.

Claim 6 ([2]). itGiven Ci-spanning tours σi and πi, there exists a poly-time
computable tour σ′

i on Ci of length at most 3 · d(πi) and latency at most thrice
that of σi.
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Proof: Tour σ′
i is constructed as follows: starting at si, traverse tour σi until a

length of d(πi), then traverse tour πi from the current vertex to visit all remaining
vertices and then return to si. Note that tour πi will have to be traversed at
most twice, and so the length of σ′

i is at most 3d(πi). Furthermore, the total
latency along σ′

i for vertices visited in the σi part is at most Lat(σi) (the latency
along σi). Also the latency along σ′

i of each vertex v visited in the πi part is at
most 3d(πi), which is at most thrice its latency in σi. Hence the total latency
along σ′

i is at most 3 · Lat(σi).
This implies that by truncating σi with a γ-approximate TSP on Ci, we obtain
another spanning tour σ′

i of length 3γ · Li and latency 3 · Lat(σi) (where Li is
length of the minimum TSP on Ci). The final r-path is the concatenation of
these local tours, π = σ′

1 · (s1, s2) · σ′
2 · · · (sl−1, sl) · σ′

l.

Claim 7. itThe latency of r-path π is at most O(γ + β) · Opt.

Proof: Consider the near-optimal r-path τ∗ given by Lemma 3. For 1 ≤ i ≤ l,
let Opti denote the latency of the Ci-spanning tour τi, and D̃i =

∑i−1
j=1(d(τj) +

d(sj , sj+1)) denote the length of τ∗ before Ci. Then the total latency of τ∗ can
be written as

∑l
i=1(ni · D̃i + Opti) ≤ 7 · Opt.

Now consider the r-path π output by the algorithm. The si-tour τi is a feasible
solution to the minimum latency instance on Ci; so the latency of tour σi is at
most β ·Opti, since we use a β-approximation for each such instance. So for each
1 ≤ i ≤ l, the truncated tour σ′

i has latency Lat(σ′
i) ≤ 3β · Opti, and length

d(σ′
i) ≤ 3γLi. Again, the latency of π can be written as

∑l
i=1(ni · D′

i + Lat(σ′
i)),

where D′
i =

∑i−1
j=1(d(σ′

j)+d(sj , sj+1)) is the length of π before Ci. So the latency
of vertices Ci in π is:

ni ·
∑i−1

j=1(d(σ′
j) + d(sj , sj+1)) + Lat(σ′

i)
≤ ni ·

∑i−1
j=1(3γ · Lj + d(sj , sj+1)) + 3β · Opti

≤ ni ·
∑i−1

j=1(3γ · d(τj) + d(sj , sj+1)) + 3βOpti
≤ 3γni ·

∑i−1
j=1(d(τj) + d(sj , sj+1)) + 3βOpti

= 3γni · D̃i + 3βOpti
≤ 3(γ + β)(ni · D̃i + Opti)

So the total latency of π is at most 3(γ+β)
∑l

i=1(ni·D̃i+Opti) ≤ O(γ+β)·Opt.

Theorem 5 now follows.
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