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ABSTRACT

We introduce the X-Flex cross-platform scheduler. X-Flex is
intended as an alternative to the Dominant Resource Fair-
ness (DRF) scheduler currently employed by both YARN
and Mesos. There are multiple design differences between
X-Flexz and DRF. For one thing, DRF is based on an in-
stantaneous notion of fairness, while X-Flex monitors in-
stantaneous fairness in order to take a long-term view. The
definition of instantaneous fairness itself is different among
the two schedulers. Furthermore, the packing of containers
into processing nodes in DRF is done online, while in X-Flez
it is performed offline in order to improve packing quality.
Finally, DRF is essentially an extension to multiple dimen-
sions of the Fair MapReduce scheduler. As such it makes
scheduling decisions at a very low level. X-Flex, on the other
hand, takes the perspective that some frameworks have suf-
ficient structure to make higher level scheduling decisions.
So X-Flex allows this, and also gives platforms a great deal
of autonomy over the degree of sharing they will permit with
other platforms. We describe the technical details of X-Flex
and provide experiments to show its excellent performance.
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1. INTRODUCTION

The need to analyze disparate datasets and to utilize dif-
ferent processing paradigms has led to a profusion of dis-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Middleware ’ 14 Bordeaux, France

Copyright 2014 ACM ACM 978-1-4503-3219-4/14/12 ...$15.00.

tributed cluster frameworks in the last few years. To con-
solidate data center resources, combine various processing
paradigms within the same application and enable inter-
framework data sharing, a number of cross-platform clus-
ter managers have been designed. These include HPC-style
centralized managers [22, 19], centralized two-level managers
such as Mesos [13] and YARN [23], and decentralized man-
agers [18, 16]. Of these, two-level managers have found wide
traction due to their ability to match the requirements of
popular frameworks (such as MapReduce [5] and Spark [29])
that schedule fine-grained tasks across processing nodes di-
vided into slots. At the top level of this model, the cluster
manager allocates resources (typically CPU cores and mem-
ory) to frameworks, which in turn distribute these resources
across the various jobs and tasks that need to run. Allo-
cation decisions are determined by a scheduling algorithm
such as Dominant Resource Fairness (DRF) [11]. DRF aims
to equalize the allocation of each framework subject to its
most highly demanded resource. This paper is about X-Flez,
a proposed alternative to DRF.

1.1 Why X-Flex?

DRF has many virtues, and can be regarded as the de-
fault scheduler in both YARN and Mesos. But there were
several aspects of DRF that we felt might better be handled
differently, at least in some environments, and these have
motivated the X-Flex design. We list these motivations be-
low, and in so doing enumerate the key differences between
DRF and X-Flex. Taken together, we note that X-Fler is
fundamentally, even radically different from DRF.

Note that we will use the word application generically to
denote the entities that share the cluster. These could be
platforms, frameworks, departments, users, jobs and so on.
We are simply adopting this word to be consistent with the
Application Master (AM) concept in YARN. We will use
more specific terms as appropriate. X-Flex has been ini-
tially implemented in YARN, perhaps a more natural fit
than Mesos. But we see no reason why it could not be im-
plemented in Mesos as well.

First, DRF is based on an instantaneous notion of fair-
ness. As described in [11], DRF keeps track of each appli-
cation’s dominant resource share (DRS), and attempts at
each moment to allocate resources to applications in order
from lowest to highest DRS. We will recall the definition of
DRS presently, but note first that it depends only on the
resource allocations at the current time. We believe instead
that fairness is a property best measured over time, with



knowledge of the past. An application which uses fewer re-
sources earlier should be rewarded with more resources later,
and vice versa. X-Flex is based on such a long-term notion
of fairness, essentially the integral over all previous time of
an instantaneous fairness measure. A good analogy might
be handling the “sharing” of toys between children. If Alvin
has been playing with most of the toys for a while, shouldn’t
Barbara get her chance? X-Flex agrees, but DRF does not
remember the past. (The analogy between applications and
children may actually be at least somewhat apt.)

Second, what exactly is DRS? As described in [11], DRS
is a maximum (worst case) metric involving multiple nor-
malized resources. Let us assume for concreteness two re-
sources, memory and CPU cores. The DRS of any applica-
tion is the maximum of the normalized fractional share of
both. (For example, an application’s normalized fractional
memory share is the total amount of memory allocated to
that application divided by the total amount of memory
in the cluster.) Under certain (hypothetical) assumptions
[11] shows that DRS has a number of very nice theoretical
properties. (See also [8, 17].) Specifically these are shar-
ing incentive, being strategy proof and envy free, and Pareto
efficiency. But while DRS has these pleasant features, it
also has the disadvantage of being a maximum metric. This
means, for example, that an application with a normalized
share of 50% of the cores in the system and a normalized
share of 1% of the memory has a DRS identical to that of
an application with normalized shares of 50% and 50%, re-
spectively. Yet the latter application is taking up far more
of the cluster resources than the former. So X-Flex opts,
instead, for an instantaneous fairness metric based on the
sum rather than the maximum of the normalized fractional
shares. The tradeoff is that we gain a seemingly more ap-
propriate metric, and we lose the theoretical guarantees. We
thus opt for practical over theoretical.

Third, the notion of multi-resource optimization is cur-
rently in vogue, and to the extent that high quality input
data is available, that is a good thing. But clusters consist
of processing nodes, not monolithic collections of aggregate
resources. Resource allocations must by definition respect
these node boundaries. Even in a single dimension, the on-
line problem of dynamically selecting and packing tasks with
certain resource requirements into a given set of processing
nodes so as to maximize the number packed does not admit
a good algorithm [2]. For the “dual” problem of bin packing
all tasks into the minimum number of fixed size processing
nodes, there are good online algorithms in a single dimen-
sion. But in multiple dimensions, this problem, known as
vector bin packing, becomes much harder. And the perfor-
mance of any online algorithm degrades as the number of
dimensions increases [1]. (This packing problem is noted,
but not discussed further, in [11, 13, 23] even though both
YARN and Mesos intend on adding more dimensions to con-
tainers beyond the currently supported CPU and memory
dimensions.) We take the perspective in X-Flex that vector
bin packing is best done semi-statically (offline). We actu-
ally pack the YARN containers in which the tasks will be
executed. The advantage is that the problem can be solved
much more carefully, and with far less waste. In fact, we
optimize both the size and the placement of our containers,
even assigning these containers to nominal application own-
ers while factoring in a variety of placement and colocation
constraints. The obvious tradeoff is that X-Flez is less dy-

namic, and also requires data that might not be immediately
available or sufficiently stable. (To handle these tradeoffs we
are, in fact, considering a compromise approach for a future
version of X-Flex, partly online and partly offline. See [12]
for a high quality online packing scheme.)

Finally, it is our contention that in some cases DRF makes
scheduling decisions at too low a level. The application is
typically a job, and these jobs are treated independently.
But there do exist frameworks for which intelligent sched-
ulers exist. One such example is MapReduce and the Flex
family of schedulers [28, 25, 15]. Because it understands
the structure of MapReduce, Flex can, for instance, sched-
ule to minimize average job response time, stretch, deadline
penalties and so on. If a framework can take advantage of
its inherent structure to make intelligent scheduling deci-
sions, it seems a shame to cede control to a scheduler such
as DRF where the only goal might be fairness at the job
level. X-Flex allows applications to employ an application-
specific scheduler, while still handling the sharing details at
a lower level. As we shall see, X-Flex will also enable appli-
cations to share as much or as little as desired. In a similar
vein, DRF cannot take into account the diverse needs of dis-
parate platforms, such as stream processing systems where
the scheduling focuses on low latency and dynamism [26].
On the other hand, X-Flex embraces domain specific sched-
ulers. All told, X-Flex gives applications a great deal of au-
tonomy and control. In terms of scheduling efficiency there
are pluses and minuses. One plus of scheduling at the frame-
work rather than job level would be the need for fewer AMs.
The corresponding minus is that there may be more over-
head associated with the framework level scheduler.

The bottom line is that X-Flex is, indeed, flexible and
generic. Advantage 1 above, (longterm rather than instanta-
neous fairness) can certainly be said to be qualitative rather
than quantitative, but we think advantage 2 (a better def-
inition of instantaneous fairness) should result in superior
performance. The benefits of advantage 3 (offline vector
packing), while less essential to the overall X-Flex design,
should grow with the number of resource dimensions. Ad-
vantage 4 (the ability to employ specialized schedulers for
appropriately structured frameworks) may not apply and
thus not yield benefits in every cluster environment. But we
think it should be very effective in those cases where it does.
Basically, X-Flex is to Flex as DRF is to Fair.

We note in passing Quasar [6], which performs cluster
management in the context of a cloud environment. Among
other things, they observe via a production Twitter example
that Mesos under DRF typically has low cluster utilization.
Their argument is that users do not always understand re-
source requirements, and accordingly Quasar uses QoS re-
quirements to drive resource allocation. In this sense their
approach is orthogonal to ours.

The remainder of this paper is organized as follows. §2
describes the X-Flex algorithms as implemented in YARN.
These algorithms include two off-line schemes (X-Size and
X-Select) and two on-line schemes (X-Schedule and X-Sight).
§3 describes performance results comparing DRF and X-Flex
from several perspectives. We evaluate average response
times as well as cluster utilizations for MapReduce jobs. Fi-
nally, §4 lists conclusions.

2. X-FLEX ALGORITHMS

We begin with an overview of the X-Flex offline and online
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Figure 1: X-Flex Charging Mechanism

components and a description of some key X-Flex concepts.
Tasks in YARN are executed in containers. In X-Flex we
pre-pack these containers into processing nodes in an essen-
tially offline manner. The goal of offline X-Flex is twofold.

First, we decide on the dimensions of these containers.
These dimensions typically pertain to CPU cores, mem-
ory and possibly other resources. Every container must fit
within the dimensions of at least one processing node. We
create a limited number of container dimensions by an opti-
mization algorithm called X-Size, the goal being to minimize
the amount of resources utilized when actually executing
tasks on containers.

Second, we vector pack containers of these dimensions into
the processing nodes. Each packed container is also assigned
an application owner whose resource requirements are ap-
propriate for the container dimensions, and the aggregate
dimensions of all the containers assigned to each applica-
tion approximately match the share of the cluster allocated
to that application. This is performed by an optimization
algorithm called X-Select.

Now X-Flex allows applications to use each other’s con-
tainers according to explicit sharing guidelines. So one ap-
plication may (temporarily) execute tasks on a container
owned by another application. To understand X-Flez shar-
ing we need to describe the charging mechanism it employs.
And this is quite simple. See Figure 1. If application A uses
a container owned by application B for time ¢, it is charged
as the product of the normalized container “size” and t. So
if the container uses an amount r4 of resource in dimension
d and the aggregate cluster resources in that dimension is
Ry, the instantaneous charge is >, rq/Rq, while the total
charge is (3>, 7r4/Ra) - t. Note that X-Flex charges by the
container rather than the task resource requirements. But
it also attempts to place tasks into containers which do not
dramatically exceed the task requirements.

One can think of the borrowing of a container as a “rental”,
and in this context the charging mechanism simply describes
the unit of currency — the cost of that rental.

X-Flex gives applications a great deal of autonomy over
the extent to which they will share containers with other
applications. At one extreme, an X-Flex application may
simply indicate that it (like Garbo [10]) “wants to be alone”.
In that case, the containers assigned to it by X-Select will
only be used by that application, and the application will
never use containers owned by another application. Effec-
tively, such Garbo applications will be given a fixed partition
of the cluster, though that partition may not respect pro-
cessing node boundaries. We naturally hope that there will
be few such applications, but X-Flex does support them.

For the remaining applications, X-Flex creates an envi-
ronment allowing as much or as little sharing as desired.
Specifically, each such application A will provide a sharing
bound 0ap (in units of currency) with respect to any other
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Figure 2: X-Sight View of Sharing Between Two Ap-
plications

application B. (Application A may simply provide a univer-
sal sharing bound d4, in which case dap will be set to da
for all other applications B.) Clearly, the sharing bounds
between applications A and B should be symmetric. So the
final sharing bounds Asp = Apa are set to min(dap,dp4).

Now the actual sharing imbalance between applications
A and B may change over time, due to the borrowing of
containers of one by the other. The key idea is that this im-
balance is compared with the bound A 4p. If application A
is in “debt” to application B by Aap or more, application B
will be allowed to preempt it with new container request(s).

See, for example, Figure 2. This is an actual (compressed)
X-Sight (details of X-Sight are given below) view of the pair-
wise sharing over time between two applications A and B.
The horizontal axis is time, while the vertical axis shows the
degree of sharing imbalance between the two applications.
Specifically, the white line segments illustrate the changing
sharing imbalance over time. Application A is represented
by green, and application B by orange. The horizontal cen-
ter line indicates perfect balance, while the symmetrical lines
above and below correspond to +A 4. Initially the two ap-
plications are in perfect balance, but eventually application
A requests an idle container of application B, and this is
granted. The sharing imbalance then shifts towards appli-
cation B, favoring application A. The pale green shading
extends to the sharing bound —A 4B, and then the graph
turns red. The red zone corresponds to a situation in which
application B can preempt containers in return, and one can
see this happening. And the process continues indefinitely.
Applications have the opportunity to borrow containers, but
they are forced to share responsibly.

There is an open-ended spectrum of sharing degrees be-
tween applications. Note that even applications with sharing
bounds of 0 can borrow containers at times. They simply
have to give the containers back on demand. So, for exam-
ple, MapReduce frameworks using Flex might have a sharing
bound of 0, but use containers of others to perform preempt-
able, best effort work.

We now give further details on X-Flez, focusing on the
online components. The mathematical details of the two
offline components are interesting, but due to lack of space
we will only give overviews of these here. (See [27] for a
more complete exposition). We discuss the online X-Flex
components first.

2.1 Online X-Flex Components

X-Schedule is the key online component of X-Flez. It runs
as the YARN scheduler inside the Resource Manager, re-
placing DRF. It is the component through which YARN
applications request and receive container allocations. X-
Schedule uses the container assignment configurations gen-
erated via periodic X-Size and X-Select runs. The con-
tainer assignment configuration contains entries describing
container definitions (memory size, CPU cores, processing
node) as well as the application owner. Using this informa-



tion, X-Schedule maintains for each application the set of
containers it owns. It also tracks which of those containers
have been assigned by the scheduler, along with the identity
of the application to which they have been assigned.

X-Schedule also uses a second set of configurations which
define the type of application, the degree of resource sharing
that each application allows, and the current sharing status.
Those (Garbo) applications that indicate they will not share
any of their containers are scheduled in the obvious manner,
and need not be considered further. So we will concentrate
on applications that are willing to share. These applica-
tions maintain their pairwise (symmetric) sharing bounds
here. Three pieces of additional data are updated each time
a scheduling decision is made involving a container that has
been shared by the pair. These are the sharing imbalance
lastShare at the time the calculation was made, the current
slope lastSlope describing the trend in sharing between the
two applications, and the time lastCalcTime of the calcu-
lation. The lastShare value may be positive, negative or
zero. It indicates the degree of imbalance between the two
— which application (if either) was benefiting more from re-
source sharing at the time lastTime. A lastShare value of
zero indicates the two applications are in perfect balance.
The value of lastSlope may also be positive, negative or zero.
It indicates the trend towards future imbalance, and is cal-
culated as the sum of all the instantaneous charges for con-
tainers of one application which are in use by the other, with
the obvious plus and minus signs. A lastSlope value of zero
indicates the platforms are in steady state. All three val-
ues are initially set to zero. The point of all this, of course,
is to allow X-Schedule to extrapolate the sharing imbalance
between the two applications at the current time curTime,
and thus determine whether or not this imbalance equals or
exceeds the sharing bound.

Applications submit allocation requests to X-Schedule in
order to obtain the containers needed to execute their tasks.
These allocation requests specify the requirements (memory,
number of CPU cores and so on) and number, rack level or
host level locality constraints, request priority, and preemp-
tion priority. When X-Schedule attempts to fulfill allocation
requests for an application it will satisfy requests in request
priority order, as specified by the application, from highest
to lowest. Unique to X-Schedule is the ability for an appli-
cation to also specify the type of container that should be
used to satisfy the request — OQwnedOnly, OwnedFirst and
NonOuwned.

An OwnedOnly request type tells X-Schedule that it should
try to satisfy the allocation request using only containers
owned by the application. It examines each free, owned
container and keeps a numerical score indicating how well
the attributes of the candidate container satisfy the require-
ments of the request. Certain attribute mismatches will
eliminate the container from consideration altogether. For
example, a request specifying a particular rack or host will
be eliminated if the candidate container is not on that rack
or host. A container whose resource dimensions are not all
at least those of the request will also be eliminated. In the
other direction, containers whose aggregate normalized di-
mensions are more than a prespecified fitness value times
the aggregate normalized dimensions of the request are also
eliminated. (The default fitness value is 2.) This guards
against assigning very large containers to small requests and
thus attempts to reduce wasted resources. After all free con-

tainers have been considered, the one with the highest score
is allocated to the application. The container is inserted into
the in use list of the application in preemption priority order
(lowest to highest). If there are no free containers available
but the application owns containers in use by other appli-
cations, X-Schedule may attempt to satisfy the request by
preempting one of those. This depends on the comparison
described above between the extrapolated sharing imbalance
and the sharing bounds. We will discuss the selection of a
container to be preempted below.

An OwnedFirst request tells X-Schedule that it should try
first to satisfy the request from the containers an applica-
tion owns, using the algorithm described above. If no suit-
able containers are available, it will next try to fulfill the
request from the unused containers of other sharing appli-
cations. The free containers of each application are enumer-
ated and subjected to a scoring mechanism similar to the one
described above, but with an additional scoring component
based on the degree of sharing between the two applications.
Using the sharing context data mentioned earlier, new calcu-
lations are made to reflect what these values would be if the
container were to actually be allocated. First a newShare-
Projection is calculated taking the lastShare and adding to
it the lastSlope multiplied by the difference in time since
the last calculation. Next a newSlopeProjection is calcu-
lated by taking the lastSlope and adding to it the container
size to estimate how the slope of the trend line would be
affected by making the allocation. Finally, a Time To Live
(TTL) estimate is calculated by taking the sharing bound
and subtracting the newShareProjection. This result is then
divided by the newSlopeProjection. The TTL projection is
then weighted and added into the score. Containers that
have small TTL projections are more likely to be preempted
or taken back sooner, and thus have a smaller effect on the
score value than those that have larger TTL projections. Af-
ter enumerating all the applications and their free contain-
ers, the one with the highest score is chosen and allocated
to the requesting application. The sharing context for the
requesting application and the owning application pair is
updated with the results of the new share calculations men-
tioned above. If this process fails, X-Schedule will attempt
to fulfill the request using preemption, as described below.

A NonOwned request tells X-Schedule that it should at-
tempt to satisfy the request using only containers that the
requesting application does not own. It uses an algorithm
identical to the second step of OwnedFirst, trying to satisfy
a request using free containers from applications other than
the requesting application. If none are available, X-Schedule
may again attempt to satisfy the request by preempting a
suitable container in use by another application.

We note that there are use cases for each of these request
types. OwnedFirst is, as one would expect, the most com-
mon X-Flex type. For applications with small or zero shar-
ing bounds, however, one might issue an OwnedOnly request
when doing mission critical work, and a NonOwned request
when doing best effort work.

Finally, we describe preemption. This is the strategy X-
Schedule employs when there are no free containers of the
requested type. There are two types of preemptions that can
occur. The first type occurs when an OQwnedOnly or Owned-
First request is made and there are no free containers owned
by the requesting application. In this case X-Schedule will
examine (in preemption priority order) all the in-use con-



tainers owned by the requesting application which have been
loaned to other applications. For each candidate container it
calculates a score as described earlier, with an additional test
to see if the candidate container can indeed be preempted.
A container is eligible for preemption if the application cur-
rently using that container has a newShareProjection greater
than or equal to the pairwise sharing bound. Any container
that cannot be preempted is eliminated. After examining
all the candidate containers, the one with highest score is
chosen, if any.

The second type of preemption occurs in cases of an Qwned-
First or NonOwned request types. Containers owned by
other applications are examined in preemption priority or-
der, using the same scoring system. (If the candidate con-
tainer is already in use by the requesting application it is, of
course, skipped.) The candidate container with the highest
score, if any, is chosen.

In either type of preemption the application losing the
container is notified, and has a configurable amount of time
to release the container on its own. Once the grace period
has expired, the container is forcibly killed and the reassign-
ment to the requesting application occurs.

It is worth mentioning that while there is an overhead
associated with the various online calculations incurred by
X-Schedule (such as updating the sharing bound), it is neg-
ligible considering the heartbeat based container allocation
model employed by YARN. Allocation cycles in this model
are typically on the order of seconds.

The second online component is the real-time visualizer,
X-Sight. X-Sight allows an administrator to see three sep-
arate views. The first is the overall cluster utilization over
time, partitioned by application. The second, illustrated in
Figure 2, is the sharing bounds and imbalance over time for
any pair of applications. The third shows the vector packing
of containers into the processing nodes, the owners and the
current users of those containers.

2.2 Offline X-Flex Components

Now we will give very brief overviews of the two mathe-
matical components of X-Flex. These are interesting prob-
lems in their own right, but space precludes a full exposition
here. Complete details can be found in [27].

The two schemes X-Size and X-Select are executed in that
order when X-Flez is initialized. After that, either X-Size
and X-Select or possibly just the latter will be repeated peri-
odically (and presumably infrequently), when the input data
changes sufficiently or X-Flex performance degrades beyond
some predefined threshold.

The primary input to X-Size is a profile of the various re-
source requests made by the applications using the cluster,
weighted by frequency. The number K of container shapes
allowed is also input: The idea is that we want to create
only a relatively modest number of container shapes. (A
similar problem exists in cloud environments, though pre-
sumably with a different objective function.) The output
is a set of K different container dimensions so that every
request “fits” into at least one, optimized to minimize the
total resource used when assigning these requests to their
best fitting containers. Here, the resource usage of a request
is the sum of the normalized dimensions of the container to
which it is assigned. We note in passing that if the notion
of fit were based on the maximum (as in DRF) rather than
the sum, a very simple dynamic program would work well.

In our context the problem is harder, and we create a poly-
nomial time approzimation scheme (PTAS) [24] to solve it.
This means that for any € > 0 we have a polynomial time
algorithm whose performance is within 1+ € of optimal. As-
sume initially that there are two dimensions, say CPU cores
and memory. The loss of an e factor comes from consid-
ering only solutions on one of w/e¢ — 1 equi-angled rays in
the first quadrant emanating from the origin. For solutions
on these rays, the scheme, a more elaborate dynamic pro-
gram on K, provides an exact solution. Higher dimension
are handled inductively. This scheme is then repeated for
various decreasing values of € until a predetermined amount
of execution time has elapsed.

Next we describe X-Select. The input here is the set of
processing nodes, the applications, the container sizes from
X-Size, and the forecasted mix of required containers and
their applications. There may also be constraints on these
containers, including resource matching, colocation and/or
exlocation of pairs of containers. The output is a valid vec-
tor packing of containers (together with application owners)
into processing nodes which optimizes the overall number of
containers that are packed, while giving each application its
share of containers. This output is precisely what is needed
by X-Schedule. When X-Flex is initialized the X-Select al-
gorithm attempts to maximize a multiplier A\: It essentially
employs a bracket and bisection algorithm to find the largest
value such that containers corresponding to A times the re-
quired mix can be vector packed into the existing processing
nodes. Any given A corresponds to a fixed set of containers
to pack, and a greedy algorithm that vector packs contain-
ers into one processing node at a time is known to be a
2-approximation [3, 4]. An iterative improvement heuris-
tic is then employed to further optimize the vector packing,
and simultaneously determine whether or not the packing
is feasible. In subsequent X-Select runs only the iterative
improvement heuristic is employed, with the additional in-
cremental constraint that the packing on only a prespecified
fraction of the processing nodes may be changed.

3. EXPERIMENTS

In this section we focus on experiments which compare X-
Flex with DRF. We have designed and implemented an Ap-
plication Master (AM) for MapReduce with plug-in sched-
ulers for Flex, Fair and FIFO. We have also written an
AM [21, 14] for IBM InfoSphere Streams [20]. We expect
that this streaming application will commonly be run in
Garbo mode, since its work is long running. One can imag-
ine other sharing decisions as well, but we will accordingly
not discuss this application further here.

The question of how fairness should be defined remains
qualitative, essentially unquantifiable. We naturally believe
that taking our definition of instantaneous fairness and our
longer term view makes good sense.

Flex | Fair | FIFO | DRF
Small ART 76.2 124.7 | 268.3 | 376.8
Medium ART | 270.1 | 333.5 | 275.8 | 364.0
Large ART 539.0 | 539.6 | 188.6 | 154.3
Overall ART | 122.4 | 171.8 | 267.0 | 367.5
Makespan 544.2 | 544.6 | 563.0 | 713.4

Table 1: Average Response Time and Makespan in
Seconds



Figure 3: Flex, Fair and FIFO

Perhaps the most important difference between the two
schedulers is the ability within X-Flex to employ higher level
scheduling appropriate to the application. Flex for MapRe-
duce is one such scheduler. It is highly effective in MapRe-
duce applications because of the inherent structure there.
For each (one second) scheduling interval it produces a hy-
pothetical malleable schedule [9] for the current set of jobs
and the particular performance metric (such as average re-
sponse time) being optimized. It then proposes allocations
of containers to jobs in the immediate future, and these de-
cisions are (approximately) instantiated by the AM. The en-
tire process repeats every scheduling interval. But in order
to do this, Flezx needs at least a temporarily constant view of
the available cluster resources. It cannot do this within the
DRF context, because there are no such guarantees: DRF
considers only the current instance in time. On the other
hand, Flex will work well with X-Flez if one assumes a shar-
ing bound of zero. It can perform mission critical work in
its share of the cluster, and best effort work elsewhere.

Accordingly we designed a set of experiments to test Flex
performance together with Fair and FIFO, using 3 corre-
sponding AMs within X-Flex. Each AM used one container.
We used an additional 75 containers allocated to the 3 Map
Reduce variants, with 6 processing nodes on one rack. Each
AM was given ownership of an equal share of the cluster, 25
containers in all. We gave Flex a sharing bound of zero. We
created three types of MapReduce jobs, for simplicity only
using Map tasks. The small jobs had 5 tasks, and there
were 25 of them per MapReduce variant. The 5 medium
jobs per variant had 25 tasks, and the single large job per
variant had 125 tasks. This sort of approximately Zipf-like
distribution in job size and frequency is quite typical of real
workloads. The corresponding DRF' experiments used 78
containers, and had 75 small jobs, 15 medium and 3 large
jobs. Since DRF schedules at the job level, more containers
were needed for the AMs.

Table 1 summarizes results averaging 5 separate runs each
of this experimental setup. The average response times are
broken out by job type, and the overall average is listed as
well. For the 3 columns associated with the X-Flex setup
we see significantly better performance than that of the last
column, DRF. The average response time for Flex is 33%
of DRF. And within X-Flex, Flex average response time is
71% of Fair and 46% of FIFO. Makespans for the 3 X-Flex
applications are comparable, as one would expect. There
is a fixed amount of work. But the makespan for DRF is
significantly higher, due to the overhead of the extra AMs.

X-Flex had an average CPU utilization of 92% across all 6

processing nodes, while the corresponding DRF utilization
was 80%. Memory utilization was 73% for X-Flex and 66%
for DRF. We attribute the better numbers in part to the
additional AM overhead associated with DRF.

These response time numbers are in keeping with past
results for Flex and to the particular experimental setup.
And there are simple reasons. Consider Figure 3, which
shows a FlexzSight [7] view of one such experiment for each
of Flex, Fair and FIFO. Flex, when optimizing average re-
sponse time, essentially attempts to schedule jobs by size,
small to large. (A scout is executed quickly in order to esti-
mate this size, which is then continually extrapolated.) Jobs
are elongated in the container dimension but are shrunk in
the time dimension, also shrinking the response time. Fair,
in an effort to actually be fair, does the reverse. FIFO elon-
gates jobs in the right dimension, but it orders its jobs based
only on arrival time. See, for example, the large (yellow) job
or the medium (brown) job towards the bottom of the figure.

The moral is that a cross-platform scheduler like X-Flex
is required if one wants to obtain the benefits of a more
intelligent application scheduler.

This experimental setup emphasized one aspect of perfor-
mance of X-Flex compared to DRF. But it kept the con-
tainer design very simple in an effort to isolate the packing
effect. We separately experimented with 2-dimensional vec-
tor packing problems. This experiment is a bit delicate,
because the offline component of X-Flexr does depend on a
reasonably accurate forecast of application request dimen-
sions (in this case, CPU cores and memory). Factoring that
out of the experiment, we produced an offline X-Select so-
lution for X-Flex and compared it to what would occur in
DRF. The same realtime workload in X-Flex produced 32%
more successful container requests than DRF.

4. CONCLUSIONS

In this paper we have presented a new and novel cross-
platform scheduling scheme known as X-Flex. It is currently
implemented within YARN. While still in a relatively early
stage of its development cycle, it appears to have several
qualitative and quantitative advantages over DRF. Among
these are a long term view of fairness, a seemingly more suit-
able definition of instantaneous fairness, a mathematically
sophisticated offline vector packing scheme to create contain-
ers and their owners, the flexibility, if desired, to work with
framework-specific schedulers which can take advantage of
inherent structure, and finally the ability of applications to
share as much or as little as they desire and/or require.
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