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Abstract

In the classical broadcast scheduling problem, there are n pages stored at a server, and requests
for these pages arrive over time. Whenever a page is broadcast, it satisfies all outstanding requests
for that page. The objective is to minimize average flowtime of the requests. For any ϵ > 0, we
give a (1 + ϵ)-speed O(1/ϵ3)-competitive online algorithm for broadcast scheduling. This improves
over the recent breakthrough result of Im and Moseley [IM10], where they obtained a (1 + ϵ)-speed
O(1/ϵ11)-competitive algorithm. Our algorithm and analysis are considerably simpler than [IM10].
More importantly, our techniques also extend to the general setting of non-uniform page-sizes and
dependent-requests. This is the first scalable algorithm for broadcast scheduling with varying size
pages, and resolves the main open question from [IM10].

1 Introduction

We consider the classical problem of scheduling in a broadcast setting to minimize the average response
time. In this problem, there are n pages, and requests for these pages arrive over time. There is a
single server that can broadcast pages. Whenever a page is transmitted, it satisfies all the outstanding
requests for that page. In the most basic version of the problem, we assume that time is slotted and
that each page can be broadcast in a single time slot. Any request r is specified by its arrival time a(r)
and the page p(r) that it requests; we let [m] := {1, 2, . . . ,m} denote the set of all requests. A broadcast
schedule is an assignment of pages to time slots. The flow-time (or response time) of request r under
a broadcast schedule equals b(r) − a(r) where b(r) ≥ a(r) + 1 is the earliest time slot after a(r) when
page p(r) is broadcast. The objective is to minimize the average flow-time, i.e. 1

m ·
∑

r∈[m](b(r)− a(r)).
Note that the optimal value is at least one.

More general versions of the problem have also been studied. One generalization is to assume that
pages have different sizes. A complicating issue in this case is that a request for a page may arrive in
the midst of a transmission of this page. There are two natural models studied to handle this issue,
depending on whether the client has the ability to cache the data or not. In the caching version, a
request is considered satisfied as soon as it sees one complete transmission of a page, regardless of the
order in which it receives the data (so it could first receive the latter half of the page and then receive
the first half). Without a cache, a request can only be satisfied when it has received the contents of the
page in order. The latter version is natural, for example, with movie transmissions, while the former
is more natural for say data file transmissions. When pages have arbitrary sizes, it is also standard to
consider preemptive schedules (i.e. transmission of a page need not occur at consecutive time-slots).
This is because no reasonable guarantee can exist if preemption is disallowed.
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Another generalization is the case of so called dependent requests. Here a request consists of a subset
of pages, and this request is considered completed only when all the pages for this request have been
broadcast.

1.1 Previous Work

The broadcast scheduling setting has been studied extensively in the last few years, both in the offline
and online setting. Most of the work has been done on the most basic setting with unit page sizes and no
dependencies. In addition to minimizing the average response time, various other metrics such maximum
response time [BM00, CEHK08, CIM09a, CM09] throughput maximization [CK06, KC04, ZFCCPW06],
delay-factor [CM09] etc. have also been studied quite extensively. We describe here the work related
to minimizing the average response time. For the offline version of this problem, the first guarantee of
any kind was a 3-speed, 3-approximation due to Kalyanasundaram, Pruhs and Veluthapillai [KPV00].
After a sequence of works [GKKW04, GKPS06, BCKN05], an O(log2 n/ log log n)-approximation based
on iterated rounding techniques was obtained by Bansal, Coppersmith and Sviridenko [BCS06]. This
is currently the best approximation known for the problem. It is also known that the problem is NP-
Hard [EH02, CEHK08]. While no APX-hardness result is known, it is known that the natural LP
formulation (which is the basis of all known results for this problem), has a (rather small) integrality
gap of 28/27 = 1.037 [BCKN05].

In the online case, which is perhaps more interesting for practical applications of the problem, very
strong lower bounds are known. In particular, any deterministic algorithm must be Ω(n) competitive
and any randomized algorithm must be Ω(

√
n) competitive [KPV00, BCKN05]. Thus, it is most natural

to consider the problem in the resource augmentation setting, where the online algorithm is provided a
slightly faster server than the optimum offline algorithm. The first positive result was due to Edmonds
and Pruhs [EP03] who gave an algorithm B-Equi and showed that it is (4+ϵ)-speed, O(1/ϵ)-competitive.
The algorithm B-Equi produced a schedule where several pages may be transmitted fractionally in a
single time slot. Edmonds and Pruhs [EP03] also showed how to convert B-Equi into a valid schedule
(i.e. only one page is transmitted in each time slot) using another (1 + ϵ)-speedup and losing a factor
of 1/ϵ in the competitive ratio, which gave a (4 + ϵ)-speed, O(1/ϵ2)-competitive algorithm.

The result of [EP03] is based on a very interesting idea. They related broadcast scheduling to
another scheduling problem on multiprocessors known as non-clairvoyant scheduling with sublinear-
nondecreasing speed-up curves. This problem is very interesting in its own right with several appli-
cations. It was introduced earlier by Edmonds [E00]. who gave a (2 + ϵ)-speed, O(1/ϵ)-competitive
algorithm called Equi for the non-clairvoyant scheduling problem. Edmonds and Pruhs showed that
the broadcast scheduling problem can be reduced to non-clairvoyant scheduling problem while losing
a factor of 2 in the speed up required [EP03]. Given the (2 + ϵ)-speed, O(1/ϵ)-competitive algorithm
Equi, this yields the (4+ ϵ)-speed, O(1/ϵ)-algorithm B-Equi for broadcast (where pages are transmitted
fractionally in each time-slot).

Recently, Edmonds and Pruhs [EP09] gave a very elegant algorithm called LAPS(β) for the non-
clairvoyant scheduling problem mentioned above. They showed that for any ϵ > 0, the algorithm
LAPS(ϵ/2) is (1 + ϵ

2)-speed O(1/ϵ2) competitive. Using the Edmonds-Pruhs reduction from broadcast
scheduling to non-clairvoyant scheduling mentioned above [EP03], this implies an (2+ϵ)-speed, O(1/ϵ2)-
competitive ‘fractional’ broadcast schedule. Losing another factor of 1/ϵ, this can be converted to a
valid broadcast schedule that is (2 + ϵ)-speed, and O(1/ϵ3)-competitive. These results [EP03, EP09]
also hold when page sizes are non-unit but preemption is allowed.

Another natural online algorithm that has been studied is Longest Wait First (LWF). This is a
natural greedy algorithm that at any time broadcast the page for which the total waiting time of
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outstanding requests is the highest. Edmonds and Pruhs [EP05] showed that LWF is 6-speed, O(1)-
competitive. They also showed that no no(1) guarantee is possible unless the speedup is at least (1 +√
5)/2 ≈ 1.61. In particular, this rules out the possibility of LWF being a (1+ϵ)-speed, Oϵ(1)-competitive

(scheduling algorithms with such guarantees are referred to as fully scalable). Recently, the results for
LWF has been improved by [CIM09b]. They show that LWF is 2.74-speed, O(1)-competitive. They
also improve the lower bound on speed up required to 2− ϵ.

Until recently, a major open question in the area had been whether there are fully scalable algorithms.
Intuitively, these algorithms are important from a practical point of view, since one would expect them
to perform closest to an optimal algorithm in practice. See [KP00, PST04] for a formal discussion of this
issue. Recently, in a breakthrough result, Im and Moseley [IM10] obtained the first scalable algorithms
for broadcast scheduling. In particular, they design an algorithm call LA-W , that is (1 + ϵ)-speed,
O(1/ϵ11)-competitive. This algorithm is similar to LWF, but it favors pages that have recent requests.
The analysis of LA-W is based on a rather complicated charging scheme. Additionally, the algorithm
in [IM10] only works for unit-size pages, and the authors leave open the question for varying-size pages.

The case of dependent requests has been studied by [RS07]. They show that a generalization of
the B-Equi algorithm, called B-EquiSet is (4+ ϵ)-speed, O(1/ϵ3)-competitive, even in the setting where
pages have arbitrary lengths (with preemptions).

1.2 Our Results

In this paper we give fully scalable algorithms for broadcast scheduling with improved guarantees. Our
algorithm and analysis are much simpler than that of [IM10], and they also extend to the general setting
with non-uniform page sizes and dependent requests. In particular we prove the following results:

Theorem 1.1. If all pages are of unit size, then for every 0 < ϵ ≤ 1, there is a (1 + ϵ)-speed, O
(
1
ϵ2

)
-

competitive randomized online algorithm for broadcast scheduling.

We note that for the problem above, [BCKN05] show a lower bound of Ω(1ϵ ) on the competitive
ratio on any randomized algorithm, even if a speedup of 1 + ϵ is allowed.

We also give a deterministic algorithm with a slightly worse guarantee.

Theorem 1.2. If all pages are of unit size, then for every 0 < ϵ ≤ 1, there is a (1 + ϵ)-speed, O
(
1
ϵ3

)
-

competitive deterministic online algorithm for broadcast scheduling.

Our algorithm and its analysis are inspired by the algorithm LAPS for non-clairvoyant scheduling
[EP09]. Our main idea is to bypass the [EP03] reduction (from broadcast scheduling to non-clairvoyant
scheduling) that loses a factor of 2 in the speedup and directly adapt the ideas used in LAPS to the
broadcast scheduling setting. To this end, we first consider the fractional version of the problem (i.e.
pages can be fractionally transmitted in each time-slot) and show that a variant of LAPS (adapted to
the broadcast setting) is (1 + ϵ)-speed, O(1/ϵ2)-competitive. Note that this guarantee matches that for
LAPS. Then we show how to round this fractional schedule in an online manner to obtain an integral
schedule (i.e. only one page transmitted in each time-slot). This idea of reducing broadcast scheduling
to a fractional version, and solving the fractional version was also used implicitly in the algorithms of
Edmonds and Pruhs [EP03, EP05]. However we consider a different notion of fractional relaxation,
which is crucial to obtain a fully scalable algorithm.

Our algorithm and its analysis can be extended to a more general setting where the pages have
arbitrary sizes, and the requests have dependencies. In this problem, different pages have different
(integer) sizes, and the requests arrive for subsets of pages. A request is satisfied only when it receives
all the pages in its associated subset, and a request receives a page only if its contents have been

3



broadcast in order, starting from the beginning, i.e., the request does not cache the page blocks. Also,
to obtain any reasonable guarantees with arbitrary page-sizes, one needs to consider the preemptive
version (we give an example in Section 5.3 for completeness). By preemptive we still mean that only one
page is transmitted in each time-slot; however as pages have arbitrary sizes, the complete transmission
of a page may involve several (possibly non-consecutive) time-slots. When all page-sizes are unit, a
valid preemptive schedule in fact does not preempt any page.

In Section 5 we prove the following generalization of Theorem 1.2.

Theorem 1.3. Consider the broadcast scheduling setting where pages have arbitrary sizes and requests
are dependent. Moreover, no cache is available. Then, if preemption is allowed, for every 0 < ϵ ≤ 1,
there is a (1 + ϵ)-speed, O

(
1
ϵ3

)
-competitive deterministic online algorithm.

Thus we resolve the main open question from Im and Moseley [IM10], by obtaining a scalable
algorithm for broadcast scheduling with varying page sizes. The approach here is similar to that for
unit-size pages, namely reducing to fractional broadcast scheduling. However the rounding algorithm
used to achieve this reduction is much more involved than for unit-sizes.

Remark: Our algorithm can be modified so that the amortized number of preemptions per page is
O(log n). That is, if a schedule transmits k pages over the entire time horizon, then the number of
preemptions is at most O(k log n).

Note that we state Theorem 1.3 only for the version where there is no cache available. In the setting
where cache is available, the problem can be reduced to dependent requests with unit size pages, by
replacing a page p of length ℓp by a dependent request consisting of the corresponding ℓp unit size pages.

Corollary 1.4. For every 0 < ϵ ≤ 1, there is a (1 + ϵ)-speed, O
(
1
ϵ3

)
-competitive deterministic online

algorithm for broadcast scheduling with arbitrary size pages (and dependent requests) in the cache model.

Connection to the non-clairvoyant scheduling problem. Given the results above, a natural
question is whether the loss of factor 2 speed up in previous approaches [EP03, EP05] can be avoided in
the reduction from broadcast scheduling to the non-clairvoyant scheduling problem mentioned above.
It turns out that this is indeed possible. We give a reduction from fractional broadcast scheduling to
non-clairvoyant scheduling that does not incur any loss in either the speed up or in the competitive ratio
(i.e. it is a (1, 1) transformation). The main idea to achieve this lies in the appropriate definition of
the fractional broadcast problem, and the online rounding algorithms required to relate the broadcast
problem to its fractional relaxation. As this reduction may be useful in other contexts, we present it for
completeness in Section 6. Note that this reduction combined with the algorithm LAPS [EP09] could
also be used to prove our results. However, we have chosen to present our results directly without going
via the non-clairvoyant reduction, since the proofs are simpler and cleaner this way.

Finally, in Section 7 we investigate an alternate variant of dependent requests, where a request is
specified by several pages, but it is satisfied when any one of those pages is transmitted (instead of
when all of these pages are transmitted). We show that this variant is much harder, even in the offline
setting. In particular, any no(1) approximation for the problem requires at least Ω(log n) speed up.

Roadmap. In Section 2, we present an online scalable algorithm for a fractional variant of the broadcast
scheduling problem. We then present two online rounding techniques to obtain a scalable schedule for
the original problem (with unit-size pages) in Sections 3 and 4. In Section 5, we generalize these results
to obtain a scalable algorithm for the general case of broadcast scheduling with arbitrary page sizes and
dependent requests. Then in Section 6, we present our ratio-preserving reduction from the broadcast
scheduling problem to a well-known unicast scheduling problem (with jobs having sequential sections
and parallelizable sections). Finally we show some lower bounds for other models in Section 7.
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2 Fractional Broadcast Scheduling

In this section we study a “fractional” variant of the broadcast scheduling problem and obtain a (1+ ϵ)-
speed, O(1/ϵ2)-competitive algorithm for it. Then in the subsequent two sections, we will show how to
transform this algorithm into one for the (original) broadcast problem for the case of unit-size pages.
To obtain the randomized algorithm in Section 4, we use an α-point randomized rounding technique
from [BCKN05]. To obtain the deterministic algorithm in Section 3, we present a different priority-based
rounding technique which incurs an additional factor of O(1/ϵ) in the competitive ratio.

2.1 Problem Definition

The basic setting for the fractional broadcast scheduling problem is similar to the usual broadcast
scheduling, namely a single server has n pages and requests for pages arrive online. The difference is
that we work with continuous (instead of discrete) time, and the pages can be transmitted fractionally.
At any continuous time instant t, a 1-speed schedule is allowed to broadcast each page p ∈ [n] at rate
xp(t), such that

∑n
p=1 xp(t) ≤ 1. In the resource augmentation setting, a feasible (1+ ϵ)-speed schedule

means that
∑

p xp(t) ≤ 1 + ϵ at all times t. For any request r ∈ [m], let us define its completion time
under such a continuous schedule to be:

b(r) := inf

{
s :

∫ s

a(r)
xp(r)(t)dt ≥ 1

}
,

i.e. the time after the release of request r when one unit of page p(r) has been broadcast. Finally the
flow-time of request r equals b(r) − a(r). Note that the flow-time of any request is at least one (for
a 1-speed schedule). The objective in fractional broadcast scheduling is to compute a schedule that
minimizes average flowtime, 1

m

∑
r∈[m] (b(r)− a(r)).

2.2 Algorithm for Fractional Broadcast

At any continuous time t, let N(t) denote the set of active requests, i.e. those which have not yet been
completed. Let N ′(t) denote the ϵ|N(t)| “most-recent” requests among N(t), i.e. those with the latest
arrival times, with ties broken arbitrarily.

The algorithm time shares among the requests in N ′(t), i.e. the amount of page p transmitted at t
is

xp(t) := (1 + 4ϵ) · |{r ∈ N ′(t) : p(r) = p}|
|N ′(t)|

, ∀ p ∈ [n].

Clearly,
∑n

p=1 xp(t) ≤ 1 + 4ϵ at all times t. For the sake of analysis, we also define:

yr(t) :=

{ 1+4ϵ
|N ′(t)| if r ∈ N ′(t)

0 if r ̸∈ N ′(t)
, ∀ t ≥ 0

In particular, yr(t) is the share of request of r if we distribute the processing power of 1 + 4ϵ equally
among requests in N ′(t). In the rest of this section, we prove the following.

Theorem 2.1. For any 0 < ϵ ≤ 1
4 , the above algorithm is a (1+4ϵ)-speed O

(
1
ϵ2

)
competitive determin-

istic online algorithm for fractional broadcast scheduling.
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2.3 Analysis for Fractional Broadcast

Our analysis is based on a potential function argument inspired by that for LAPS [EP09]. Let Opt
denote an optimal fractional broadcast schedule for the given instance. Let On denote the fractional
online schedule produced by the above algorithm. We will define a potential Φ and show that

∆On(t) + ∆Φ(t) ≤ 2

ϵ2
∆Opt(t). (2.1)

holds for (i) every infinitesimal intervals [t, t + dt) such that no requests arrive or complete in On
during this interval, and (ii) whenever new requests arrive at t or complete in On. Here ∆(On(t))
(resp. ∆(Opt(t))) denote the cost incurred during [t, t + dt) by the online (resp. offline) schedule. Let
N(t) (resp. N∗(t)) denote the number of alive requests under On and Opt at time t. It is easy to see
(by interchanging order of summation in the objective function) that, during the interval [t, t+ dt), we
have ∆On(t) = N(t)dt and ∆Opt(t) = N∗(t)dt. For the case of request arrivals and completions in On,
we assume that they are instantaneous and hence ∆On(t) = ∆Opt(t) = 0. Moreover, we will ensure
that Φ(0) = Φ(∞) = 0. By standard amortization arguments, this will imply Theorem 2.1.

At any (continuous) time t and for any page p ∈ [n], let x∗p(t) denote the rate at which Opt broadcasts
p. We have

∑
p x

∗
p(t) ≤ 1 since the offline optimal is 1-speed. For page p ∈ [n] and times t1 < t2, let

X(p, t1, t2) :=
∫ t2
t1

xp(t)dt denote the (fractional) amount of page p transmitted by On in the interval

[t1, t2]. Likewise, X
∗(p, t1, t2) :=

∫ t2
t1

x∗p(t)dt denotes a similar quantity for the Opt schedule.
For any request r ∈ [m], let b∗(r) denote the completion time of r in Opt, and let b(r) denote its

completion time in On. For any r ∈ [m], and times t1 < t2, define Y (r, t1, t2) :=
∫ t2
t1

yr(t)dt, i.e. the
fractional time that the online algorithm has devoted towards request r in the interval [t1, t2]. As any
request r is inactive after time b(r), it holds that yr(t) = 0 for all t > b(r). Thus Y (r, t,∞) = Y (r, t, b(r))
for all r ∈ [m] and t ≥ 0. Notice the difference that Y (·, ·, ·) is defined for requests while X(·, ·, ·) is
defined for pages.

We now define the contribution of any request r ∈ [m] to the potential as follows.

zr(t) = Y (r, t,∞) ·X∗(p(r), a(r), t)

Note that zr(t) ≥ 0 for any r and t. Intuitively, zr(t) captures how far the online algorithm lags behind
the offline optimal, with respect to request r at time t. This is because X∗(p(r), a(t), t) ≥ 1 if r is
satisfied under Opt by time t, and Y (r, t,∞) = 0 if r is already satisfied under On, as it will not be
assigned any ”work” henceforth during (t,∞).

Finally, the overall potential function is defined as:

Φ(t) :=
1

ϵ
·
∑

r∈N(t)

rank(r) · zr(t),

where rank is the function which orders active requests based on arrival times (with the highest rank
of |N(t)| going to the most recently arrived request that is still active and a rank of 1 to the earliest
active request).

We now show that (2.1) holds.

Request Arrival: As ∆On = ∆Opt = 0 in this case, it suffices to show that ∆Φ = 0. When a request
r arrives at time t, we have zr(t) = 0 as r is entirely unsatisfied by Opt. Thus, Φ does not change due to
r. Moreover, as the requests are ranked in the increasing order of their arrival, r gets the rank N(t)+ 1
and the ranks of other (active) requests are unaffected and hence ∆Φ = 0.
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Request completes under Online Algorithm and leaves the set N(t): As previously it suffices
to show that ∆(Φ) ≤ 0. When a request r leaves N(t), by definition its zr(t) reaches 0 (because no
work will be assigned to r henceforth and so Y (r, t,∞) will be 0). Moreover, when r leaves the set N(t)
the rank of the other requests r′ ∈ N(t) can only decrease. Since zr′(t) ≥ 0 for any r′, the contribution
due to these requests to the potential can only decrease. Thus ∆Φ ≤ 0.

We now consider a sufficiently small interval (t, t+dt) where neither of the above two events happen
and show that (2.1) holds. There are two causes for change in potential:

Offline Opt broadcast in (t, t+ dt): We will show that ∆Φ(t) ≤ 1
ϵ |N(t)|dt. To see this, consider any

page p. The amount of page p transmitted by Opt in this interval is x∗p(t)dt. This broadcast of x
∗
p(t)dt

amount of page p causes the quantity zr(t) to increase for all those requests r with p = p(r) that are
alive in On at time t.

Let
C(t, p) := {r ∈ [m] | p(r) = p, a(r) ≤ t < b(r)}

denote the active requests under On for page p at time t. As the rank of any alive request is at most
|N(t)|, the total increase in Φ over the interval [t, t+ dt) due to Opt’s broadcast is at most:

∆Φ ≤ 1

ϵ
|N(t)| ·

n∑
p=1

∑
r∈C(t,p)

Y (r, t,∞) · x∗p(t)dt. (2.2)

We now show that
∑

r∈C(t,p) Y (r, t,∞) ≤ 1 for any page p. Let r′ = argmax{b(r) | r ∈ C(t, p)}
denote the request in C(t, p) that is completed last by On. Since r′ is active until b(r′) and a(r′) ≤ t,
it must be that On broadcasts at most 1 unit of page p during [t, b(r′)]. As the total work assigned to
requests r in C(t, p) until b(r′) is no more than the amount of p transmitted until b(r′), and since r′ is
the last request to be completed in C(t, p), this directly implies that∑

r∈C(t,p)

Y (r, t,∞) =
∑

r∈C(t,p)

Y (r, t, b(r′)) ≤ 1

Together with (2.2), we have that

∆Φ ≤ 1

ϵ
|N(t)| ·

n∑
p=1

x∗p(t)dt ≤
1

ϵ
|N(t)| · dt (2.3)

where the last inequalities uses that
∑

p x
∗
p(t) ≤ 1 as Opt is a 1-speed algorithm.

Online broadcast in (t, t+ dt): Recall that On broadcasts page p at rate xp(t), and yr(t) is the rate
at which On “works” on request r. Consider any fixed request r ∈ N ′(t)\N∗(t), i.e. on which On works
but has been completed by Opt. Observe that X∗(p(r), a(r), t) ≥ 1 since Opt has completed request r
by time t. Note also that yr(t) = (1 + 4ϵ)/|N ′(t)|, i.e. d

dtY (r, t,∞) = −(1 + 4ϵ)/|N ′(t)|. Thus,

d

dt
zr(t) = X∗(p(r), a(r), t) · d

dt
Y (r, t,∞) ≤ − 1 + 4ϵ

|N ′(t)|
, for all r ∈ N ′(t) \N∗(t).

Furthermore, since each request that On works on in [t, t+ dt) has rank at least (1− ϵ) · |N(t)|, the
potential Φ increases at rate,

d

dt
Φ(t) ≤ − 1

ϵ
(1− ϵ) |N(t)| · (1 + 4ϵ)

|N ′(t)|
·
(
|N ′(t)| − |N∗(t)|

)
.
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Since (1− ϵ)(1 + 4ϵ) ≥ (1 + 2ϵ) for ϵ ≤ 1/4, we get

d

dt
Φ(t) ≤ −

(
1

ϵ
+ 2

)
|N(t)|+ 1

ϵ2
(1 + 4ϵ)|N∗(t)|

≤ −
(
1

ϵ
+ 1

)
· |N(t)|+ 2

ϵ2
· |N∗(t)|. (2.4)

Observe that d
dtOn(t) = |N(t)| and d

dtOpt(t) = |N
∗(t)|. Using (2.3) and (2.4), we get that

d

dt
On(t) +

d

dt
Φ(t) ≤ |N(t)|+ 1

ϵ
|N(t)| −

(
1

ϵ
+ 1

)
|N(t)|+ 2

ϵ2
|N∗(t)|

≤ 2

ϵ2
|N∗(t)| =

2

ϵ2
· d
dt
Opt(t),

which proves Equation (2.1). Thus by integrating from t = 0 to t =∞ (and noting that Φ(0) = Φ(∞) =
0), we obtain Theorem 2.1.

Note that the resulting fractional broadcast schedule may complete requests at fractional times.
In the description of the rounding techniques, it will be useful to assume that we have a fractional
broadcast schedule where each request arrives and completes at integral times. So we will just round
up the fractional completion times to integer values — since any request incurs a flow time of at least
one by definition, this can at most double the competitive ratio.

3 Deterministic Online Algorithm

In this section, we show how to obtain an online deterministic (integral) broadcast schedule from the
fractional schedule presented in Section 2.2. Our rounding technique requires an additional speed up of
(1+ ϵ), and loses an extra factor of O(1/ϵ) in the competitive ratio (as usual, 1+ ϵ speed up means that
the algorithm gets to transmit one additional free page every ⌈1ϵ ⌉ time-steps). While our technique is
similar to that used by Edmonds and Pruhs [EP03] to convert their “fractional” algorithm B-EQUI to
B-EQUI-EDF, there are some crucial differences, as our notion of fractional schedule is different

3.1 Algorithm

Let On denote the fractional algorithm. Recall that a(r) denotes the time a request r arrives, b(r)
denotes the time it is fractionally satisfied under On, and xp(t) denotes the fractional amount of page
transmitted at time t. Let us define, the width w(r) of request r as w(r) = b(r)− a(r).

The rounding algorithm Rnd is a simple greedy algorithm. It maintains a queue Q (initially empty)
of requests that are as yet unsatisfied by Rnd but have been fractionally satisfied by On. At any time,
it transmits the request from the queue with the least width. The rounding algorithm at time t is given
below.

3.2 Analysis

We will show that

Theorem 3.1. Given any fractional broadcast schedule, the above algorithm produces an integral sched-
ule such that ∑

r

(bI(r)− a(r)) ≤ O

(
1

ϵ

)
·
∑
r

(b(r)− a(r))
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Algorithm 1 OnlineRounding(t)

1: for any request r that completes in On at time t, i.e. b(r) = t, and is yet unsatisfied under Rnd do
2: enqueue the tuple ⟨r, w(r) = b(r)− a(r)⟩ into Q.
3: end for
4: dequeue the request ⟨rt, w(rt)⟩ that has least width w(r) among all elements in the queue Q.
5: broadcast the page p(rt).
6: delete all requests ⟨r′, w′⟩ in Q such that p(r′) = p(r).
7: repeat steps 4-6 again if t is an integer multiple of ⌈1ϵ ⌉.

where bI(r) denote the time r is satisfied in the integral schedule.
In fact we show the following stronger guarantee for every request. For any request r, the algorithm

will broadcast page p(r) during the interval
[
a(r), b(r) + 2

ϵ (b(r)− a(r)) + 2
]
.

Proof. Consider some request r. If there is a broadcast of the page p(r) in the interval [a(r), b(r)],
then clearly the claimed bound for request r holds.

Therefore, let us assume that there has been no broadcast of page p(r) in the interval [a(r), b(r)].
Since p(r) is not broadcast during [a(r), b(r)], it implies that the request r is added to the queue Q at
time t = b(r): as r is still unsatisfied at time b(r). Let w(r) = b(r) − a(r) be the width of request r.
Also define tℓ to be the latest time before t when (i) a request of width greater than w(r) was dequeued,
or (ii) Q was empty, i.e.

tℓ := max {z ≤ t | at time z, either some request of width > w(r) is dequeued, or Q is empty}

Clearly, by the greedy nature of the algorithm, at time tℓ there are no outstanding requests of width
at most w(r). Moreover during [tℓ, t], the algorithm always dequeues requests of width at most w(r).

We will show that there exists time t′ ≤ tℓ +
2w(r)

ϵ + 2, at which there are no outstanding requests of
width at most w(r). In particular, this would mean that request r is dequeued before time t′, i.e. p(r)

is broadcast during [b(r), tℓ +
2w(r)

ϵ + 2], which would complete the proof of the theorem.
Suppose, for the sake of contradiction that Q always has requests of width at most w(r) during the

entire interval T := [tℓ, tℓ +
2w(r)

ϵ +2]. We first show the following claims about the fractional extent to
which any page is broadcast during the time interval T .

Claim 3.2. Consider any page p ∈ [n], and let t1 and t2 denote times (provided they exist) of some two
successive broadcasts of p in T . Then, in the fractional schedule

∫ t2
t1

xp(t)dt ≥ 1.

Proof. As page p is broadcast at time t2, it must have been initiated by some unsatisfied “trigger”
request r′ for p that was dequeued at time t2. Furthermore, r′ must have arrived after t1 (i.e. a(r

′) ≥ t1)
as otherwise, it would have been already serviced by the broadcast at t1. Now, since it enters the queue

by time t2, it must be that b(r′) ≤ t2, implying that
∫ t2
t1

xp(t)dt ≥
∫ b(r′)
a(r′) xp(t)dt ≥ 1.

Claim 3.3. Consider any page p ∈ [n] that is broadcast at least once during T . If tp denotes the time

p was first broadcast in T , then
∫ tp
tℓ−w(r) xp(t)dt ≥ 1.

Proof. By our assumption on T , the algorithm only broadcasts requests having width at most w(r)
during T . In particular, the “trigger request” r′ that initiated the broadcast of p at time tp must have
width b(r′) − a(r′) ≤ w(r). Moreover, b(r′) ∈ [tℓ, tp]: indeed if b(r′) < tℓ, then the queue would have
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contained a request of width at most w(r) at time tℓ, contradicting the definition of tℓ. This implies
that a(r′) ≥ b(r′)− w(r) ≥ tℓ − w(r). Thus∫ tp

tℓ−w(r)
xp(t)dt ≥

∫ b(r′)

a(r′)
xp(t) ≥ 1,

implying the claim.

Now, let Np denote the number of broadcasts of a page p during the interval T . Then, by the
preceding two claims, we know that we can pack 1 unit of fractional broadcast (in On) of page p
between (i) any two successive integral broadcasts of p in T , and (ii) between time tℓ − w(r) until the
first broadcast of p in T . Therefore, we can pack at least Np units of fractional broadcast of page p
within the interval [tℓ − w(r), tℓ] ∪ T . Thus

∑
pNp ≤ |T | + w(r). On the other hand, as Rnd runs at

speed (1 + ϵ) and Q is never empty during T , we have
∑

pNp ≥ (1 + ϵ)|T | − 1. These two bounds
imply that |T | + w(r) ≥ (1 + ϵ)|T | − 1 which implies |T | ≤ (w(r) + 1)/ϵ ≤ 2w(r)/ϵ, contradicting our
assumption that T has length 2w(r)/ϵ+ 2.

Clearly Theorem 3.1 combined with Theorem 2.1 implies Theorem 1.2.

4 Randomized Online Algorithm

In this section, we give a randomized online procedure for rounding the fractional schedule into a valid
(integral) schedule, using 1 + ϵ speedup. The advantage of this algorithm over the one in the previous
section is that it only adds O(1/ϵ2) in expectation to the response of a request (which can be subsumed
in the competitive ratio). However, the drawback is that it assumes an oblivious adversary.

The rounding algorithm is based on the α-point rounding technique. This result is originally from
Bansal et al. [BCKN05]; however we present it here for completeness since the proof as presented
in [BCKN05] appears incorrect; it claims an additive guarantee of O(1/ϵ), though the proof only seems
to imply a guarantee of O(1/ϵ2).

The randomized online algorithm for broadcast scheduling works as follows. Consider some fractional
schedule generated in an online manner, say by running On in Section 2. For notational convenience, we
assume that On is running at speed 1, otherwise we can rescale the units of speed. Recall our notation
that, for page p ∈ [n] and times t1 < t2, X(p, t1, t2) =

∫ t2
t1

xp(t)dt denotes the (fractional) amount of
page p broadcast in the interval [t1, t2). The algorithm works as follows:

Algorithm 2 α-point rounding for broadcast

1: choose αp ∈ [0, 1) uniformly at random and independently, for each p ∈ [n]. This is done initially,
and the αp’s are fixed forever.

2: simulate the fractional online algorithm to obtain schedule On (Section 2).
3: for each integral time t do
4: enqueue into Q all pages {p ∈ [n] | ∃i ∈ Z+, X(p, 0, t− 1) < i+ αp ≤ X(p, 0, t)}.
5: dequeue the first page in Q, and broadcast it. If t is a multiple of ⌈1δ ⌉ perform this step twice.
6: end for

Recall that for any request r ∈ [m], its arrival time is a(r) and completion time under On is b(r).
The next claim is immediate from the α-point definition.

Claim 4.1. For each request r ∈ [m], the page p(r) enters Q at some time during [a(r), b(r)].
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Proof. Let p := p(r) the page requested by r. Condition on any αp ∈ [0, 1). By definition of the
fractional completion time of r, we have X(p(r), a(r), b(r)) = 1. So there exists some (fractional) time
t ∈ (a(r), b(r)) such that X(p(r), 0, t) ∈ αp + Z+. Since a(r) and b(r) are integral, the claim follows.

Next we bound the expected time spent by each page in the queue. First, the following lemma from
[BCKN05] shows that it suffices to consider the expected queue length at any time t.

Lemma 4.2 ([BCKN05], Lemma 3.1). Consider some page p, and let t be some time when it is enqueued.
Then the expected length of queue Q at time t (conditioned on p being enqueued at t), is at most 1 more
than the (unconditional) expected queue length at t.

Thus we bound the expected queue length at any time Q.

Lemma 4.3. At any time t, the expected length of queue Q is at most O(1/ϵ2).

Proof. We follow the analysis in [BCKN05]. Qt denotes the queue length at time t. Fix a k > 3
ϵ2
; we

will bound the probability Pr[Qt ≥ 4k]. Let t′ be the latest time before t that Q is empty; note that
t′ is a random variable. For each j ≥ 0, let ηj denote the event that t′ ∈ (t− (j + 1)k, t− jk]; observe
that exactly one of the ηjs occurs. So,

Pr[Qt ≥ 4k] ≤
∑
j≥0

Pr[(Qt ≥ 4k) ∧ ηj ]. (4.1)

We now bound each of these terms.

Claim 4.4. We have Pr[(Qt ≥ 4k) ∧ η0] ≤ e−k/2.

Proof. Observe that for (Qt ≥ 4k) ∧ η0 to happen, it must be that the number of enqueues during
[t − k, t] is at least 4k (denote this event H0). We now upper bound Pr[H0]. For each p ∈ [n] let
ap = X(p, t− k, t), and random variable Ap denote the number of enqueues of page p during [t− k, t].
Since the αs for different pages are chosen independently, Aps are independent rvs. Additionally, by
α-point rounding we have Ap ∈ {⌊ap⌋, ⌈ap⌉} for all p ∈ [n]; and E[

∑n
p=1Ap] =

∑n
p=1 ap. Also, we have∑n

p=1 ap ≤ k Event H0 implies that
∑n

p=1Ap ≥ 4k ≥ 4 · E
[∑n

p=1Ap

]
. Now using the multiplicative

form of the Chernoff bound [AS00], Pr[H0] ≤ exp(−k/2), and we obtain the claim.

Claim 4.5. For each j ≥ 1, Pr[(Qt ≥ 4k) ∧ ηj ] ≤ exp(−ϵ2jk/3).

Proof. For (Qt ≥ 4k) ∧ ηj to happen, it must be that the number of enqueues during [t − jk − k, t]
is at least (1 + ϵ) · jk + 4k (call this event Hj). This is because Q was empty at some time t′ during
[t − jk − k, t − jk], the algorithm has speed (1 + ϵ) and Q is never empty during [t − jk, t]. As in
the previous claim, define the following. For each p ∈ [n] let ap := X(p, t − jk − k, t), and random
variable Ap ∈ {⌊ap⌋, ⌈ap⌉} denotes the number of enqueues of page p during [t− jk−k, t]. We also have
E[
∑n

p=1Ap] =
∑n

p=1 ap ≤ (j + 1)k. Event Hj implies that:

n∑
p=1

Ap ≥ (1 + ϵ)jk + 4k ≥ (1 + ϵ) · E

 n∑
p=1

Ap

 .

Again by the Chernoff bound, Pr[Hj ] ≤ exp(−ϵ2jk/3).
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Combining the two claims above with (4.1), we obtain:

Pr[Qt ≥ 4k] ≤ e−k/2 +
∑
j≥1

exp(−ϵ2jk/3)

≤ e−k/2 + exp(−ϵ2k/3)
∞∑
j=0

(
exp(−ϵ2k/3)

)j
≤ e−k/2 + 2 · exp(−ϵ2k/3) ≤ 3 · exp(−ϵ2k/3),

where the second last inequality follows from k ≥ 3
ϵ2
. Using this expression, we bound

E[Qt] =
∞∑
ℓ=0

Pr[Qt > ℓ] ≤ 12

ϵ2
+ 4

∞∑
k=3/ϵ2

Pr[Qt > 4k] ≤ 12

ϵ2
+ 12

∞∑
k=3/ϵ2

e−ϵ2k/3 ≤ 48

ϵ2
.

This completes the proof of the lemma.

Using Claim 4.1 and Lemmas 4.3 and 4.2 we obtain that for each request r ∈ [m], its expected
flow-time in the integral schedule is at most b(r)−a(r)+O(1/ϵ2). Since On is O(1/ϵ2)-competitive, the
expected average flow time is at most O(1/ϵ2) times the optimal.

Combined with Theorem 2.1 this proves Theorem 1.1.

5 The General Setting: Dependent Requests and Non-Uniform Pages

We first define the non-uniform broadcast scheduling problem with dependencies: There are n pages
with each page p having an integer size lp; i.e. page p consists of lp distinct blocks that are numbered 1
to lp. Requests for subsets of these pages arrive over time. That is, a request r is specified by its arrival
time a(r) and a subset of pages P(r) ⊆ [n] that it requests; we let [m] denote the set of all requests.

There is a single server that can broadcast one page-block per time slot. A broadcast schedule is
an assignment of page-blocks (i.e. tuple ⟨p, i⟩ where p ∈ [n] and i ∈ {1, · · · , lp}) to time slots. For
any request r, page p ∈ P(r) is said to be completed if the server has broadcast after time a(r), all
the lp blocks of page p in the order 1 through lp. We consider a preemptive schedule and hence allow
non-contiguous transmission of blocks. The flow-time of request r under a broadcast schedule equals
b(r)−a(r) where b(r) ≥ a(r)+1 is the earliest time slot after a(r) when all the pages requested in P(r)
have been completed. The objective is to minimize the average flow-time, i.e. 1

m ·
∑

r∈[m](b(r)− a(r)).
We assume that the pages all have size at least 1, and therefore the optimal value is also at least one.

Our algorithm is again based on first solving the ‘continuous’ version of the problem, and then
rounding this fractional schedule into a valid ‘integral’ schedule. Recall that an integral schedule is one
where only one page is transmitted in each time slot; however since pages have arbitrary sizes, complete
transmission of a page may occupy non-contiguous time-slots (i.e. preemptive schedule).

5.1 The Fractional Algorithm

In the fractional broadcast problem, the algorithm can transmit pages in a continuous manner. Here,
at any (continuous) time instant t, the algorithm is allowed to broadcast each page p ∈ [n] at rate xp(t),
such that

∑n
p=1 xp(t) ≤ 1 for all t. Again in the resource augmentation setting, we allow

∑
p xp(t) ≤ 1+ϵ

for all t. For any request r ∈ [m] and page p ∈ P(r), define

b(r, p) := inf

{
s :

∫ s

a(r)
xp(t)dt ≥ lp

}
,
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i.e. the earliest time after the release of request r when lp units of page p have been broadcast. The
completion time of any request r ∈ [m] is then:

b(r) := max
p∈P(r)

b(r, p),

i.e. the time after the release of request r when all pages requested by r have been completely broadcast.
Finally the flow-time of request r equals b(r)−a(r). Note that in this fractional broadcast notion, we do
not distinguish between the lp distinct blocks of each page p; we only require the schedule to broadcast
lp units for page p (possibly out of order). The issue with the order of blocks will be handled in the
rounding step later.

At any continuous time t, let N(t) denote the set of active requests, i.e. those which have not
yet been fractionally completed. Let N ′(t) denote the ϵ|N(t)| “most-recent” requests among N(t), i.e.
those with the latest arrival times. For each request r ∈ N ′(t), let Unfin(r, t) denote an arbitrary page
p ∈ P(r) that has not been fractionally broadcast to an extent lp since the arrival time a(r). The
algorithm then time shares among the pages {Unfin(r, t) | r ∈ N ′(t)}, i.e.

xp(t) := (1 + 4ϵ) · |{r ∈ N ′(t) : Unfin(r, t) = p}|
|N ′(t)|

, ∀ p ∈ [n].

Clearly,
∑n

p=1 xp(t) ≤ 1 + 4ϵ at all times t. For the sake of analysis, also define:

yr,p(t) :=

{ 1+4ϵ
|N ′(t)| if r ∈ N ′(t), and p = Unfin(r, t)

0 otherwise
, ∀ t ≥ 0

In particular, yr,p(t) is the share of request of r for page p, if we distribute the 1+4ϵ processing equally
among requests in N ′(t) and their pages.

5.2 Analysis of Fractional Broadcast

The analysis is very similar to that for the uniform broadcast scheduling case presented in Section 2.3.
We first describe the potential function, and then use it to bound the competitive ratio.

We now revisit the notation used in the unit-size setting (and appropriately redefine some of them).
Let Opt denote an optimal (offline) fractional broadcast schedule for the given instance, and let On
denote the fractional online schedule produced by the above algorithm. For any request r ∈ [m], let
b∗(r) denote the completion time of r in Opt, and let b(r) denote its completion time in On. For any
r ∈ [m], page p ∈ P(r), and times t1 < t2, define Y (r, p, t1, t2) :=

∫ t2
t1

yr,p(t)dt to denote the fractional
time that the online algorithm has devoted towards page p on behalf of request r in the interval [t1, t2]
(recall that this generalizes the previous definition of Y (·, ·, ·) to the setting with dependent requests).
Observe that for any request r ∈ [m], page p ∈ P(r) and t > b(r, p), we have yr,p(t) = 0. Thus
Y (r, p, t,∞) = Y (r, p, t, b(r, p)) for all r ∈ [m], p ∈ P(r), and t ≥ 0.

At any (continuous) time t and for any page p ∈ [n], let x∗p(t) denote the rate at which Opt broadcasts
p. We have

∑
p x

∗
p(t) ≤ 1 since the offline optimal is 1-speed. For page p ∈ [n] and times t1 < t2, let

X∗(p, t1, t2) :=
∫ t2
t1

x∗p(t)dt denote the amount of page p transmitted by Opt in the interval [t1, t2]. At
any continuous time t, let N(t) and N∗(t) denote the set of requests that are not completed in On and
Opt respectively.

We now define the contribution of any request r ∈ [m] and page p ∈ P(r) to the potential as follows.

zr,p(t) =
Y (r, p, t,∞) ·X∗(p, a(r), t)

lp
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The total contribution of request r is then zr(t) =
∑

p∈P(r) zr,p(t). Note that zr(t) ≥ 0 for any r and
t. Finally, the overall potential function is defined as

Φ(t) :=
1

ϵ
·
∑

r∈N(t)

rank(r) · zr(t),

where rank is the function which orders active requests based on arrival times (with the highest rank
of |N(t)| going to the request which arrived most recently and a rank of 1 to the oldest active request).
The following analysis is almost identical to the one in Section 2.3, and is presented for the sake of
completeness.

We will now show that the following inequality holds over all sufficiently small intervals [t, t + dt)
such that no requests arrive or complete in On during this interval. Time instants where requests arrive
or complete in On will be handled separately.

∆On(t) + ∆Φ(t) ≤ 2

ϵ2
∆Opt(t). (5.1)

Since we ensure that Φ(0) = Φ(∞) = 0, it is immediate to see that the total cost of the online
algorithm is competitive with the optimal offline cost, up to a factor of 2

ϵ2
.

Request Arrival: We show that ∆Φ = 0 (clearly this suffices, since we can assume that arrivals
happen instantaneously and hence ∆On = ∆Opt = 0). When a request r arrives at time t, we have
zr(t) = 0 as r is entirely unsatisfied by Opt. Thus, Φ does not change due to r. Moreover, as the
requests are ranked in the increasing order of their arrival, the ranks of other requests are unaffected
and hence ∆Φ = 0.

Request Completes under Online and leaves the set N(t): When a request r leaves N(t), by
definition its zr(t) reaches 0. Moreover, the rank of any other request r′ ∈ N(t) can only decrease. Since
zr′(t) ≥ 0 for any r′, the contribution due to these requests to the potential can only decrease. Thus
∆Φ ≤ 0. And again, at that instant, ∆On = ∆Opt = 0, and hence equation (5.1) holds.

Now consider any sufficiently small interval (t, t+ dt) when neither of the above two events happen.
There are two causes for change in potential:

Offline broadcast in (t, t + dt): We will show that ∆Φ(t) ≤ 1
ϵ |N(t)|dt. To see this, consider any

page p. The amount of page p transmitted by Opt in this interval is x∗p(t)dt. This broadcast of x
∗
p(t)dt

amount of page p causes the quantity zr,p(t) to increase for all those requests r that are alive and have
p ∈ P(r) unfinished in On at time t. Recall the definition of ‘completion time’ b(r, p) for page p of
request r. Define,

C(t, p) := {r ∈ [m] | p ∈ P(r), a(r) ≤ t < b(r, p)}

Now, since the rank of any alive request is at most |N(t)|, we get that the total increase in Φ over
the interval [t, t+ dt) due to Opt’s broadcast is at most:

∆Φ ≤ 1

ϵ
|N(t)| ·

∑
p

∑
r∈C(t,p)

Y (r, p, t,∞)x∗p(t)dt

lp
. (5.2)

We show that
∑

r∈C(t,p) Y (r, p, t,∞) ≤ lp for any page p. The proof is exactly as in the unit-sized

case. Let r′ = argmax{b(r, p) | r ∈ C(t, p)} be the request in C(t, p) for which page p is completed
last by On. Since page p for r′ is not completed until b(r′, p) and a(r′) ≤ t, it must be that On
broadcasts at most lp units of page p during [t, b(r′, p)]; otherwise b(r′, p) would be smaller. Hence
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∑
r∈C(t,p) Y (r, pt, b(r′, p)) ≤ lp. Observe that for all r ∈ C(p, t) and t ≥ b(r′, p), we have yr,p(t) = 0 since

b(r, p) ≤ b(r′, p). Thus
∑

r∈C(t,p) Y (r, p, t,∞) ≤ lp. Now plugging this into equation (5.2), we have that

∆Φ ≤ 1

ϵ
|N(t)| ·

∑
p

x∗p(t)dt ≤
1

ϵ
|N(t)| · dt (5.3)

Recall that
∑

p x
∗
p(t) ≤ 1 since Opt is 1-speed.

Online broadcast in (t, t + dt): Recall that On broadcasts page p at rate xp(t), and yr,p(t) is the
rate at which On works on page p for request r. Consider any fixed request r ∈ N ′(t) \ N∗(t), i.e. on
which On works but is completed by Opt. Observe that for every p ∈ P(r), X∗(p, a(r), t) ≥ lp since
Opt has completed request r. Thus zr(t) ≥

∑
p∈P(r) Y (r, p, t,∞). Note also that

∑
p∈P(r) yr,p(t) =

(1 + 4ϵ)/|N ′(t)|. Thus,

d

dt
zr(t) ≤ −

∑
p∈P(r)

yr,p(t) = −
1 + 4ϵ

|N ′(t)|
, for all r ∈ N ′(t) \N∗(t).

Furthermore, since each request that On works on in [t, t+ dt) has rank at least (1− ϵ) · |N(t)|, the
potential Φ increases at rate,

d

dt
Φ(t) ≤ −1

ϵ
(1− ϵ)N(t) · (1 + 4ϵ)

|N ′(t)|
(
|N ′(t)| − |N∗(t)|

)
.

Since (1− ϵ)(1 + 4ϵ) ≥ (1 + 2ϵ) for ϵ ≤ 1/4, we get

d

dt
Φ(t) ≤ −

(
1

ϵ
+ 2

)
|N(t)|+ 1

ϵ2
(1 + 4ϵ)|N∗(t)| ≤ −

(
1

ϵ
+ 1

)
· |N(t)|+ 2

ϵ2
· |N∗(t)|. (5.4)

Observe that d
dtOn(t) = |N(t)| and d

dtOpt(t) = |N
∗(t)|. Using (5.3) and (5.4),

d

dt
On(t) +

d

dt
Φ(t) ≤ |N(t)|+ 1

ϵ
|N(t)| −

(
1

ϵ
+ 1

)
|N(t)|+ 2

ϵ2
|N∗(t)|

≤ 2

ϵ2
|N∗(t)| =

2

ϵ2
· d
dt
Opt(t),

which proves Equation (5.1). Thus we obtain:

Theorem 5.1. For any 0 < ϵ ≤ 1
4 , there is a (1 + 4ϵ)-speed O

(
1
ϵ2

)
competitive deterministic online

algorithm for fractional broadcast scheduling with dependencies and non-uniform sizes.

5.3 Deterministic Online Rounding of Fractional Broadcast

In this section, we focus on getting an integral broadcast schedule from the fractional schedule (in the
no-cache model) in an online deterministic fashion. Formally, given any 1-speed fractional broadcast
schedule On, we will obtain a (1 + ϵ)-speed integral broadcast schedule Rnd (which gets to transmit an
additional unit of page every ⌈1ϵ ⌉ time-steps) such that

∑
r

(bI(r)− a(r)) ≤ O

(
1

ϵ

)
·
∑
r

(b(r)− a(r))
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where bI(r) (resp. b(r)) is the completion time of request r in the integral (resp. fractional) schedule.
An important issue in converting the fractional schedule to an integral one is that a valid broadcast
of any page p now requires the lp blocks of page p to be transmitted in the correct order. While this
is relatively easy to guarantee if one is willing to lose a factor of 2 in the speed up, see for example
the rounding step in [EP03, RS07], the algorithm here is much more subtle. The algorithm we present
below is a (non-trivial) extension of that discussed in Section 3.

Algorithm Preliminaries. The rounding algorithm maintains the following items in its queues.
Jobs. For any request r ∈ [m] and page p ∈ P(r), let job ⟨r, p⟩ denote the page p requested due to r.
The arrival time of job ⟨r, p⟩ is the arrival time a(r) of the corresponding request. We say that a job
⟨r, p⟩ is completed if the schedule contains a valid broadcast of page p starting after time a(r). The
completion time of job ⟨r, p⟩ in schedule Rnd (resp. On) is denoted bI(r, p) (resp. b(r, p)).
Tuples. The rounding algorithm maintains a queue of tuples (denoting transmissions of pages) of the
form τ = ⟨p, w, s, i⟩ where p ∈ [n] is a page, w ∈ R+ is the width, s ∈ Z+ is the start-time, and
i ∈ {1, · · · , lp} is the index of the next block of page p to transmit. At each time-slot, the deterministic
schedule broadcasts the current block of the tuple having least width.

Note the extension here from the scheme in Section 3; since page sizes are arbitrary, for each page
we also track the time s when the current transmission began for this page, and an index that tracks
the fraction of this page that has been transmitted since time s.

Algorithm 3 GenRounding(t)

1: initialize all jobs as unmarked when they arrive.
2: simulate the fractional online algorithm to obtain schedule On.
3: for any unmarked job ⟨r, p⟩ that completes under On at time t, i.e. b(r, p) = t, do
4: if there is a tuple τ = ⟨p, w, s, i⟩ ∈ Q of page p with s ≥ a(r) then
5: update the width of tuple τ to min(w, b(r, p)− a(r)).
6: else
7: insert new tuple ⟨p, b(r, p)− a(r),∞, 1⟩ into Q.
8: end if
9: end for

10: dequeue the tuple τ = ⟨p, w, s, i⟩ that has least width amongst all elements in Q.
11: broadcast block i of page p in this time-slot.
12: if broadcast of p corresponding to τ is just beginning (i.e. i = 1) then
13: set s = t, i.e. equal to the current time slot .
14: end if
15: if broadcast of p corresponding to τ is complete (i.e. i = lp) then
16: mark all jobs ⟨r′, p⟩ of page p having a(r′) ≤ s.
17: else
18: enqueue the modified tuple ⟨p, w, s, i+ 1⟩ into Q.
19: end if
20: repeat steps 10-19 if t is a multiple of ⌈1ϵ ⌉.

In order to bound the flowtime in schedule Rnd, we prove the following:

bI(r, p)− b(r, p) ≤ 3

ϵ
·
(
b(r, p)− a(r)

)
+

5

ϵ
, for all jobs ⟨r, p⟩ . (5.5)

Note that this upper bounds bI(r, p)−a(r) with an additional b(r, p)−a(r) term on the right hand side.
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Consider any fixed job ⟨r, p⟩ , and let t = b(r, p). If at this time t, job ⟨r, p⟩ is marked then
clearly bI(r, p) ≤ t = b(r, p) and Equation (5.5) holds. So assume that ⟨r, p⟩ is unmarked. In this case
(from the description of the algorithm) it must be that Q contains a tuple τ = ⟨p, w, s, i⟩ where width
w ≤ b(r, p)− a(r). Define,

tA := max {z ≤ t | at time z, either some request of width > w is dequeued, or Q is empty}

tB := min {z ≥ t | at time z, either some request of width > w is dequeued, or Q is empty}

Hence schedule Rnd always broadcasts some tuple of width at most w during interval T := (tA, tB),
and there are no tuples of width at most w at times tA and tB. Clearly bI(r, p) ≤ tB and b(r, p) = t ≥ tA;
so bI(r, p)− b(r, p) ≤ tB − tA and it suffices to upper bound tB − tA by the right hand side in (5.5).

Fix a page q ∈ [n], and let Πq denote the set of all tuples of page q that are broadcast (in even one
time-slot) during T . Let Nq = |Πq|. We now prove some claims regarding Πq.

Claim 5.2. For each τ ∈ Πq, the start-time s(τ) ≥ tA − w.

Proof. Since τ is broadcast at some time-slot during T , its width must be at most w at that time. Let
⟨r′, q⟩ denote the job that caused τ ’s width to be at most w. Then it must be that a(r′) ≤ s(τ) and
b(r′, q) ≤ a(r′) + w ≤ s(τ) + w. Observe that at time tA, queue Q contains no tuple of width at most
w. Thus b(r′, q) ≥ tA, i.e. s(τ) ≥ tA − w, which proves the claim.

Based on this claim, we index tuples in Πq as {τj | 1 ≤ j ≤ Nq} in increasing order of the start-
times, i.e. tA − w ≤ s(τ1) ≤ s(τ2) ≤ · · · s(τNq) ≤ tB. In the following, for page q and times t1 < t2, let
X(q, t1, t2) denote the amount of page q transmitted by fractional schedule On during interval (t1, t2).

Claim 5.3. For any 1 ≤ j ≤ Nq − 1, we have X(q, s(τj), s(τj+1)) ≥ lq.

Proof. Consider the time t′ when tuple τj+1 is first inserted intoQ. Since τj must have entered Q before
τj+1, it must be that s(τj) < t′ ≤ s(τj+1); otherwise τj+1 would not be inserted as a new tuple. Suppose
τj+1 is inserted due to the completion of job ⟨r′, q⟩ in On. Then it must also be that a(r′) > s(τj);
otherwise job ⟨r′, q⟩ would just have updated the width of τj and not inserted a new tuple. Clearly
b(r′, q) = t′, and hence X(q, s(τj), s(τj+1)) ≥ X(q, a(r′), b(r′, q)) ≥ lq.

Claim 5.4. X(q, tA − w, tC) ≥ lq, where tC = max{s(τ1), tA + w}.

Proof. Let ⟨r′, q⟩ denote the first job that caused τ1’s width to be at most w (recall from Claim 5.2,
there must be such a job). Again, it must be that b(r′, q) ≥ tA and so a(r′) ≥ tA −w. We consider two
cases:

1. s(τ1) ≤ tA. In this case, we have a(r′) ≤ s(τ1) ≤ tA and so b(r′, q) ≤ a(r′) + w ≤ tA + w. Thus
X(q, tA − w, tA + w) ≥ X(q, a(r′), b(r′, q)) ≥ lq.

2. s(τ1) > tA. Since start-time s(τ1) of tuple τ1 lies in T , its width at time s(τ1) is at most w. Hence
b(r′, q) ≤ s(τ1) for job ⟨r′, q⟩. Thus in this case, X(q, tA − w, s(τ1)) ≥ X(q, a(r′), b(r′, q)) ≥ lq.

Since tC = max{s(τ1), tA + w}, the claim follows by the above cases.

17



Adding the expressions in Claims 5.3 and 5.4, we obtain:

Nq · lq ≤
Nq−1∑
j=1

X(q, s(τj), s(τj+1)) +X(q, tA − w, tC)

≤ X(q, tA − w, s(τ1)) +

Nq−1∑
j=1

X(q, s(τj), s(τj+1)) +X(q, tA − w, tA + w)

= X(q, tA − w, s(τNq)) +X(q, tA − w, tA + w)

≤ X(q, tA − w, tB) +X(q, tA − w, tA + w)

Now summing this inequality over all pages q ∈ [n],

n∑
q=1

Nq · lq ≤
n∑

q=1

X(q, tA − w, tB) +
n∑

q=1

X(q, tA − w, tA + w) ≤ tB − tA + 3w + 2, (5.6)

where the last inequality follows from the fact that On is 1-speed.
On the other hand, Rnd is always busy during T : it is always broadcasting some tuple in

∪n
q=1Πq.

Since Rnd has 1 + ϵ speed, we obtain:

n∑
q=1

Nq · lq ≥ (1 + ϵ) · (tB − tA)− 3.

Combining this with (5.6), we have tB−tA ≤ 3
ϵ ·w+ 5

ϵ , which implies (5.5). Thus we obtain Theorem 1.3.
Remark: Our rounding algorithm can be modified so that the amortized number of preemptions per

page is O(log n). That is, if a schedule transmits k pages over the entire time horizon, then the number
of preemptions is at most O(k logn). To do this, recall that in the current algorithm if a page p begins
transmission, then its width can only decrease over time until this page is completely transmitted. To
guarantee logarithmic number of amortized preemptions, we can modify the algorithm so that it favors
the transmission of the page it is currently transmitting and shifts to another page only if the width of
that page is less than half the width of the current page. It can be shown that number of preemptions
decreases dramatically and the current analysis carries through with some minor modifications.

5.4 The Necessity of Preemption

We now give an example which illustrates the necessity of preemption in the case of non-uniform pages.
In particular, we show that if preemption is disallowed, then for any arbitrarily large parameters b and
c, there is an adversarial instance such that any online algorithm is at least b competitive even if it has
a speed up of factor c.

Set T = 16c4b2 and w = 2bcT 3. Consider the following adversarial input: At time t = 0, there is
one request for page p0 of size 2cw. Then, at each time slot iw for i = 1, 2, 3, . . ., there are cbi requests
for page pi, where page pi has size ⌊ w

cbi3
⌋. The adversary stops giving any requests when (i) the online

algorithm completes broadcasting page p0, or (ii) the index i reaches T .
In the first case, the broadcast of page p0 must have spanned 2w consecutive time slots (even with

c speed). Let j ∈ Z+ be the smallest index such that p0 is being broadcast at time jw; note that p0
is broadcast at least until time jw + w (and at most till jw + 2w). Moreover, requests stop arriving
after time (j + 1)w. Note that requests for page pj released at time jw wait for at least w time slots,
incurring flow time at least cbjw. On the other hand, an adversary (that has 1-speed) could broadcast
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each page pi (for i = 1, . . . , j +1) as soon as its requests arrive at time iw; this is feasible since the size
of each pi is at most w. Then the adversary schedules page p0 from time (j+2)w to (j+2+2c)w. The
cost it incurs would be at most:(

j+1∑
i=1

cbi · w

cbi3

)
+ (j + 2 + 2c)w ≤ (j + 4 + 2c)w

which is at least Ω(b) times better than flow time of the online algorithm.
In the other case, if the online algorithm has not broadcast p0 until time Tw, then its flow time

is at least Tw. On the other hand we claim that there is a 1-speed offline solution with flow time
at most 16c4bw ≤ 1

b · Tw. Consider the solution that broadcasts p0 in the first 2cw time-slots, and
then the pages {1, . . . , 2c} that were released while p0 was being broadcast. Since the sum of their
sizes

∑2c
i=1(w/cbi

3) ≤ 2
bcw ≤ w, it follows that all the pages p1, p2, . . . , p2c can be broadcast in the

interval [2cw, 2cw+w], right after completing p0. Therefore, the requests corresponding to p1, p2, . . . , p2c
incur a flow time of at most (2c + 1)w, and all subsequent requests (for pages p2c+1, p2c+2, . . .) incur
a collective waiting time of at most

∑T
i=2c+1 cbi · (w/cbi3) ≤ 2w, since each of these pages can be

broadcast immediately after its requests arrive. The cost of this offline solution is therefore at most
2cw + cb(1 + 2 + . . .+ 2c) · (2c+ 1)w + 2w ≤ 16c4bw, which implies the claim.

6 Broadcast Scheduling to Non-Clairvoyant Unicast Scheduling

The non-clairvoyant unicast model (stated in a more general form in [EP03]) is the following. The
input is a set of n jobs that are to be executed on a single processor. The jth job has the following
parameters: an arrival time denoted by aj , and a sequence of phases ⟨Jj,1, Jj,2, . . . , Jj,qj ⟩. Each phase is
an ordered pair ⟨wj,q,Γj,q⟩ where wj,q denotes the amount of work and Γj,q denotes its parallelizability
(or the rate at which work is processed at for any phase of a job). That is, each phase can either be
fully parallel, that is, a phase where Γ(β) = β, or fully sequential, that is, Γ(β) = 1 for every β ∈ [0, 1].
Therefore, sequential work completes work at a rate of 1 even when absolutely no processing is allocated
to it. Notice that we are only interested in these two extremities, although the original motivation for
introducing speed-up curves was that different parts of code are parallelizable to different degrees.

A non-clairvoyant unicast scheduling algorithm is informed of the arrival of a new job j at time aj ,
but is not aware of the nature of its phases (or the work to do in each phase). At each time instant
t, it must partition the effective processing power between the jobs. All jobs begin in their first phase
when they arrive. If a job j is executing a parallelizable phase q, it progresses from phase q to q + 1
at the first time t such that the total processing time allocated to j since the time it began phase q is
at least wq. On the other hand, if q is a completely sequential phase for j, the job stays in phase q for
a duration of exactly wq regardless of the amount of processing time the algorithm spends on j before
moving to phase q + 1. The completion time of a job Cj is defined as the time at which the final phase
of j completes. Its flow time is then, by definition, Cj − aj . Also, for any job j, the non-clairvoyant
algorithm is only notified of job arrival and completion, and not notified of which phase phase it is in
or how long each phase is, etc.

In [EP03], Edmonds and Pruhs show that the broadcast problem can be reduced to this non-
clairvoyant unicast scheduling problem (in fact to the special case where each job has a serial phase and
at most one parallel phase), provided we have a factor 2 speedup. In the following, we show that if we
care only about a fractional broadcast schedule (which can later be “rounded” online into an integer
broadcast with (1 + ϵ)-speedup), then we can avoid the loss of the factor 2.
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The reduction is almost identical to the one in [EP03], except for modifications that utilize our
definition of fractional broadcast (that differs from [EP03]). In the following, let I denote an instance
of the online broadcast scheduling problem, and A be a deterministic non-clairvoyant algorithm for the
“sequential-parallel unicast” problem. We now define B, an online algorithm for the fractional broadcast
problem which, using A as an oracle, decides which pages to broadcast at any time. In the process, we
also define the instance I ′ for the unicast problem that A solves.

Algorithm 4 Reducing fractional broadcast to non-clairvoyant scheduling

1: for each continuous time instant t do
2: for each request r in I with a(r) = t do
3: create new job j(r) for I ′ and inform A of its arrival.
4: end for
5: set xp(t)←

∑
r:p(r)=p yj(r)(t). Here y denotes the unicast schedule output by A and x defines the

broadcast schedule for B.
6: for each request r in I with

∫ t
a(r) xp(r)(ℓ)dℓ = 1 do

7: set C(r)← t, i.e. r is completed in I. Note that j(q) is not yet completed in I ′.
8: end for
9: for each job j(r) in I ′ with yj(r)(t) > 0 and C(r) < t do

10: inform A that job j(r) is completed.
11: end for
12: end for

We then show that the following inequalities hold.

Opt(I ′) ≤ Opt(I) (6.1)

B(I) ≤ A(I ′) (6.2)

Above Opt(I) denotes the optimal integral broadcast schedule for I. Notice that if A were an s-speed
c-competitive algorithm for I ′, then we would get that B is an s-speed fractional broadcast that is
c-competitive w.r.t. the optimal integral broadcast. We now establish these inequalities.

To complete defining the instance I ′, we need to assign phases (and processing requirements) to
each job. To this end, we compare Opt(I) to the schedule B(I) created by running our algorithm. For
any request r in I let C∗(r) denote its completion time under Opt(I); i.e. page p(r) is broadcast in the
interval (C∗(r)− 1, C∗(r)]. The job j(r) in I ′ corresponding to request r in I is defined as follows:

• Type 1 jobs. If C(r) < C∗(r) then j(r) has only a serial phase of duration C(r)− a(r).

• Type 2 jobs. If C(r) ≥ C∗(r) then j(r) has a serial phase of duration C∗(r)− a(r)− 1 followed by

a parallel phase with work
∫ C(r)
C∗(r)−1 yj(r)(t)dt+ δ. Here δ > 0 is infinitesimally small.

The following observation is immediate by the algorithm description.

Observation 6.1. For any request r, its fractional completion time in B(I) is at most the completion
time of the corresponding job j(r) in the schedule created by A(I ′).

This is because, if a request r (in the broadcast instance I) is fractionally completed in B at time
C(r), we declare completion of the corresponding job j(r) in A only at the earliest time after C(r) when
A schedules j(r) to some infinitesimally small extent δ. The above observation immediately gives us
inequality 6.2, and we now turn our attention to proving that equation 6.1 holds.
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Lemma 6.2. Let Opt(I) be any optimal integral schedule for the broadcast instance. Then there exists
a schedule Sch(I ′) for the unicast instance such that, for any request r, the flow time of job j(r) in
Sch(I ′) is at most the flow time incurred by r in Opt(I). Thus Opt(I ′) ≤ Opt(I).

Proof. Firstly observe that in any schedule for I ′, the flow time for any type 1 job j(r) equals C(r)−
a(r) < C∗(r)−a(r), i.e. it is at most the flow time of request r under Opt(I). Thus it suffices to bound
the flow-time for type 2 jobs.

We create schedule Sch(I ′) for I ′ that at any integral time slot (t − 1, t] does the following. Let p
denote the page broadcast by Opt(I) during (t − 1, t] and C(t, p) the set of outstanding requests that
were satisfied by this broadcast of page p. For each r ∈ C(t, p) where job j(r) is of type 2, schedule∫ C(r)
C∗(r)−1 yj(r)(ℓ)dℓ+ δ units of j(r), i.e. all the parallel work of j(r).

We now show that Sch(I ′) is a feasible (1 + n δ)-speed schedule. Taking δ to be infinitesimal, we
would obtain a 1-speed schedule. To show feasibility, consider the total work packed in any integral

time interval (t− 1, t]. From the above it is at most
∑

r∈C(p,t)

∫ C(r)
C∗(r)−1 yj(r)(ℓ)dℓ+ n δ.

For any r ∈ C(t, p), let Wr :=
∫ C(r)
C∗(r)−1 yj(r)(ℓ)dℓ =

∫ C(r)
t−1 yj(r)(ℓ)dℓ. We claim that

∑
r∈C(t,p)Wr ≤ 1,

which implies the feasibility of Sch(I ′). Let request r′ := arg maxr∈C(t,p)C(r). Since r′ is alive during
[t− 1, C(r′)), it must be that at most one unit of page p is broadcast by B during [t− 1, C(r′)). Hence

the total (parallel) work done by A on jobs corresponding to C(t, p) is
∑

r∈C(t,p)

∫ C(r′)
t−1 yj(r)(ℓ)dℓ ≤ 1.

For all r ∈ C(t, p), since C(r) ≤ C(r′) we obtain Wr ≤
∫ C(r′)
t−1 yj(r)(ℓ)dℓ, which implies the desired claim.

Additionally, note that Sch(I ′) performs parallel work on any type 2 job j(r) only after time C∗(r)−1,
i.e. after the serial phase of j(r). Thus Sch(I ′) is indeed feasible.

Next, we argue that the flow time for each type 2 job j(r) in Sch(I ′) is at most the flow time for r
in Opt(I). Let t = C∗(r). By the above definition, the entire parallel work of j(r) is completed during
(t− 1, t]. Thus its flow time in Sch(I ′) is at most t− a(r) = C∗(r)− a(r) which equals the flowtime of
r under Opt(I). Hence we obtain Opt(I ′) ≤ Sch(I ′) ≤ Opt(I).

Thus we have proved:

Theorem 6.3. If there is a non-clairvoyant s-speed c-competitive deterministic algorithm for unicast
scheduling, then there is an s-speed c-competitive (w.r.t. optimum integral schedule) algorithm for
fractional broadcast scheduling.

Combining this reduction with the (1 + ϵ)-speed O(1/ϵ2)-competitive online algorithm LAPS for
unicast scheduling [EP09], and the online rounding algorithm for fractional broadcast (Theorem 3.1),
we obtain an alternate proof of Theorem 1.2.

7 Broadcast Scheduling with Disjunctive Requirements

In this section, we consider another generalization (disjunctive broadcast scheduling) of the usual broad-
cast problem, where each request r corresponds to a subset S(r) of pages and a request is satisfied when
any of the pages in S(r) is broadcast. This is different from broadcast scheduling with dependen-
cies [RS07] since the request’s requirement is a disjunction of page-broadcasts, as opposed to a conjunc-
tion. We observe that (assuming P ̸=NP) the offline version of this problem admits no sub-polynomial
approximation guarantee unless the algorithm is allowed a speed-up of Ω(log n).

Theorem 7.1. Let m denote the number of requests. Any o(m1/3)-approximation algorithm for dis-
junctive broadcast scheduling with ρ speed-up implies a 4ρ-approximation algorithm for set-cover.
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Proof. The proof is a simple reduction from set-cover. Let I denote an instance of set-cover with
universe [N ] and sets {Ai ⊆ [N ]}Mi=1. We construct an instance J of disjunctive broadcast scheduling

using T := N2 disjoint ‘copies’ of instance I as follows. There are n := M · T pages denoted {Aj
i | i ∈

[M ], j ∈ [T ]} and m := N · T requests denoted {rjk | k ∈ [N ], j ∈ [T ]}. For each j ∈ [T ] and k ∈ [N ],

we set S(rjk) := {A
j
i | k ∈ Ai, i ∈ [M ]}. Note that requests and pages naturally correspond to T disjoint

instances of I.
Let κ ∈ {1, · · · ,M} be a guess of the optimal set-cover value for I (we will try all values). The

arrival times of the requests are then: a(rjk) = (j−1) ·κ for all k ∈ [N ] and j ∈ [T ]. Note that there is a
1-speed schedule for J (using the optimal set-cover for I) having average flow-time at most κ. Suppose
that there is some o(m1/3)-approximation for disjunctive broadcast scheduling with speed-up ρ. Since
T
9N = O(m1/3), this is also a T

9N -approximation. Let β denote the resulting schedule for instance J ;
we now show how this implies a small set-cover for I. Consider the first κT time slots, and let B
denote the set of pages broadcast by β during these. Since β is ρ-speed, we have |B| ≤ ρκT . For each
j ∈ {1, · · · , T/2}, define Bj := {i ∈ [N ] | Aj

i ∈ B}. Let T ′ ⊆ {1, · · · , T/2} denote the indices j ≤ T/2
such that |Bj | ≤ 4ρκ. Clearly |T ′| ≥ T/4. We claim that one of {Bj | j ∈ T ′} is a set-cover for I.
Suppose (for a contradiction) that this is not the case. Then, for each j ∈ T ′ there is at least one
request rjk (some k ∈ [N ]) that is unsatisfied until time κT ; since j ≤ T/2 this request rjk has flow-time
at least κT/2. Thus the average flow-time of schedule β is at least 1

NT · |T
′|κT/2 ≥ κT

8N . However this
contradicts the fact that schedule β is a T

9N -approximation. Since each Bj (for j ∈ T ′) has size at most
4ρκ, we obtain a set-cover for I that is a 4ρ-approximation.
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