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Abstract. We present polynomial-time approximation algorithms for some degree-bounded
directed network design problems. Our main result is for intersecting supermodular connectivity
requirements with degree bounds: given a directed graph G = (V, E) with non-negative edge-costs,
a connectivity requirement specified by an intersecting supermodular function f, and upper bounds
{av, by }yey on in-degrees and out-degrees of vertices, find a minimum-cost f-connected subgraph of
G that satisfies the degree bounds. We give a bi-criteria approximation algorithm for this problem
using the natural LP relaxation, and show that our guarantee is the best possible relative to this
LP relaxation. We also obtain similar results for the (more general) class of crossing supermodular
requirements. In the absence of edge-costs, our result gives the first additive O(1)-approximation
guarantee for degree bounded intersecting/crossing supermodular connectivity problems.

We also consider the minimum crossing spanning tree problem: Given an undirected edge-
weighted graph G, edge-subsets {E£;}*_,, and non-negative integers {b;}¥_,, find a minimum-cost
spanning tree (if it exists) in G that contains at most b; edges from each set ;. We obtain a +(r —1)
additive approximation for this problem, when each edge lies in at most r sets. A special case of this
problem is degree-bounded minimum spanning tree, and our techniques give a substantially shorter
proof of the recent +1 approximation of Singh and Lau [18].

Key words. approximation algorithms, network design, directed graphs

AMS subject classifications. 68W25, 05C85, 68R10, 90C05

1. Introduction. The problem of finding a minimum spanning tree that sat-
isfies given degree bounds on vertices has received much attention in the field of
combinatorial optimization recently. This problem was first studied by Fiirer and
Raghavachari [6]. Their motivation was to find a broadcast tree in a communication
network along which the maximum load of any node, proportional to its degree, is
minimized. Assuming unit edge-costs, they gave a local-search based polynomial-time
algorithm for computing a spanning tree with maximum degree at most A*+1 as long
as there exists a spanning tree with maximum degree at most A*. This is essentially
the best possible since computing the optimum is NP-hard.

Earlier in this decade, a variety of techniques were developed in attempts to
generalize this result to the case of arbitrary edge-weights. Ravi et al. [17], using a
matching-based augmentation technique, gave a bi-criteria approximation algorithm
that violates both the cost and the degree bounds by a multiplicative logarithmic
factor. Konemann and Ravi [12] used a Lagrangian relaxation based method to get
O(1) approximation on the cost while violating the degrees by a constant factor plus
an additive logarithmic term. Chaudhuri et al. [3] based their algorithms on the
augmenting-path and push-relabel frameworks from the maximum flow problem and
obtained either logarithmic additive violation or constant multiplicative violation on
degrees. In a recent break-through result, Goemans [8] presented an algorithm, based
on matroid intersection techniques, that computes a spanning tree with cost at most
that of the optimum and with degrees at most the bounds plus 2. This line of research
recently culminated in the “best possible” plus 1 result of Singh and Lau [18]. Their
algorithm used an iterative rounding approach of Jain [9] while obtaining a spanning
tree with cost at most that of the optimum while violating the degrees by at most an
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additive +1 term.

In this paper, we consider directed network design problems with either in-degree
or out-degree (or both) constraints on the vertices. Directed graphs naturally arise
in communication networks. In fact our original motivation was a problem that arose
at IBM in the context of maximizing throughput in peer to peer networks. Here, we
are given a network where a root node r wishes to transmit packets to all the nodes
in the network. However, each node has limited network resources which determines
how many packets it can transmit per unit time. It turns out that computing the
maximum achievable throughput of this network is equivalent to determining the
number of r-arborescences that can be packed in the network subject to out-degree
bounds.

As we discuss below, the directed setting turns out to be substantially harder
than the undirected setting, and much fewer results are known in this case. We begin
with some relevant definitions.

1.1. Preliminaries. A family A of subsets of V is intersecting (resp. crossing)
if ST € Awith SNT # 0 (resp. SNT,V\(SUT) # 0) implies SNT,SUT €
A. A set function f : A — Zy is called intersecting supermodular (resp. crossing
supermodular), if for any S,T € A with SNT # ) (vesp. SNT,V\ (SUT) # 0), it
holds that f(SUT) + f(SNT) > f(S)+ f(T).

A family of sets {S1,..., Sk} is called laminar if for every two sets, either they
are disjoint or one is contained in the other; i.e., for every 1 < 4,5 < k, ¢ # j, either
SiﬂSj:(Z)OI‘SiCSj or SjCSi.

For a directed graph G' = (V, E) and a subset S of vertices, we use . (S) (resp.
(5&5(5)) to denote the set of edges entering (resp. leaving) S. When the graph G is
clear from the context, we drop the subscript G. Consider any non-negative real-value
assignment z : £ — R to the edges; we use z(§7(S)) (resp. x(67(5))) to denote the
total z-value of the edges entering (resp. leaving) S.

Given a directed graph G = (V, E) and an intersecting (or crossing) supermodular
set function f: A — Z4 for some set-family A, a subgraph H = (V, E’) of G is said
to be f-connected or satisfy requirement f if |6;(S)| > f(S) for every S € A. In
the basic directed network design problem [5, 15, 7], given an edge-weighted graph
and an intersecting or crossing supermodular set function f, the goal is to compute
the minimum-cost f-connected subgraph. In the degree-bounded variant of network
design, there are additional constraints bounding the in-degree and out-degree at each
vertex. The degree-bounded directed network design problem is the following: given a
directed graph G = (V, F) with edge-costs ¢ : E — Ry, an intersecting (or crossing)
supermodular set function f and integers {a,, b, },cv, compute a minimum-cost f-
connected subgraph in which each vertex v has in-degree at most a,, and out-degree at
most b,. The intersecting supermodular requirements are general enough to include
the problem of packing k-edge disjoint arborescences, and choosing the minimum-
cost edges to increase the rooted connectivity of a directed graph [5, 15]. The cross-
ing supermodular requirements include the problem of computing a minimum-cost
k strongly-connected spanning subgraph and several other problems on graphs and
hypergraphs, a detailed discussion of which can be found in [7].

We shall consider bi-criteria approximation algorithms for which the output may
violate the degree-constraints to some extent and its cost is compared to the optimal
solution that does not violate any constraints. For functions «, 8 : Z — Z, and value
p > 1, an algorithm for degree-bounded directed network design is called an («, 3, p)
approximation if for each instance (G, ¢, f, {ay, by }vev ), the algorithm returns an f-
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connected subgraph H of cost at most p times the optimal f-connected subgraph
(that satisfies degree-constraints), with |65 (v)| < a(a,) and |65 (v)| < B(b,) for all
veV.

1.2. Our results and previous work.

Degree-bounded arborescence problem (no costs). Let G = (V, E) be a
directed graph with root r, and let b, be the bounds on out-degree for each vertex
v. The goal in the degree bounded arborescence problem is to compute an out-
arborescence from r that satisfies the degree bounds or declare that it is infeasible.
Since in any arborescence, every vertex except the root has in-degree exactly one,
we do not consider bounds on in-degree here. This problem was first considered by
Fiirer and Raghavachari [6] who gave a polynomial time algorithm to compute an
arborescence that violates the degree bound by at most a logarithmic multiplicative
factor. Subsequently Klein et al. [11] gave a quasi-polynomial time algorithm with
degree violation (1 + €)b, + O(log, . n) for any € > 0. Their algorithm starts with
a solution and successively applies local improvement steps to reduce high degrees.
Recently, Lau et al. [13], using an iterative rounding technique, obtained a polynomial-
time algorithm that computes an arborescence with degrees at most 2 - b, + 2. We
obtain the first result with only additive violation in the degree bounds: an algorithm
that constructs an arborescence with degrees at most b, + 2. Call a directed graph
k-arc-strong if every directed cut has at least k edges. Our techniques also imply the
following result: any k-arc-strong graph G contains an arborescence T with 07 (v) <

+
[SGT(U)] + 2 for all vertices v in GG. This almost settles the following conjecture, for
which the previously best known result [1] was the existence of an arborescence T
. 5t (v
with 67 (v) < 50623 + [logy k.
CONJECTURE 1 (Bang-Jensen et al. [1]). Let G be k-arc-strong directed graph.

+
There ezists a spanning arborescence T with 57 (v) < w + 1 for all vertices v in

G.

General connectivity requirements with degree bounds. We consider the
network design problem in directed graphs where the connectivity requirement is
specified by an arbitrary intersecting supermodular function [5], and there are both
in-degree and out-degree bounds {(a,, by,)},ecy on vertices. The goal here is to find a
minimum-cost subgraph (if it exists) that satisfies the connectivity requirement and
degree bounds on vertices. The previously best known results for this problem are a
(3a, +4, 3b, +4,3) approximation in general, and a (2a,, + 2, 2b, +2, 2) approximation
for the special case of 0-1 valued functions [13]. We extend and improve this result by
giving a ([12-] +4, [ + 4, 1) approximation algorithm for every e € [0, 1]. Here
we use the convention that 1/0 = co. Setting € = 0, gives the first additive (plus 4)
guarantee for the unweighted (no edge-costs) versions of the these problems. As in
Lau et al. [13], our algorithm is based on rounding the fractional solution to a natural
linear relaxation of the problem (described later); hence the cost guarantee is relative
to the optimal value of this LP relaxation.

It also turns out that the above trade-off between the cost blowup and the degree-
bound violation, is the best possible using the natural LP relaxation. In fact the
integrality gap holds even for the simpler degree-bounded arborescence problem. This
suggests that computing low-cost arborescence subject to degree bounds might be an
inherently harder problem in the directed setting unlike the undirected case (where
the optimal (b, + 1, 1) result was obtained via the LP [18]).
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For degree-bounded network design under the more general crossing supermodular
connectivity requirements, Lau et al. [13] gave a (3a, + 4, 3b, + 4, 3) approximation
algorithm. Our approach gives for any € € [0, 3], a ([ 2 1+4+ frnax: [ 122 ] +4+ frnax, 2)
approximation algorithm, where fp,q, = maxgcy f(S) is the maximum connectivity
requirement. Again setting e = 0, we obtain a plus (fiq. +4) additive approximation
for the unweighted case. For example, this implies a +6 additive approximation for

the degree-bounded 2-strongly-connected subgraph problem.

Minimum crossing spanning tree problem (MCSP). Given an undirected
graph G = (V, E), costs ¢, > 0 on the edges e € E, subsets of edges F; C E for
1 <4 <k, and integers b; > 0 for 1 < i < k, the MCSP is to find a minimum-
cost spanning tree (if it exists) in G that contains at most b; edges from set E; for
1 <4 < k. We obtain a polynomial-time algorithm for this problem that computes a
spanning tree of cost at most the optimum, containing at most b; + r — 1 edges from
E; (for all 1 < i < k); Here r = maxeeg|{i | e € E;,1 < i < k}|, is the maximum
number of sets {E;} that any edge lies in. This significantly improves on the results
of Bild et al. [2], who gave an O(rlogn) multiplicative guarantee on the number of
edges chosen in sets E;.

We mention two special cases of our algorithm for MCSP. If the sets E; are
pairwise-disjoint, our algorithm computes an optimal solution. In this case, the MCSP
problem can be cast as finding a minimum-cost basis in the graphic matroid for G
that is independent in a partition matroid. This problem is an instance of the matroid
intersection problem which is known to be solvable in polynomial time [4, 14]. As
another example, if F; denotes the set of edges incident to vertex ¢ and b; denotes the
degree bound on vertex i, the MCSP problem reduces to the degree-bounded minimum
spanning tree problem. Our algorithm matches the best possible +1 bound for this
problem obtained by Singh and Lau [18]; we note that our proof of Theorem 6.1
is considerably simpler than that in [18]. In fact, Theorem 6.1 readily extends to a
generalization of MCSP: that of computing a minimum-cost basis in a matroid subject
to ‘degree bounds’. This problem was recently considered by Kirdly et al. [10].

1.3. Our approach. Our algorithms are based on the iterative rounding tech-
nique of Jain [9], and an extension of it (iterative relaxation) used in Lau et al. [13]
and Singh and Lau [18] in the context of degree-bounded network design. The itera-
tive rounding technique introduced in [9], which has been extensively used in network
design problems, proceeds as follows. First the problem is formulated as an integer
program, and an LP relaxation is obtained. An extreme point solution, a.k.a. basic
feasible solution, to this linear program is then computed. The extreme point solutions
are proved to exhibit useful structural properties, for example, the existence of a vari-
able with near-integral value. Such variables are then rounded up to integral values
and the residual problem is solved iteratively. For example, Jain [9] established the
existence of % edges in every extreme point to the survivable network design problem,
and obtained a 2-approximation by iteratively rounding such variables.

Iterative relazation was introduced in [13, 18] as an extension of the above method,
that is useful for degree-bounded network design problems. Here the idea is again
to work with a suitable LP relaxation, and prove some properties of extreme point
solutions. In each iteration, one of the following steps is performed: (1) Round a
near-integral variable (as above), or (2) drop some degree constraint while bounding
the violation of this constraint in the subsequent steps. The difference from iterative
rounding is the second step (degree relaxation). For example, Singh and Lau [18]
use a clever counting argument to show that in any extreme point solution to their
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LP formulation of degree-bounded MST, either there is an integral edge-variable, or
the degree constraint of some vertex can be dropped without violating it by more
than 41 in the subsequent steps. In each iteration, the algorithm either sets such an
edge to its integral value or drops such a constraint; thereby obtaining a (b, + 1, 1)
approximation.

Challenges in extension to the directed case. In the directed setting, the
arborescence polytope (without degree bounds) has a linear formulation using the cut-
covering constraints; it is not known to have a formulation similar to the edge-subset
formulation for spanning-trees, which was used in [18] for the undirected case. One
difficulty in working with the cut formulation is that when used along with degree
bounds, the cut-constraints may alone contribute 2|V| — 1 tight linearly-independent
constraints in a basic solution. Using some additional arguments, Lau et al. [13] show
that either there exists an edge e with x. > % or there is a vertex v with small degree
in the support. Based on this, their algorithm iteratively does one of the following:
round edge e to 1 or drop the degree-constraint of vertex v. Since this algorithm
rounds %-edges to 1, the degree bounds may be violated by a multiplicative factor of
two.

We overcome these difficulties by introducing additional iterative rounding steps
and stronger counting arguments. We continue to use the idea of dropping degree
constraints from Lau et al. [13]; so at any iteration the degree bounds are present
only at a subset W of the vertices. The degree-bound relaxation step used in Lau et
al. [13] only considers vertices that have a small degree in the support. We extend this
step by considering all vertices that have small spare (i.e., difference of support degree
and fractional degree). We note that such a relaxation step was also used in the +1
algorithm for bounded degree MST [18], but not in the directed counterpart [13]. In
addition, we also use some new relaxation steps that involve treating edges leaving W
vertices and non-W vertices differently; this is the basis of the cost/degree trade-off.
Finally, as is the case with iterative rounding algorithms, we need a careful counting
argument to show that progress is possible at every iteration. These arguments [9,
15, 13, 18] usually involve a token-assignment scheme that first distributes tokens
to variables and then extracts tokens from constraints. The novelty in our counting
arguments is that the token-assignment to each variable depends on the fractional
value of that variable in the basic solution. To the best of our knowledge, the earlier
proofs based on iterative rounding used only integral token-assignment schemes.

We note that our token-assignment scheme is quite simple and lends itself to global
counting arguments. In this paper we have applied them to (both directed and undi-
rected) degree bounded network design problems. Subsequent to this work, Nagara-
jan et al. [16] employed a similar token-assignment scheme for the undirected Steiner
network problem to obtain a substantially simpler proof of Jain’s 2-approximation
algorithm [9].

1.4. Organization. The rest of the paper is organized as follows. In Section 2,
we consider the unweighted degree-bounded arborescence problem. This result con-
tains the basic ideas used in the rest of the paper as well. In Section 3, we consider
degree-bounded network design under intersecting supermodular connectivity require-
ments with costs. We then show in Section 4, that this algorithm can be used to
solve the more general degree-bounded network design problem, with crossing super-
modular connectivity requirements. In Section 5, we complement our approximation
guarantee by showing a tight integrality gap of the natural LP relaxation for even
the minimum-cost degree-bounded arborescence problem. In Section 6, we study the
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Set F — () and W «— V.
If P(E,F,W) is infeasible, output “infeasible”.
Repeat while E \ F # ()
1. Compute a basic feasible solution x to P(E, F,W).
2. Remove from F all edges e € E'\ F with z. = 0.
3. Add to F all edges e € E'\ F with z, = 1.
4. For all v € W such that there are at most b, — |6} (v)|+2 edges leaving
vin E\ F,
(a) Remove v from W.
(b) Add to F all out-going edges from v in E'\ F.
Output any (out-)arborescence rooted at r in F.

FiG. 2.1. Algorithm for degree-bounded arborescence

undirected minimum crossing spanning tree problem.

2. Degree-bounded arborescence problem. In this section, we prove the
following result.

THEOREM 2.1. There is a polynomial time algorithm that given a directed graph
with out-degree bounds {b, },ev, either constructs an (out-)arborescence such that any
vertex v has out-degree at most b, +2 or shows that no arborescence satisfies the degree
bounds exactly.

Our algorithm, given in Figure 2.1, proceeds in several iterations. In a general
iteration of the algorithm, we denote E to be the candidate set of edges, initially
containing all the edges. The set F© C E denotes the edges that we have already
picked in our solution and the set W C V denotes the vertices on which the out-
degree bounds constraints are present. Initially, F' = () and W = V. In any iteration,
we work with the following linear program with variables z. for e € E'\ F. Let
E' = E\ F. For brevity, we use 6~ (resp. 6*) to denote &5, (resp. §7,).

P(E,F,W):
>1—16z(S)] VS CV\{r} (cut-constraints)
5T (v)) < by, — |05 (v)] Vv €W (degree-constraints)
<z, <1 Vee E'=E\F

z(67(5))
(
0

In the beginning of every iteration, we compute a basic feasible solution = in the
polytope P(E,F,W) as described in Jain [9]. We then update the sets E, F, and
W as explained in Figure 2.1. The algorithm, in the end, outputs any arborescence
contained in the set of edges F'.

The following lemma is easily seen, and we omit the proof.

LEMMA 2.2. Assume that P(E, F,W) is feasible at the beginning of the algorithm.
If the algorithm terminates, it outputs an arborescence T such that |61 (v)| < b, + 2
forallveV.

The rest of the section is devoted to proving that the algorithm indeed terminates.
We show that if |E| and | F'| do not change in Steps 2 and 3, then |W| must decrease in
this iteration. Assume that the conditions in Steps 2 and 3 do not hold, i.e., alle € E’
satisfy that 0 < z. < 1. In such a case, all the tight constraints in the basic feasible
solution x come from the cut-constraints and the degree-constraints. Moreover, since
all edges leaving v are added to F' as soon as v is removed from W every edge in
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E \ F must be out-going from a W-vertex.! The following lemma is standard and
obtained by using the fact that the RHS of the cut-constraints is a supermodular set
function. The proof is omitted.
LEMMA 2.3 ([13]). For any basic solution x to P(E,F,W) such that 0 < z, < 1
for all e € E', there exists a set T C W and a laminar family L of subsets of V' such
that x is the unique solution to the linear system:

z(67(9)) =1 VS e L,
(6t (v)) = by, — |05 (v)] Vv eT.

Furthermore, the following two conditions are satisfied
1. The characteristic vectors {xs-(s) | S € L} U{Xst() | v € T} are linearly
independent.
2. The size of the support is equal to |E'| = |T| + |L].
For v € W, we define its spare, Sp(v), as the difference between its degree in the
support and its fractional degree:

Sp)= > (1—z) =I5 @I - 3

ecdt(v) e€dt(v)

For v € W, let d, = b, — |65:(v)| be the current degree bound on v. Since . is a
feasible LP solution, } s+ (,) Te < dy and hence Sp(v) > |6%(v)| — dp. Thus Sp(v)
is an upper bound on the degree violation of vertex v if its degree bound is dropped.
To complete the proof of Theorem 2.1, we prove the following lemma that shows
that if neither Step 2 nor Step 3 in the algorithm apply, then Step 4 applies.
LEMMA 2.4. If neither Step 2 nor Step 3 is applicable, then there exists v € W
such that |67 (v)| — d, < 2.
Proof. We first argue that it is enough to show that

L] < Y me+2/W]. (2.1)

eckE’

Suppose (2.1) holds. Consider the quantity ) .y, Sp(v). As each (u,v) in £’ has its
tail w in W, it follows that Y _y, Sp(v) = |E'| =3 c g @e. Since Sp(v) > 07 (v) —do,

we have

Z (0% (v) —dy) < |E'| — Z ze =L+ |T) — Z Te (by Lemma 2.3)
veW ecE’ ecE’
<|LI+ W= Y @ <3[W|  (by inequality (2.1))
eck’

This in turn implies that there exists v € W such that [6%(v)] — d, < 3. Since
|6% (v)| — d, is an integer, it must be at most 2.

The proof of (2.1) is based on a counting argument, as is common in iterative
rounding. We assign x, units of “tokens” to each e € E" and two “tokens” to each v €
W. We shall show that these tokens can be redistributed among the sets S € £ such
that each set in £ gets at least one token, and moreover one token is unused, thereby
proving that |L£] is strictly smaller than the total number of tokens »° 5 x. + 2|W]|.

LA vertex in W is henceforth called a W-vertex.
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The laminar family £ naturally defines a forest 7 with S € £ as nodes?. We call
a node S € L marked if there is some vertex w € W N S; or unmarked otherwise.
Recall that every edge in E’ leaves a W-vertex; hence if S is an unmarked node, no
edge of E’ leaves a vertex in S and in particular, no edge of E’ is contained in S.
From Lemma 2.3, for any set S € £, (6~ (5)) = 1. The assignment of tokens to
nodes of 7 is done as follows.

Leaf nodes in 7. Let S € £ be a leaf in 7. Recall that (67 (5)) = 1. The tokens
of edges e € 07 (.5), which sum up to 1, are assigned to S.

Unmarked non-leaf nodes in 7. We in fact show that such nodes do not exist
in 7 at all. Let on the contrary, S € £ be such a node, and Cy,--- ,C; C S with
t > 1 be its children in 7. Since S is unmarked, no edge of E’ lies completely in-
side S, hence 6~ (C;) C §=(S) for all 4, and thus Y.\, z(6~(C;)) < (5(S)). As
z(67(S)) = x(67(C;)) = 1 for all 4, this implies that ¢ = 1 and xs5-(s) = X5-(cy)- But
this contradicts the linear independence in Lemma 2.3.

Marked nodes in 7. Let M C 7 denote the sub-forest induced on the marked nodes
in 7. Call a node S € M high-degree if S has at least 2 children in M; low-degree if
S has exactly 1 child in M; all other nodes are leaves in M.

Since leaves in M correspond to disjoint sets, every such node contains at least
one distinct W-vertex. We next argue that each low-degree node in M also contains
a distinct W-vertex, distinct also from the W-vertices contained in the leaves of M.
Let S € M be a low-degree node in M, and C € M be its unique child in M. To
establish the above property, it is enough to show that W N (S \ C) # 0. Suppose
this is not the case. As S\ C does not contain any W-vertex, there are no edges from
S\CtoC;5007(C) C67(5). As (07 (C)) = x(07(5)) = 1, we get Xs5-(s) = Xo-(C)
contradicting the linear independence.

Thus we proved that the total number of leaves and low-degree vertices in M
is at most |W|. Now since M is a forest, the number of high-degree nodes in M is
strictly less than the number of leaves in M. Therefore the total number of nodes in
M is strictly less than 2|W|. Assign each node in M a distinct token out of 2|W|
tokens from vertices in W leaving at least one token unassigned.

By the token assignment given above, each set in £ gets at least one token with
one token unassigned. Thus the proof is complete. O

The above result implies the following slightly weaker version of Conjecture 1 of
Bang-Jensen et al. [1].

COROLLARY 2.5. Let G = (V, E) be a k-arc-strong graph, i.e., a directed graph in
which every directed cut has at least k edges. For any r € V, there exists an r-rooted
arborescence T satisfying (5;(1)) < f@] + 2 for everyv € V.

Proof. Consider the degree-bounded arborescence problem on G with any root
r € V and degree bounds b, = [§/;(v)/k] at each v € V. It is clear that z = 1 - xp is
a feasible fractional solution to the linear relaxation P(E, ), V) of this problem. Thus
our algorithm obtains an arborescence rooted at r with the desired property. O

3. Intersecting supermodular connectivity with costs. We now consider
degree-bounded network design under an intersecting supermodular connectivity re-

2Throughout, we use node to refer to a vertex in the laminar tree, and vertex to refer to a vertex
in G.
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quirement, and prove the following theorem.

THEOREM 3.1. For any € € [0, %], there is a polynomial time ([ =] + 4, [lb_ve] +
4, %) approzimation algorithm for degree bounded metwork design with intersecting
supermodular requirement.

The algorithm is again iterative. Let F' C E denote the set of edges that have
been fixed to value 1, I C V the vertices for which there is an in-degree bound, and
O C V the vertices for which there is an out-degree bound at some generic iteration.
Consider the following LP which we refer to as P(E, F,I,0).

s.t.
2(67(5)) 2 /(S)— 6(S)] WS CV )
z(0~ () <ay—(L—€)|0p(v)] Yvel '
(6t (v) <b, — (1 —€)d5(v)] YweO
0<z2.<1 VeeE\F

In such an iteration, the algorithm computes an optimal basic feasible solution .
Let E' = E\ F. The algorithm works with a parameter 0 < e < 1/2 and performs
one of the following steps in each iteration where E’ £ (:

1. If there is an edge e € E’ with z. = 0, set E «— E \ {e}.

2. If there is an edge e € E with . > 1 —¢, set F' — F U {e}.

3. If there is an edge e = (u,v) € E' with u ¢ O and v ¢ I and z, > e, set
F — FU{e}.

4. If there is v € I with strictly less than a, — (1 — €)[6x(v)| + 5 edges in E’
entering it, set I «— I\ {v}.

5. If there is v € O with strictly less than b, — (1 — €)|6}(v)| + 5 edges in E’
leaving it, set O — O\ {v}.

Note that steps 2 and 3 ensure that any edge adjacent to a vertex with degree
bound is chosen only if . > 1 — e. Moreover, 3 ensures that any other edge that
is chosen has x. value at least e. It is easily verified that if at least one of these
conditions holds at each iteration, then the algorithm results in a solution F satisfying
the connectivity requirement, of cost at most % times the optimal, while having in-
degree at most [2-] + 4 and out-degree at most [2-] + 4 at each vertex v € V.

The rest of this section proves that one of the above conditions is true in any
iteration. In particular, we show that if none of the conditions (1)-(3) are satisfied
in some iteration, then at least one of (4) and (5) must be true. To this end, fix an
iteration and assume that none of (1)-(3) are satisfied. As in the previous section,
since conditions (1) and (2) do not hold, all the tight constraints in a basic feasible so-
lution x come from the cut-constraints and the degree-constraints. Based on standard
uncrossing arguments, we have the following. The proof is omitted.

LEMMA 3.2 ([13]). For any basic solution x to P(E, F,I,0) such that0 < z. <1
for all e € E', there exist sets I' C I, O' C O, and a laminar family L of subsets of
V' such that x is the unique solution to the linear system:

(6~ (v) =a, — (1 —€)dz(v)| Yoerl
(6 () =b, — (1 —¢€)|65(v)] Yo €O
2(67(8)) = f(8) ~ 16p(S)| VSl

Furthermore, the following three conditions hold:
1. For every S € L, f(S) —|0x(S)| > 1 and is integral.
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2. The characteristic vectors {xs-(s) | S € LYU{Xs-(v) | v € I'}U{xs+ () |V E
O’} are linearly independent; and
3. The size of the support |E'| = |I'| + 0’| + |L|.
Let W =T UQO. We now classify the various types of edges in the support E’:
1. Let Ey be the set of edges (u,v) € E’ such that u ¢ O and v ¢ I. There are
the edges which do not affect the degree bounds.
2. Let E4 be the set of edges (u,v) € E' such that u € O and v ¢ I. Similarly,
let E_ denote the set of edges for which v € I but u ¢ O.
3. Let E4+ be the remaining edges in E’ that have both v € O and v € I.
For an edge e, define the spare Sp(e) = 1 — x.. For a set H of edges, define
Sp(H) =3 eyl —xz.) and Val(H) = .y T.. We also define

Spr= D>, Sple) and  Spo= > Sp(e)

e=(u,v):wel e=(u,v):ue0

that is, the sum of spares of all incoming edges into vertices in I and the sum of spares
of all outgoing edges from vertices in O respectively. Note that Sp; < Sp(E_) +
Sp(E+) and Spp < Sp(E4) + Sp(E£+) and hence,

Spr + Spo < Sp(E4) + Sp(E-) + 2Sp(E+) (32)
LEMMA 3.3. To prove Theorem 3.1, it suffices to show that

2|1L| < 2|Eo| + |E4| + Val(E4) + |E_| + Val(E_) + Val(EL) + 3|W| (3.3)

Proof. Since |E| = |L| 4+ |T'| +|T"| < |L| + |I| + |O| and |W| < |I| + |O], the
inequality (3.3) implies that

2|E| < 2|Eo| + |E4| 4+ Val(Ey) + |E_| 4+ Val(E_) + Val(E4) + 51| + 5|0 (3.4)
As |E| = |Eo| + |E4| + |E-| + |Ex], (3.4) can be written as
|EL|+ |E_| +2|E+| < Val(E,) + Val(E_) + Val(E4) + 51| 4 5[0|. (3.5)

As Sp(X) = | X| — Val(X) < |X]| for any subset of edges X, the inequalities (3.5) and
(3.2) imply that

Sp; +Spo < Sp(E4) +Sp(E_) +2-Sp(E+) < 5|1 4+ 5|0|.

This implies that either there is v € I with }° ;- (,) Sp(e) <5 or there is v € O with
Zeeﬁ(v) Sp(e) < 5. This, in turn, implies that either the condition in step (4) holds
for some v € I or the condition in step (5) holds for some v € O, which will prove
Theorem 3.1. O

Our goal now is to prove (3.3).

3.1. Token assignment: Proof of inequality (3.3). The proof of (3.3) is
done via a “token” assignment scheme. We give some tokens to the edges in E’ and
vertices in W so that the total number of tokens equals the RHS of (3.3). We then
reassign these tokens to obtain at least 2 tokens per node in £; leaving at least one
token unassigned, thereby proving (3.3).

We give 2 tokens to each edge e = (u,v) € Ey. Of these, 1+ x. units “lie” at the
head v, and 1 — x, tokens “lie” in the “middle” of the edge. We give 1 + . tokens
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to each edge e € E. U E_. For an edge (u,v) € Ey, the 1 + z. tokens lie at the head
v. For an edge (u,v) € E_, the z. tokens lie at the head v and 1 token lies in the
middle. The remaining edges e = (u,v) € E are given z, tokens that lie at the head
v. We also give 3 tokens to each W-vertex. The tokens lying at a vertex are initially
assigned to the inclusion-wise minimal set in £ that contains that vertex; while the
tokens in the middle of an edge are assigned to the inclusion-wise minimal set in £
that contains both end-points of that edge.

We call a node S € £ marked if W N S # (§; or unmarked otherwise. Note that
for any S € £, we have (6 (5)) > 1 and is an integer. The reassignment of tokens
to nodes of L proceeds using the following steps.

3.1.1. Unmarked leaf nodes. Let S € £ be such a node. Since z(6~(S)) > 1,
there are at least two edges of E’ entering S (as each edge has x. < 1). Assign the
tokens at the heads of these edges to S. As S is unmarked, these must be edges of
type Eo or E, and S receives at least 2 + (67 (S5)) > 3 tokens. One extra token of
these nodes is going to be reassigned to other nodes in £ as described later.

3.1.2. Unmarked non-leaf nodes. Let S € £ besuch anode, and Cy,--- ,C; C
S its children. Let z = z(E'(V \ 5,5\ U!_,C;)) denote the total a-value entering
S\ Ut_,C; from outside S. See also Figure 3.1.

S
Heavy edges are E'(V'\ S, S\ (C1 U(5)), a-value of z.

Q Solid edges are E'(V'\ S, Cy U Cy), say z-value of a.
Dashed edges are E'(S\ C1,C1) U E'(S\ Cs, Cy), say z-value of (.
‘ By integrality of tight cuts, z + o and o + 3 are positive integers.

Fic. 3.1. Unmarked node S with t = 2 children (illustration for Section 3.1.2).

We first consider the case when z > 0. Note that edges in E'(V \ S, S\ U!_,C;)
lie either in Ey or E,, thus if z > 0, then they contribute at least 1 + z tokens to S.
Thus, if z > 1, then S obtains two tokens from them. Now, suppose that z < 1. By
integrality of the tight cuts, it follows that 22:1 z(E'(S\ C;,C;)) > z. Since these
are all edges in Fy, they contribute at least 1 — z middle tokens to S. Thus S gets at
least (14 2) + (1 — 2z) = 2 tokens.

We now consider the case z = 0. By linear independence it follows that } . xs5-(c,) #
Xs-(s)- By the integrality of connectivity requirements and since z = 0, it follows
that 3, 2(67(Ci)) — z(67(S)) > 1 and is an integer. Le. Y.\, 2(E'(S\ C;,C)) = k
where k > 1 is an integer. Note that each edge e € Ul_; E'(S \ C;,C;) is a type Ej
edge and contributes 1 — x, middle tokens to S; hence S receives a total of at least
|Ut_, E'(S\ Ci, C;)| — k middle tokens. Moreover, |U!_; E'(S\ C;, C;)| > 2k +1 since
the z-value of any Eg-edge is less than e < %, and z(Ul_, E'(S\ C;,C;)) = k. Thus S
receives at least £ + 1 > 2 middle tokens.

3.1.3. Marked nodes. Let M C L denote the laminar family consisting of only
marked nodes. Call a node S € M high-degree if it has at least 2 children in M; low-
degree if it has exactly 1 child in M; and leaf if it has no children in M. We now
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show how to assign tokens to each of these nodes.

High-degree nodes. Note that the number of high-degree nodes in M is strictly
less than the number of leaf-nodes in M. Arbitrarily assign each high-degree node in
M one token each from a distinct W-vertex (in a distinct leaf node of M). This will
provide at least two tokens.

Leaf-nodes. For each leaf node S in M, we assign 1 token from some W-vertex
contained in it. For the remaining token, we argue as follows: If S is also a leaf in L,
then S has (67 (S)) > 1 and hence S receives at least 1 unit of tokens from edges in
57 (S) (since every edge carries at least x. tokens at its head). If S is not a leaf in
L, then consider the subtree rooted S. This subtree has at least one unmarked leaf
node. Since each unmarked leaf node has at least 3 tokens assigned to it thus far, S
borrows one token arbitrarily from one of these nodes. Note that any unmarked leaf
node can be charged at most once.

Also note that each W-vertex has been charged at most 3 tokens so far.

Low-degree marked nodes. Let S € M be such a node, and C' € M be its
unique child.

Suppose that W N (S\ C) # 0, and w € WN (S \ C) be such a vertex. As no
node of M is contained in S\ C, S is the smallest set in M that contains w. Assign
node S two tokens from vertex w. Note that this vertex w cannot be charged by more
than one such set S in this step. Moreover, w could not have been used in the earlier
charging to W-vertices since it is not contained in any leaf node of M.

Henceforth we assume that WN(S\C) = 0. Let r denote the number of unmarked
leaves of £ contained in S\ C. Consider the following cases:

1. 7 = 0. In this case, there are no unmarked nodes in S\ C. Let z = z(E'(V '\

5,5\ C)) denote the total z-value entering S\ C' from outside S. We first
consider the case when z = 0. By linear independence it follows that xs5-(c) #
Xs-(s)- By the integrality of connectivity requirements and since z = 0, it
follows that z(6—(C)) — (6= (S)) > 1 is an integer. Consider the edges
E'(S\ C,C). They must be either Ey or E_ edges as S\ C does not have a
W-vertex. If they are all Ey edges, then their middle tokens must contribute
at least 2 tokens to S. If at least two of them are E_ edges, their middle
tokens also contribute at least two tokens to S. If there is exactly one E_
edge, then it has x-value strictly less than 1 — e. Since edges in Fjy have
x-value less than €, we need at least two more edges from Ej (and each has at
least  middle tokens) to ensure that z(6(C)) — 2(6~(S)) > 1. These edges
together provide the two tokens for S.
We now consider the case when z > 0. The edges in E'(V \ 5,5\ C) are
either Ey or E edges, so they contribute at least 1+ 2z tokens to S. Thus, if
z > 1, then S obtains two tokens from them. Now, suppose that z < 1. By
integrality of the tight cuts, it follows that at least z amount of z-value must
also enter C from S\ C. Since these are either Ej or E_ edges, they contribute
at least 1 — z tokens to S. Thus together S has at least (1+2) + (1 —2) =2
tokens.

2. r > 2. Consider the unmarked leaf nodes in £ contained in S\ C. Note that
each of them has been assigned at least 3 tokens thus far (they could not have
given a token to handle marked leaf node in the previous step). S is assigned
2 tokens by borrowing 1 token each from any two unmarked leaf nodes in

S\ C.
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3. r = 1. In this case, LN (S \ C) corresponds to a chain of k¥ > 1 unmarked
nodes D ={Dy C Dy_1 C--- C Dy}. Let D = D; be the unmarked child of
S. We first consider the case that there is an edge e from V'\ S to S\ (CUD).
Here, the edge e provides at least 1 token to S. For the remaining token,
we observe that the subtree rooted at D in £ has at least one unmarked leaf
(node Dy). This node still has at least 3 tokens since none of its tokens could
have been used for earlier reassignments. Thus .S can borrow 1 token from D
and get at least 2 tokens.

Henceforth, we assume that all edges from V'\ S enter either C' or D. Suppose
that some unmarked node (say D;) in the chain D has a cut value more than
1 (e, z(67(D;)) = f(D;) — |67 (D;)| > 2). In this case, we use the following
Claim which is proved at the end of this section.

CLAM 1. Let D ={Dy C Dy_1 C--- C Dy} be a chain of unmarked nodes
with Dy, being a leaf node. Then a total of at least 2k +x(6~(D1)) tokens are
assigned to nodes of D. Applying Claim 1 to the chain D' = {D;, -+, Dy},
we obtain that at least 2(k — i + 1) + 2 tokens are assigned to the nodes of
D’. Thus there are at least 2 extra tokens, which can be reassigned to node S
(note that these unmarked nodes have not been used in earlier reassignments).
In the remaining, we assume that all nodes in D have cut value exactly 1.
Let z = x(E'(V \ S, D)) be the z-value entering D from V \ S; note that
0 < z <1 since D has cut value 1. We consider the following four cases.
Case 1: z = 0. In this case, = (5) C §~(C). From linear independence and
integrality of the cut values, this implies z(E’(S \ C,C)) > 1. Hence as in
step 1, S obtains at least 2 middle tokens from E’(S\ C,C) (which are type
Ey or E_ edges).

Case 2: 0 < z < e. In this case, z(E'(S\ D,D)) =1— 2 > 1 —¢. Since every
edge has z-value less than 1 —¢, |[E'(S\ D, D)| > 2. Also, |E'(V\ S,D)| > 1
since z > 0. Thus |6~ (D)| > 3. We now use the following Claim which is
again proved at the end of this section.

CLAM 2. Let D ={Dy C Dy_1 C--- C D1} be a chain of unmarked nodes
with Dy being a leaf node, such that each node D; has cut value (6~ (D;)) =
1. Then a total of at least 2(k — 1) + |0 (D1)| + 1 tokens are assigned to
nodes of D. Now applying Claim 2 to chain D, there are at least 2k + 2
tokens assigned to the nodes of D. Since there are 2 extra tokens, these can
be reassigned to S.

Case 3: ¢ < z < 1. From the integrality of the cut values of S and C,
2(E'(S\ C,C)) > z > e. Since each edge in E'(S\ C,C) is type Eg or E_,
E'(S\ C,C) has either at least one E_ edge or at least two Ey edges (each
has z-value less than €). In either case S obtains at least 1 unit of middle
tokens. Borrowing one token from the unmarked leaf Dy, S is assigned at
least 2 tokens.

Case 4: z = 1. Here it must be that x(E'(S\ C,C)) > 1: this follows
from the linear independence and integrality of cuts S, C, D and the fact that
(07 (D)) = 1. Asin step 1, S has at least 2 units of middle tokens.

Thus the proof of inequality (3.3) is complete. We now present the proofs of Claims 1
and 2.

ProoF OF CLAIM 1. Note that every edge (u,v) induced on D; is an Ej edge and
has 2 tokens: we think of it having one token at each of u and v. Every edge (u,v) in
07 (Dy) is of type Eg or Ey and has 1 4 (. tokens at v € D;: we think of 2, ,)
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units contributing to the (6~ (D)) term and the remaining one token lying at v. It
now suffices to show that the total number of end-points of the support E’ inside Dy
is at least 2k. We claim that for every 1 <i <k, D; \ D;1 has at least 2 end-points
(setting Dg4+1 = 0). First consider Dy: since (6~ (Dg)) > 1 there are at least 2 edges
entering Dy, that contribute the 2 (head) end-points. Now consider node D; and its
child D;41: let z = x(V \ D;, D; \ D;;+1) and consider the following cases.

1. z = 0. Due to linear independence and integrality of D; and D;;;, we have
2(D; \ Diy1,D;11) > 1, which gives at least 2 (tail) end-points.

2. 0 < z < 1. This immediately gives at least 1 (head) end-point. Also we have
2(D; \ Dit1,D;41) > z (same reasons as above) which gives at least 1 (tail)
end-point.

3. z > 1. Here |E'(V\ D;,D; \ D;41)| > 2 which gives at least 2 (head) end-
points.

In each case, we have at least 2 end-points in D; \ D;y;. Thus we have the claim.

ProOOF OF CrLAIM 2. We first show that |E'(D; \ D41, Diy1)] > 1 for all 1 <
i < k. Consider any node D; (1 < i < k) and its child D;11. Since (6~ (D;)) =
2(67(Dj41)) = 1, using linear independence it follows that there must be an edge in
E'(Di\Djt1,D;+1). These k—1 edges (all type Ey) provide 2(k —1) tokens. Together
with the tokens on edges of §~ (D) (that total to at least |6~ (D;)|+ 1 since each such
edge contributes (1 + z.) tokens), we have the claim.

4. Crossing supermodular connectivity with costs. In this section, we
note an immediate consequence of Theorem 3.1 to the more general case of crossing
supermodular connectivity requirements with degree bounds.

THEOREM 4.1. For any € € [0,3], there is a polynomial time ([{] + 4 +
Smax H’—_“E] +4+ fmax, %) approximation algorithm for degree-bounded network design
with crossing supermodular requirement f, where fyq, = maxgcy f(5).

We begin with the following lemma which upper bounds the in-degree of any ver-
tex in a minimal f-connected subgraph when f is intersecting supermodular. Consider
a directed graph G = (V, E) with an intersecting supermodular requirement function
f:2Y - Z" on V. Let fiax = maxgcy f(S) be the maximum requirement of any
set. A subgraph H = (V, E’) of G is called minimally f-connected if H is f-connected
and no strict subgraph of H is f-connected.

LEMMA 4.2. Let H be a minimally f-connected subgraph of G. Then the in-degree
of any vertex v in H is at most fmax, .€., |07 (V)] < fmax-

Proof. Fix a vertex v € V and let 6, (v) = {(u;,v) | ¢ =1,...,k}. Since H is
minimally f-connected, each edge (u;,v) belongs to a tight cut constraint, i.e., there
exist subsets Si,..., S, C V such that for all 1 <1 <k we have (u;,v) € 05(5;) and
|0(S:)] = f(S;). Note that v € S; and u; ¢ S; for all 7.

We next use the fact that if two subsets 5,8’ C V intersect and are tight, i.e.,
107(S)| = f(S) and [65(S")| = f(S’), then their intersection is also tight: |6, (S N
S| = f(SNS’). This follows since the following chain of inequalities must hold with
equalities: f(SUS")+ F(SNS) = 1(8)+ F(S') = |55(S)| + 67(5")] = |37 (S US| +
05 (SNS) = fF(SUS)+ f(SNS).

Applying this to the subsets S, ..., Sk repeatedly, we get that their intersection
NF_,S; is also tight. Since (u;,v) € 6 (NF_;S;) for each i, we get k < |65 (NF_19;)| =
f(ﬁrllesl) S fmax-D

We now prove Theorem 4.1.
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PrOOF OF THEOREM 4.1. We use Theorem 3.1, Lemma 4.2 and a reduction from
crossing supermodular requirements to intersecting supermodular requirements as
in [15]. Let OPT denote the cost of the optimal f-connected subgraph satisfying the
degree bounds (a,,b,). Let » € V be an arbitrary but fixed vertex. Define two
functions g, h : 2V — Z, as follows:

0 ifresS 0 ifresS
9(8) = { f(S) otherwise, h($) = { f(V\S) otherwise.

It is easy to check that f(S) = ¢(S) + h(V \ S) for all S and that g and h are
intersecting supermodular functions on the set family {S C V | r € S} (see [15] for
details).

We now consider a problem on G = (V, E) with the intersecting supermodular
connectivity requirement g and out-degree upper bounds b, on vertices v; and use
Theorem 3.1 to compute a solution®. We then extract a minimal g-connected subgraph
H, from this solution by iteratively dropping edges that do not violate g-connectivity
requirements. From Lemma 4.2, the in-degree of any vertex v in H, is at most fiax.
Note that the optimal g-connected subgraph with (out-)degree bounds b, has cost at
most OPT; so the cost of H, is at most % - OPT.

Next we consider a problem on the graph G” obtained by reversing all edges in G
with the intersecting supermodular connectivity requirement h and out-degree upper
bounds a, on vertices v; and use Theorem 3.1 to compute a solution. We then extract
a minimal h-connected subgraph Hj, from this solution by iteratively dropping edges
that do not violate h-connectivity requirements. From Lemma 4.2, the in-degree of
any vertex v in Hp is at most fp.x. Again, the optimal h-connected subgraph in
G" with (out-)degree bounds a, has cost at most OPT; so the cost of Hj, is at most
- OPT.

Let Hj be the subgraph obtained from Hj by reversing all edges. It is now easy
to see that the subgraph H, U H} of G satisfies f-connectivity requirements and the
claimed degree bounds. Since each of H, and Hj} costs at most % - OPT, we get the
desired bound on the cost as well.

o=

5. Integrality Gap Instance. In this section, we describe an integrality gap
for the LP relaxation of the degree-bounded arborescence problem.

THEOREM 5.1. For any 0 < € < 1, there is an instance of the minimum-cost
degree-bounded arborescence problem such that, any arborescence with out-degrees at
most (11’;16) + O(1) for all vertices v has cost at least (1%0(1)) times the optimal LP
value.

Given an arbitrarily small but fixed constant ¢ € (0,1), set § = € + ¢ where
¢ is a sufficiently large constant independent of e. Consider a directed graph G(d)
constructed as follows. See Figure 5.1 for an illustration. Start with a complete
k-ary outward directed tree T' rooted at vertex r, with ¢ levels (the solid edges in
Figure 5.1), where we set k = 1/§%¢ and t = ¢§—¢~!1n(2/4). These tree edges, called
T-edges, have cost 0. Consider the natural drawing of the tree on the plane (as in
Figure 5.1) and label the leaves from right to left as 1,...,k‘. The vertices of T are
naturally partitioned into levels 0,1,...,¢ such that the root is at level 0 and the
leaves are at level t. We also label the vertices on level i as 1,...,k* in the right to
left order. For a vertex v, let T;, denote the subtree rooted at v and let r, and I,

31t is easy to test if the given graph is g-connected by adding fmax edges from every vertex to r
and testing if the resulting graph is f-connected. A similar reduction also holds for h-connectivity.
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denote the smallest and largest indices of leaves in T, (formally if v is the jth node
from the right on level 4, then [, = jk'~% and r, = (j — 1)k =% + 1).

We add the following additional edges to obtain G(§). For each internal vertex
v, we add an edge from the leaf [, to v (these are the light dotted edges in Figure
5.1). All these edges also have cost 0. Finally, we add a path from the root, visiting
the leaves in the order 1,..., k" (these are the heavy dashed edges) and each of these
edges has cost 1.

hs S : ' A J 'b‘~ -'&~ "‘

- ~o

Fi1c. 5.1. The integrality gap instance with k = 3, t = 3. Solid arcs (on complete t-level k-ary
tree T') have cost 0 and LP-value 1 — 6. Dotted arcs have cost 0 and LP-value . Heavy dashed arcs
have cost 1 and LP-value §.

Intuitively, the graph is a union of two arborescences rooted at r: The first
arborescence is the tree T, and the second arborescence is formed by the dotted and
dashed edges. The first arborescence has high degree and low cost, while the second
has low degrees and high cost.

Consider the problem of constructing the minimum-cost arborescence rooted at
r, where each internal vertex has an upper bound of b = (1 — §)k on the out-degree.
Consider a fractional assignment to the edges where each (solid) edge in 7" has value
z. = 1 — § and every other edge has value x. = §. Observe that each vertex receives
1 unit of flow from the root and the fractional out-degree of each internal vertex is
(1 — &)k and hence this is a feasible LP solution with cost LP* = §k'.

We now show that any integral solution I where the degree at each internal vertex
is at most b/(1 — €) + O(1) has cost at least (1 — o(1))LP*/e. The idea is that any
solution with maximum internal out-degree smaller than k, must necessarily choose
all of heavy dashed edges, thereby incurring a high cost. The crucial observation is
the following.

PROPOSITION 5.2. Suppose a leaf ¢ does not have a path from root to itself in I
using only T-edges, then the edge (¢ — 1,¢) must necessarily lie in I.

Proof. To see this, consider the unique path from r to £ in T and let (u,v) be
some edge along this path that does not lie in I (such an edge must exist since £ is
unreachable from r using T-edges). Let L denote the set of leaves {/,...,[,}, and let
S, denote the set of all nodes in T, from which some vertex in L can be reached using
T-edges. We claim that the (heavy dashed) edge (—1,¢) is only edge in I entering the
set S,. Indeed, no T-edge enters S, since (u,v) ¢ I. Moreover, no dotted edge enters
Sy since such edge must be of the form (¢, w) where ¢ is a leaf not in S, and hence
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0 e{ry,....,£ —1} and w € S,. Now by the construction of dotted edges in G(4),
this means that ¢/ = l,,, and hence ¢,, € {r,,...,¢—1}. But the only leaves reachable
by T-edges from w have indices at most £,, which is at most £ — 1; this implies that
none of the leaves in L can be reached by w which contradicts that w € S,. Thus,
(¢ —1,¢) is unique edge entering S, and must necessarily lie in 7. O

To finish the proof, consider the solution I where each internal vertex has degree
at most b/(1 —€) +0(1) = (1 —-98)k/(1—€) +O(1) = (1 —€/(1 — €))k + O(1) which
is at most (1 — d°T1)k. Thus the total number of leaves that have a path from root r
using T-edges is at most (1 — Tkt < (6/2)°k' < k. Thus by the above claim,
at least (1 — €°)k' cost 1 edges must lie in I, which implies that the total cost is at
least (1 —€“)kt = ((1 — €°)LP*)/§ = (1 — €)LP* /(e + €°) > (1 — 2¢1)LP* Je. Since
c is arbitrarily large, this implies the result.

From the above example, we see that to achieve a purely additive O(1) guarantee
for degree using the LP (3.1), the cost has to be violated by a factor at least Q( lolg‘_)lgogn),
where n is the number of vertices in the graph.

6. Minimum crossing spanning tree problem. We consider the MCSP prob-
lem in this section, for which we obtain the following.

THEOREM 6.1. There is a polynomial-time algorithm that for any instance
(G,c,{E;,b;}E_|) of the MCSP problem, either computes a spanning tree of cost at
most the optimum and with at most b; +r — 1 edges from E; (for all1 < i < k); or
shows that the instance is infeasible. Here r = max.cp |{i | e € E;, 1 <i < k}|, is the
mazimum number of sets {E;} that any edge lies in.

Our algorithm is again based on iterative relaxation. We either choose or delete
edges, or drop some constraints. Consider a general iteration. Let F denote the
candidate edges which are not yet discarded, let F' C E denote the set of edges that
we have already picked in our solution, and let W C {i | 1 < i < k} denote the indices
of the crossing constraints corresponding to E; that we have not yet dropped. In the
beginning F is the entire edge-set, F' = @, and W = {i | 1 < i < k}. In a general
iteration, we work with the following linear relaxation P(E, F, W) with variables z.
foree E'=E\F.

min Y ecr Ce - Te

s.t.
(V) =V —1— [F(V)|
2(E'(S)<S—1—|F(S)| VvS:2<|S|<|V]-1
0<z <1 Vee Bl =E—F

where H(S) (for H C E and S C V) is the set of edges in H with both end-points in
S. In this iteration, the algorithm computes a basic feasible solution x to P(E, F, W)
and performs one of the following steps while ' = F '\ F # 0:

1. If there is an edge e € E’ with z. = 0, set E «— E\ {e}.

2. If there is an edge e € E' with z. =1, set F — F U {e}.

3. Ifforsomei e W, |E'NE;| <b;—|FNE;)|+r—1ie |[ENE;]| <b+r—1,

set W — W\ {i}.
It is clear that if the algorithm terminates, it terminates with a set F' containing a
spanning tree with cost at most the optimum and which contains at most b; +7 — 1
edges from E; for 1 <i < k.
We now argue that in each iteration, one of the above steps is always applicable.

The following lemma follows by uncrossing [8, 18].
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LEMMA 6.2. For any basic solution x to P(E,F,W) such that 0 < z. < 1 for all
e € E', there exists a set T C W and a laminar family L of subsets of V' such that x
s the unique solution to the linear system:

2(E'(S)) = |S| = 1= |F(S)| VSecr

Furthermore, the characteristic vectors {xp/(sy | S € L} U{xgne, | i € T} are
linearly independent, and the size of the support |E'| = |T| + |L].

Assume that the conditions in steps (1) and (2) do not hold; then we prove that
step (3) holds. The key component of our proof is the following lemma which is proved
by a simple counting argument.

CLAaM 3. We have |L]| < x(E'(V)). Moreover the equality holds if and only if
each edge in E' is contained in some inclusion-wise mazximal set S € L.

Proof. Suppose each edge e € E’ is given x. tokens. These tokens are assigned to
the sets S € L as follows. An edge e is said to belong to S if S is the inclusion-wise
minimal set in £ that contains both the end-points of e. If e belongs to S, then z,
tokens are assigned to S. We argue that each set in the laminar family is assigned a
total of unit tokens, thereby proving the claim.

Since z. > 0 for all e € E’, each set S € £ has the RHS |S| — 1 — |F(5)] at
least 1, and hence z(E’(S)) > 1. This gives every leaf set S € L at least a total of
unit tokens. Now consider a non-leaf set S € £ with ¢ children Cy,--- ,C; € L. Now
XE'(S) = Z;:l XEr(c;) + 2{Xe | € € E’ belongs to S}. Since xp/(s)y U {Xe/(c;) }j=1
is a linearly independent set, we have {e | e € E’ belongs to S} # 0. So, the RHS
|S| —1—|F(S)| of the constraint for S is at least 1 more than the sum of the RHS of
constraints of {C;}5_;. Thus S gets at least a total of unit tokens. O

Now for i € W, define Sp(i) = > c pinp, (1 — ) = |E' N E;| — (£ N E;) and for
e € E' define r(e) =|{i e W |e € E'NE;}|.

LEMMA 6.3. We have ), .y, Sp(i) < r|W|.  Before proving Lemma 6.3, we
argue that it implies that the condition in step (3) holds. Lemma 6.3 implies that
there exists ¢ € W such that Sp(i) < r. Since z(E' N E;) <b; — |F' N E;|, we have

|E' N E;| =Sp(i) + z(E' N E;) <r+b; — |FNE.

Since |E' N E;| and |F N E;| are integers, |[E' N E;| < r 4+ b, — |[F N E;| — 1, i.e., the
condition in step (3) holds for i.

Proof. (Lemma 6.3) Lemma 6.2 and Claim 3 imply that

Y (=)= |E'| - 2(E'(V)) = ||+ |T| - a(E'(V)) < [T| = [W| - [W\ T,
ecE’

Therefore

S Sp(i) = 3 r(e)(1 - a.)

ieEW eckE’
= Y () Y ()1 - )
ecE’ eckE’

<r|W|—rW\T|- Z (r—r(e)(l —x.).

eckE’



DEGREE BOUNDED DIRECTED NETWORK DESIGN 19

Moreover, the equality 3, .y, Sp(i) = r[W/| holds if and only if |£] = z(E'(V)),
W =T and r = r(e) for each edge e € E’. The final requirement r = r(e) follows
as . < 1 and hence (1 — z.) > 0. We will show that this cannot happen, since
this violates the linear independence condition. In particular, we will show that the
incidence vector xp/ can be expressed in two different ways using the characteristic
vectors {xg/(s) | S € L} U{xpnE, |1 €T}.

First, by Claim 3 (equality condition), we have that % | xg/(s,) = X&', where
S1,..., 8, are the inclusion-wise maximal sets in £. Second, since |T'| = |W| and
r(e) =r for all e € E’, we have that

ZXE’OE,L = Z XENE; =T XE'-

€T iceW

This gives us the desired contradiction which completes the proof. O

Generalization to matroids and polymatroids. Kirély et al. [10] consider the prob-
lem of computing a minimum-cost basis in a matroid subject to ‘degree bounds’ and
show that the above algorithm generalizes directly to this case.
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