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Abstract

This paper studies vehicle routing problems on asymmetric metrics. Our starting point
is the directed k-TSP problem: given an asymmetric metric (V, d), a root r ∈ V and a tar-
get k ≤ |V |, compute the minimum length tour that contains r and at least k other vertices.
We present a polynomial time O

(
log2 n

log log n · log k
)

-approximation algorithm for this problem. We

use this algorithm for directed k-TSP to obtain an O
(

log2 n
log log n

)
-approximation algorithm for the

directed orienteering problem. This answers positively, the question of poly-logarithmic approx-
imability of directed orienteering, an open problem from Blum et al. [BCK+07]. The previously
best known results were quasi-polynomial time algorithms with approximation guarantees of
O(log2 k) for directed k-TSP, and O(log n) for directed orienteering (Chekuri and Pal [CP05]).
Using the algorithm for directed orienteering within the framework of Blum et al. [BCK+07]
and Bansal et al. [BBCM04], we also obtain poly-logarithmic approximation algorithms for the
directed versions of discounted-reward TSP and vehicle routing problem with time-windows.

1 Introduction

Vehicle routing problems (VRPs) form a large set of variants of the basic Traveling Salesman Prob-
lem, that are also encountered in practice. Some of the problems in this class are the capacitated
VRP [HK85], the distance constrained VRP [LSD92], the Dial-a-Ride problem [SS95], and the
orienteering problem [GLV87]. Many different objectives are encountered in VRPs: for example,
minimizing cost of a tour (capacitated VRP and the Dial-a-Ride problem), minimizing number of
vehicles (distance constrained VRP), and maximizing profit (the orienteering problem).

The Operations Research literature contains several papers dealing with exact or heuristic ap-
proaches for VRPs [Sav85, TLZO01, KR92, KKT87, DJS92]. The techniques used in these papers
include dynamic programming, local search, simulated annealing, genetic algorithms, branch and
bound, and cutting plane algorithms. There has also been some interesting work in approxima-
tion algorithms for VRPs [HK85, CR98, BBCM04]. The problem most relevant to this paper is
orienteering, which involves finding a bounded length path starting at a fixed vertex that covers
the maximum number of vertices; Blum et al. [BCK+07] obtained the first constant factor approx-
imation algorithm for this problem (on symmetric metrics), which was improved to a factor of 3
in Bansal et al. [BBCM04]. Bansal et al. [BBCM04] then used orienteering as a subroutine to also
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obtain poly-logarithmic approximation algorithms for some generalizations of orienteering, namely
deadline TSP and vehicle routing problem with time windows.

Most of the work on VRPs focuses on symmetric metric spaces. In asymmetric metrics, the
best known approximation guarantee for even the basic traveling salesman problem until recently
was O(log n) [FGM82]; in a breakthrough result, Asadpour et al. [AGM+10] improved this bound
to O(log n/ log log n). Chekuri and Pal [CP05] obtained a general approximation algorithm for
a class of VRPs on asymmetric metrics, that runs in quasi-polynomial time. In particular, their
result implies an O(log n)-approximation algorithm for the orienteering problem on directed graphs
(in quasi-polynomial time). We are not aware of any previously known non-trivial polynomial-time
approximation algorithms for this problem. In this paper, we study polynomial time approximation
algorithms for directed orienteering and related problems on asymmetric metrics.

1.1 Problem Definition

All the problems that we consider are defined over an asymmetric metric space (V, d) on |V | = n
vertices. In the directed k-TSP problem, we are given a root r ∈ V and a target k ≤ n, and the goal
is to compute a minimum length tour that contains r and at least k other vertices. Directed k-TSP
is a generalization of the asymmetric traveling salesman problem (ATSP). A related problem is the
minimum ratio ATSP problem, which involves finding a tour containing the root r that minimizes
the ratio of the length of the tour to the number of vertices in it. If the requirement that the tour
contain the root is dropped, the ratio problem becomes the minimum mean weight cycle problem,
which is solvable in polynomial time [Kar78]. However, the rooted version which we are interested
in is NP-complete.

In the orienteering problem, we are given a metric space, a specified origin s and a length bound
D, and the goal is to find a path of length at most D, that starts at s and visits the maximum
number of vertices. We actually consider a more general version of this problem, which is the
directed version of point-to-point orienteering [BBCM04]. In the directed orienteering problem, we
are given specified origin s and destination t vertices, and a length bound D, and the goal is to
compute a path from s to t of length at most D, that visits the maximum number of vertices. The
orienteering problem can also be extended to the setting where there is some profit at each vertex,
and the goal is to maximize total profit.

Many problems we deal with in this paper have the following form, where S is a feasible set,
C : S → R+ is a cost function, N : S → N is a coverage function, and k is the target:

min{C(x) : x ∈ S, N(x) ≥ k}

For example, in the k-TSP problem, S is the set of all tours containing r, and for any x ∈ S, C(x)
is the length of tour x and N(x) is the number of vertices (other than r) covered in the tour. For
any problem of the above form, a polynomial time algorithm A is said to be an (α, β) bi-criteria
approximation if on each problem instance, A obtains a solution y ∈ S satisfying C(y) ≤ α ·OPT
and N(y) ≥ k

β , where OPT = min{C(x) : x ∈ S, N(x) ≥ k} is the optimal value of this instance.

1.2 Results and Paper Outline

We present a polynomial time O
(

log2 n
log logn · log k

)
-approximation algorithm for the directed k-TSP

problem. This is based on an O
(

log2 n
log logn

)
-approximation algorithm for the minimum ratio ATSP
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problem. To the best of our knowledge, this problem has not been studied earlier. An impor-
tant ingredient in this algorithm is a splitting-off theorem on directed Eulerian graphs due to
Frank [Fra89] and Jackson [Jac88]. This algorithm is described in Section 2. In the preliminary
version [NR07] we gave an O(log2 n)-approximation algorithm for minimum ratio ATSP. Using the
recent O(log n/ log logn)-approximation algorithm for ATSP due to Asadpour et al. [AGM+10],
our approximation factor for minimum ratio ATSP also improves to O

(
log2 n

log logn

)
. In this paper we

give a self-contained proof of the O(log2 n) guarantee, and note that the algorithm of [AGM+10]
can be used to obtain the O

(
log2 n

log logn

)
approximation.

We then use the approximation algorithm for minimum ratio ATSP, to obtain a bi-criteria
approximation algorithm for the directed k-path problem (Section 3). We also observe that the
reductions in Blum et al. [BCK+07] and Bansal et al. [BBCM04] (in undirected metrics) from the
k-path problem to the orienteering problem, can be easily adapted to the directed case. Together
with the approximation algorithm for the directed k-path problem, we obtain an O

(
log2 n

log logn

)
-

approximation guarantee for directed orienteering. This answers in the affirmative, the question of
poly-logarithmic approximability of directed orienteering [BCK+07].

Finally, we note that the techniques used for discounted-reward TSP [BCK+07], and vehicle
routing with time-windows [BBCM04], also work in the directed setting (see Subsection 3.1 for
definitions of these problems). Since these algorithms use the orienteering (or the related minimum
excess) problem in a black-box fashion, our results imply approximation algorithms with guarantees
O
(

log2 n
log logn

)
for discounted-reward TSP, and O

(
log4 n

log logn

)
for VRP with time-windows.

Other Related Results. In independent work, Chekuri et al. [CKP08] also obtained many of
the results reported in this paper, although via different techniques. They obtain an O(log3 k)-
approximation algorithm for the directed k-TSP problem, and an O(log2OPT )-approximation al-
gorithm for directed orienteering (where OPT ≤ n is the optimal value of the orienteering instance).
Recently Bateni and Chuzhoy [BC10] gave an improved O

(
log2 n

log logn

)
-approximation algorithm for

directed k-TSP, by showing that our approach for minimum ratio ATSP (Theorem 5) can be di-
rectly applied to directed k-TSP (instead of the set-cover based reduction we use in Theorem 6).
More interestingly, they also gave an O

(
log2 n

log logn log k
)

-approximation algorithm for the “directed
k-path” problem (studied in Section 3), which is the first true approximation ratio for this problem.

2 Directed k-TSP

The directed k-TSP problem is a generalization of the asymmetric traveling salesman problem
(ATSP), for which the best known approximation guarantee is O

(
logn

log logn

)
[AGM+10] . In this sec-

tion, we obtain an O
(

log2 n
log logn · log k

)
-approximation algorithm for directed k-TSP. We first obtain

an O
(

logn
log logn

)
-approximation algorithm for minimum ratio ATSP (Theorem 5), and then show

how this implies the result for directed k-TSP (Theorem 6). Our algorithm for minimum ratio
ATSP is based on a bound on the integrality gap (Theorem 2) of a suitable LP relaxation for
ATSP, which we study next.
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2.1 A linear relaxation for ATSP

In this section, we consider the following LP relaxation for ATSP, where (V, d) is the input metric.
Let δ+(S) denote the edges leaving the set S. Similarly, δ−(S) is the set of edges entering S. We
use z(δ+(S)) to denote the sum of the z-values of the edges in δ+(S).

min
∑

e de · ze
s.t.

z(δ+(v)) = z(δ−(v)) ∀v ∈ V
(ALP ) z(δ+(S)) ≥ 1 ∀∅ 6= S 6= V

ze ≥ 0 ∀ arcs e

This relaxation was also studied in Vempala and Yannakakis [VY99], where the authors proved
a structural property about basic solutions to (ALP ). We are not aware of any previous result
bounding the integrality gap of (ALP ). However, the following stronger LP relaxation (ALP ′),
with additional degree equals 1 constraints, was shown to have an integrality gap of at most dlog ne
by Williamson [Wil90]. It was also shown [Wil90] that (ALP ′) is equivalent to the Held-Karp
bound [HK70].

min
∑

e de · ze
s.t.

z(δ+(v)) = 1 ∀v ∈ V
(ALP ′) z(δ−(v)) = 1 ∀v ∈ V

z(δ+(S)) ≥ 1 ∀∅ 6= S 6= V
ze ≥ 0 ∀ arcs e

We first give a proof of a dlog ne upper bound on the integrality gap of the weaker (ALP ) relaxation
(Theorem 2), and then show that for any asymmetric metric (V, d), the optimal values of (ALP )
and (ALP ′) coincide (Theorem 3). This gives an independent proof of the same upper bound for
the stronger (ALP ′) relaxation. Our proof makes use of the following directed splitting-off theorem
due to Mader [Mad82].

Theorem 1 (Mader [Mad82]) Let D = (U + x,A) be a directed graph such that indegree equal
to outdegree at x, and the directed connectivity between any pair of vertices in U is at least k.
Then for every arc (x, v) ∈ A there exists an arc (u, x) ∈ A so that after replacing the two arcs
(u, x) and (x, v) by an arc (u, v), the directed connectivity between every pair of vertices in U
remains at least k.

This operation of replacing two arcs (u, x) and (x, v) by the single arc (u, v) is called splitting-off.

Theorem 2 The integrality gap of (ALP ) is at most dlog ne.

Proof: This proof has the same outline as the proof for the stronger LP relaxation (ALP ′) in
Williamson [Wil90]. We use the dlog ne approximation algorithm for ATSP due to Frieze et
al. [FGM82], which works by computing minimum-length cycle covers1 repeatedly (in at most
dlog ne iterations). Briefly, the algorithm is as follows: initially set R of representatives is V ; in

1A cycle cover is a subgraph in which every vertex has in-degree and out-degree exactly one, and hence is a cover
of the vertices by directed cycles.
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each iteration compute a minimum cycle cover on R, and retain one (arbitrary) representative from
each cycle into the set R for the next iteration. In this algorithm, if U ⊆ V is the set of represen-
tative vertices in some iteration, the cost incurred in this iteration equals the minimum cycle cover
on U . Let ALP (U) denote the LP relaxation ALP restricted to a subset U of the original vertices
(and arcs induced on U), and opt(ALP (U)) its optimal value. Then we have:

Claim 1 For any subset U ⊆ V , the minimum cycle cover on U has cost at most opt(ALP (U)).

Proof: Consider the following linear relaxation for cycle cover.

min
∑

e de · xe
s.t.

x(δ+(v))− x(δ−(v)) = 0 ∀v ∈ U
(CLP ) x(δ+(v)) ≥ 1 ∀v ∈ U

xe ≥ 0 ∀ arcs e

These constraints are equivalent to a circulation problem on network N which contains two vertices
vin and vout for each vertex v ∈ U . The arcs in N are: {(uout, vin) : ∀ u, v ∈ U, u 6= v}, and
{(vin, vout) : ∀v ∈ U}. The cost of each (uout, vin) arc is d(u, v), and each (vin, vout) arc costs 0. It
is easy to see that the minimum cost circulation on N that places at least one unit of flow on each
arc in {(vin, vout) : ∀v ∈ U} is exactly the optimal solution to (CLP ). But the linear program for
minimum cost circulation is integral (network matrices are totally unimodular, c.f. [NW99]), and
so is (CLP ).

Any integral solution to (CLP ) defines an Eulerian subgraph H with each vertex in U having
degree at least 1. Each connected component C of H is Eulerian and can be shortcut to get a
cycle on the vertices of C. Since triangle inequality holds, the cost of each such cycle is at most
that of the original component. So this gives a cycle cover of U of cost at most opt(CLP (U)), the
optimal value of (CLP ). But the linear program ALP (U) is more constrained than CLP (U); so
the minimum cycle cover on U costs at most opt(ALP (U)). �

We now establish the monotonicity property of ALP , namely:

opt(ALP (U)) ≤ opt(ALP (V )) ∀U ⊆ V

Consider any subset U ⊆ V , vertex v ∈ U , and U ′ = U − v; we will show that opt(ALP (U ′)) ≤
opt(ALP (U)). Let z be any fractional solution to ALP (U) so that L · z is integral for some large
enough L ∈ N. Define a multigraph H on vertex set U with L · zw1,w2 arcs going from w1 to w2 (for
all w1, w2 ∈ U). From the feasibility of z in ALP (U), H is Eulerian and has arc-connectivity at
least L. Now applying Theorem 1 repeatedly on vertex v ∈ U (until its degree is zero), we obtain a
multigraph H ′ on U ′ = U−v such that the arc-connectivity of H ′ is still at least L. Further, due to
the triangle inequality, the total cost of H ′ is at most that of H. Finally, scaling down H ′ by L we
obtain a fractional solution to ALP (U ′) of cost at most d ·z. Thus, opt(ALP (U ′)) ≤ opt(ALP (U)),
and using this inductively we have monotonicity for ALP .

This suffices to prove the theorem, as the cost incurred in each iteration of the Frieze et
al. [FGM82] algorithm can be bounded by opt(ALP (V )), and there are at most dlog ne iterations.�

We note that in order to prove the monotonicity property for the linear program (ALP ′),
Williamson [Wil90] used the equivalence of (ALP ′) and the Held-Karp bound [HK70], and showed
that the Held-Karp lower bound is monotone. Using splitting-off, we obtained a more direct proof of
monotonicity. In fact, we can prove a stronger statement than Theorem 2, which relates the optimal
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values of (ALP ) and (ALP ′). It was shown in [Wil90] that the optimal value of (ALP ′) equals the
Held-Karp lower bound [HK70]; so the next theorem shows that for any ATSP instance, the values
of the Held-Karp bound, (ALP ′) and (ALP ) are all equal. A similar result for the symmetric case
was proved in Goemans and Bertsimas [GB93], which was also based on splitting-off (for undirected
graphs).

Theorem 3 The optimal values of (ALP ) and (ALP ′) are equal.

Proof: Clearly the optimal value of (ALP ′) is at most that of (ALP ). We will show that any
fractional solution z to (ALP ) can be modified to a fractional solution z′ to (ALP ′), such that∑

e de · z′e ≤
∑

e de · ze, which would prove the theorem. As in the proof of Theorem 2, let L ∈ N
be large enough so that L · z is integral, and let H denote a multi di-graph with L · zu,v arcs from
u to v, for all u, v ∈ V . From the feasibility of z in (ALP ), we know that H is Eulerian and has
arc-connectivity at least L.

If some v ∈ V has degree strictly greater than L, we reduce its degree by one as follows. Let v′

be any vertex in V \v, and Pv,v′ denote a minimal set of arcs that constitutes exactly L arc-disjoint
paths from v to v′. Due to minimality, the number of arcs in Pv,v′ incident to v is exactly L and
they are all arcs leaving v. Since the degree of v is at least L+ 1, there is an arc (v, w) ∈ H \Pv,v′ .
Applying Theorem 1 to arc (v, w), we obtain arc (u, v) ∈ H \ Pv,v′ such that the arc-connectivity
of vertices V \ v in H ′ = (H \ {(u, v), (v, w)}) ∪ (u,w) remains at least L. Further, by the choice
of (v, w), Pv,v′ ⊆ H ′; so the arc-connectivity from v to v′ in H ′ is at least L. Since H ′ is Eulerian,
it now follows that the arc-connectivity of vertices V in H ′ is also at least L. Thus we obtain a
multigraph H ′ from H which maintains connectivity and decreases the degree of vertex v by 1.
Repeating this procedure for all vertices in V having degree greater than L, we obtain (an Eulerian)
multigraph G having arc-connectivity L such that the degree of each vertex equals L.

Note that in the degree reducing procedure above, the only operation we used was splitting-off.
Since d satisfies triangle inequality, the total cost of arcs in G (under length d) is at most that of
H. Finally, scaling down G by L, we obtain the claimed fractional solution z′ to (ALP ′).�

Using this correspondence, we obtain the following improvement:

Corollary 1 ([AGM+10]) The integrality gap of (ALP ) is O(log n/ log log n).

Proof: Asadpour et al. [AGM+10] gave an O(log n/ log log n)-approximation algorithm for ATSP
relative to the LP relaxation (ALP ′). Using Theorem 3 we obtain the corollary. �

2.2 Minimum ratio ATSP

We now describe the approximation algorithm for minimum ratio ATSP, which uses Theorem 2.
We call any tour containing the root r an r-tour. In addition, we require the following strengthening
of Mader’s splitting-off Theorem, in the case of Eulerian digraphs.

Theorem 4 (Frank [Fra89] (Theorem 4.3) and Jackson [Jac88]) Let D = (U + x,A) be a
directed Eulerian graph. For each arc f = (x, v) ∈ A there exists an arc e = (u, x) ∈ A so that
after replacing arcs e and f by arc (u, v), the directed connectivity between every pair of vertices in
U is preserved.

Theorem 5 There is an O(log2 n)-approximation algorithm for the minimum ratio ATSP problem.

6



Proof: The approximation algorithm for minimum ratio ATSP is based on the following LP re-
laxation for this problem.

min
∑

e de · xe
s.t.

x(δ+(v)) = x(δ−(v)) ∀v ∈ V
x(δ+(S)) ≥ yv ∀S ⊆ V − {r} ∀v ∈ S

(RLP )
∑

v 6=r yv ≥ 1
xe ≥ 0 ∀ arcs e

0 ≤ yv ≤ 1 ∀v ∈ V − {r}

To see that this is indeed a relaxation, consider the optimal integral r-tour C∗ that covers l vertices
(excluding r). We construct a solution to (RLP ) by setting yv = 1

l for all vertices v ∈ C∗, and
xe = 1

l for all arcs e ∈ C∗. It is easy to see that this solution is feasible and has cost d(C∗)
l which is

the optimal ratio. The linear program (RLP ) can be solved in polynomial time using the Ellipsoid
algorithm. The algorithm is as follows:

1. Let (x, y) denote an optimal solution to (RLP ).

2. Discard all vertices v ∈ V \r with yv ≤ 1
2n ; all remaining vertices have y-values in the interval

[ 1
2n , 1].

3. Define g = dlog2 n + 1e groups of vertices where group Gi (for i = 1, · · · , g) consists of all
vertices v having yv ∈ ( 1

2i ,
1

2i−1 ].

4. Run the Frieze et al. [FGM82] algorithm on each of Gi ∪ {r} and output the r-tour with the
smallest ratio.

Note that the total y-value of vertices remaining after step 2 is at least 1/2. Consider any group
Gi; let Li ∈ N be large enough so that Li · 2i · x is integral. We note that Lis are not required
to by polynomially bounded- we use them only in the analysis and not in the algorithm. Define a
multigraph Hi with Li ·2i ·xu,v arcs from u to v for all u, v ∈ V . Below, for a directed graph D and
vertices u, v ∈ D the directed arc-connectivity from u to v is denoted λ(u, v;D). From the feasibility
of x in RLP , it is clear that Hi is Eulerian. Further, for all v ∈ Gi, λ(r, v;Hi) = λ(v, r;Hi) ≥
Li · 2i · yv ≥ Li. Now we split-off vertices in V \ (Gi ∪ {r}) one by one, using Theorem 4, which
preserves the arc-connectivity of Gi ∪ {r}. This results in an Eulerian multigraph H ′i on vertices
Gi ∪ r satisfying λ(r, v;H ′i), λ(v, r;H ′i) ≥ Li for all v ∈ Gi. Further, due to triangle inequality the
total weight of arcs in H ′i is at most that in Hi. Now, scaling down H ′i by Li, we obtain a fractional
solution zi to ALP (Gi ∪ {r}) of cost d · zi ≤ 2i(d · x). Now Theorem 2 implies that there exists an
r-tour on Gi of cost at most β = dlog ne times d · zi. In fact, the Frieze et al. [FGM82] algorithm
applied on Gi + r produces such a tour. We now claim that one of the r-tours found in step 4 (over
all i = 1, · · · g) has a small ratio:

g

min
i=1

β(d · zi)
|Gi|

≤
g

min
i=1

2iβ(d · x)
|Gi|

≤
β
∑g

i=1 d · x∑g
i=1 |Gi|/2i

≤ 4gβ · (d · x)

The last inequality follows from the fact that after step 2, 1
2 ≤

∑
v 6=r yv ≤

∑g
i=1

1
2i−1 |Gi| =

2
∑g

i=1
|Gi|
2i , since there is a total y-weight of at least 1/2 even after step 2. Thus we have a
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4gβ = O(log2 n) approximation algorithm for minimum ratio ATSP. �

We note that for this proof of Theorem 5 to work, just a bound on the integrality gap of (ALP ′) [Wil90]
is insufficient. The Eulerian multigraph H ′i that gives rise to the fractional ATSP solution zi on
Gi ∪ {r} may not have degree Li at all vertices; so zi may be infeasible for ALP ′(Gi ∪ {r}). This
is the reason we need to consider the LP relaxation (ALP ).

Corollary 2 There is an O
(

log2 n
log logn

)
-approximation algorithm for minimum ratio ATSP.

Proof: This is identical to the algorithm in Theorem 6, except that we use the Asadpour et
al. [AGM+10] algorithm in Step 4, and use Corollary 1 instead of Theorem 2 in the analysis.�

2.3 Application to Directed k-TSP

We now describe how minimum ratio ATSP can be used to obtain an approximation algorithm for
the directed k-TSP problem.

Theorem 6 There is a polynomial time O(log2 n · log k) approximation algorithm for the directed
k-TSP problem.

Proof: We use the α = O(log2 n)-approximation algorithm for the related minimum ratio ATSP
problem. Let OPT denote the optimal value of the directed k-TSP instance. By performing binary
search, we may assume that we know the value of OPT within a factor 2. We only consider vertices
v ∈ V satisfying d(r, v), d(v, r) ≤ OPT ; this does not affect the optimal solution. Then we invoke
the minimum ratio ATSP algorithm repeatedly (each time restricted to the currently uncovered
vertices) until the total number of covered vertices t ≥ k

2 . Note that for every instance of the ratio
problem that we solve, there is a feasible solution of ratio ≤ 2·OPT

k (namely, the optimal k-TSP
tour covering at least k/2 residual vertices). Thus we obtain an r-tour on t ≥ k

2 vertices having
ratio ≤ 2α·OPT

k ; so the length of this r-tour is at most 2αt·OPT
k . Note that t may be much larger

than k. Therefore, we split this r-tour into l = d2tk e di-paths, each containing at least t
l ≥

k
4

vertices (this can be done in a greedy fashion). By averaging, the minimum length di-path in this
collection has length at most 2αtOPT/k

l ≤ α ·OPT . Joining the first and last vertices in this di-path
to r, we obtain an r-tour containing at least k

4 vertices, of length at most (α + 2) · OPT . So we
get an (O(α), 4) bi-criteria approximation for directed k-TSP. This algorithm can now be used as
follows. Until k vertices are covered, repeat: if k′ denotes the number of vertices covered so far, run
the bi-criteria approximation algorithm with a target of k − k′, restricted to currently uncovered
vertices. A standard set cover based analysis implies that this is an O(α · log k)-approximation
algorithm for directed k-TSP.�

3 Directed Orienteering

In this section, we consider the orienteering problem in asymmetric metrics. As mentioned before,
this is in fact the directed counterpart of the point-to-point orienteering problem [BBCM04]. In
what follows, we adapt the framework of Blum et al. [BCK+07] (for undirected orienteering) to the
directed case.
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As in Blum et al. [BCK+07], we define the excess of an s-t di-path as the difference of the path
length and the shortest path distance from s to t. The directed min-excess problem is defined as
follows: given an asymmetric metric (V, d), origin (s) and destination (t) vertices, and a target k,
find an s-t di-path of minimum excess that visits at least k other vertices.

The directed k-path problem is the following: given an asymmetric metric (V, d), origin (s) and
destination (t) vertices, and a target k, find an s-t di-path of minimum length that visits at least
k other vertices.

The algorithm of [BCK+07] for directed orienteering is based on the following sequence of
reductions: directed k-path to minimum ratio ATSP (Theorem 7), directed minimum excess to
directed k-path (Theorem 8), and directed orienteering to directed minimum excess (Theorem 9).
The last two reductions are identical to the corresponding reductions for undirected orienteering in
Blum et al. [BCK+07] and Bansal et al. [BBCM04].

We prove the following bi-criteria approximation guarantee for the directed k-path problem.

Theorem 7 A ρ-approximation algorithm for minimum ratio ATSP implies a (3, 4ρ) bi-criteria
approximation algorithm for the directed k-path problem.

Proof: We assume (by performing a binary search) that we know the optimal value OPT of the
directed k-path instance within a constant factor, and let G denote the directed graph corresponding
to metric (V, d) (which has an arc of length d(u, v) from u to v for every pair of vertices u, v ∈ V ).
We modify graph G to obtain graph H as follows: (a) discard all vertices v such that d(s, v) > OPT
or d(v, t) > OPT ; and (b) add an extra arc from t to s of length OPT . In the rest of this proof, we
refer to the shortest path metric induced by H as (V, l). Note that each tour in metric l corresponds
to a tour in graph H (using shortest paths in H for each metric arc); below, any tour in metric l
will refer to the corresponding tour in graph H. Since there is an s-t path of length OPT (in metric
d) covering k vertices, appending the (t, s) arc, we have an s-tour σ∗ of length at most 2 ·OPT (in
metric l) covering k + 1 vertices.

Now, we run the minimum ratio ATSP algorithm with root s in metric l repeatedly until either
(1) k

2 vertices are covered and the extra (t, s) arc is never used in the current tour (in graph H);
or (2) the extra (t, s) arc is used for the first time in the current tour (in H). Let σ be the s-tour
obtained (in graph H) at the end of this iteration, and h the number of vertices covered. Note that
each s-tour added in a single call to minimum ratio ATSP, may use the extra (t, s) arc at most once
(by an averaging argument). So in case (1), the (t, s) arc is absent in σ, and in case (2), the (t, s)
arc is used exactly once and it is the last arc in σ. Note also that during each call of minimum
ratio ATSP, there is a feasible solution of ratio 2OPT

k (σ∗ restricted to the remaining vertices); so
the ratio of the s-tour σ, l(σ)

h ≤ ρ · 2OPT
k . From σ we now obtain a feasible s-t path τ in metric d

as follows. In case (1), add a direct (s, t) arc: τ = σ · (s, t); in case (2), remove the only copy of
the extra (t, s) arc (occurring at the end of σ): τ = σ \ {(t, s)}. In either case, s-t path τ contains
h vertices and has length d(τ) ≤ 2ρh

k OPT + OPT . Note that in case (1), h ≥ k
2 ; and in case (2),

since the extra (t, s) arc is used, OPT
h ≤ l(σ)

h ≤ 2ρOPTk , so h ≥ k
2ρ . Hence in either case, τ contains

h ≥ k
2ρ vertices and d(τ) ≤ 4ρh

k OPT . We now greedily split τ into maximal paths, each of which

has length at most OPT ; the number of subpaths obtained is at most d(τ)
OPT ≤

4ρh
k . So one of these

paths contains at least h/(4ρh
k ) = k

4ρ vertices. Adding direct arcs from s to the first vertex on this
path and from the last vertex on this path to t, we obtain an s-t path of length at most 3 · OPT
containing at least k

4ρ vertices.�
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The next two theorems together reduce the directed orienteering problem to the directed k-path
problem, for which we just obtained an approximation algorithm.

Theorem 8 (Blum et al. [BCK+07]) An (α, β) bi-criteria approximation algorithm for the di-
rected k-path problem implies a (2α − 1, β) bi-criteria approximation algorithm for the directed
minimum excess problem.

Theorem 9 (Bansal et al. [BBCM04]) An (α, β) bi-criteria approximation algorithm for the
directed minimum excess problem implies an dαe · β approximation algorithm for the directed ori-
enteering problem.

The proofs of Theorems 8 and 9 are identical to the corresponding proofs in the undirected setting,
and are not repeated here. The only difference from the undirected case is that we consider bi-
criteria guarantees for the directed k-path and minimum excess problems. We now obtain a result
that relates the directed orienteering problem and minimum ratio ATSP.

Corollary 3 A ρ-approximation algorithm for the minimum ratio ATSP problem implies an O(ρ)-
approximation algorithm for the directed orienteering problem. Conversely, a ρ-approximation algo-
rithm for directed orienteering implies an O(ρ)-approximation algorithm for minimum ratio ATSP.

Proof: The first direction follows directly from Theorems 7,8 and 9. For the other direction, we
are given a ρ-approximation algorithm for directed orienteering. Let D denote the length of some
minimum ratio tour σ∗, t the last vertex visited by σ∗ (before returning to the root r), and h the
number of vertices it covers; so the optimal ratio is D

h . The algorithm for minimum ratio ATSP
first guesses a value D′ such that D′ ≤ D ≤ 2 ·D′, and the last vertex t. Note that we can guess
powers of 2 for the value of D′, which gives O(log2(n · dmax)) possibilities for D′ (where dmax is
the length of the longest arc). Also, the number of possibilities for t is at most n; so the algorithm
only makes a polynomial number of guesses. The algorithm then runs the directed orienteering
algorithm with r and t as the start/end vertices and a length bound of 2D′ − d(t, r) ≥ D − d(t, r).
Note that removing the last (t, r) arc from σ∗ gives a feasible solution to this orienteering instance
that covers h vertices. Hence the ρ-approximation algorithm is guaranteed to find an r-t di-path
covering at least h

ρ vertices, having length at most 2D′ − d(t, r). Now, adding the (t, r) arc to this
path gives an r-tour of ratio at most 2D′/(hρ ) ≤ 2ρDh .�

Corollary 3 and Corollary 2 imply an O(log2 n/ log logn)-approximation algorithm for the di-
rected orienteering problem. Further, any improvement in the approximation guarantee of minimum
ratio ATSP implies a corresponding improvement for directed orienteering.

3.1 Some Extensions

Discounted reward TSP In this problem [BCK+07], we are given a metric space with rewards
on vertices, and a discount factor γ < 1; the goal is to find a path that maximizes the total
discounted reward (where the reward for a vertex visited at distance t is discounted by a factor γt).
The approximation algorithm for the undirected version of this problem (Blum et al. [BCK+07])
uses the minimum excess problem as a subroutine within a dynamic program. It can be verified
directly that this reduction also works in the directed case, and so the (O(1), O(log2 n/ log logn)) bi-
criteria approximation for directed minimum excess implies an O(log2 n/ log log n)-approximation
algorithm for directed discounted reward TSP.
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Vehicle routing problem with time windows In this VRP, we are given a metric space with a
specified depot vertex and all other vertices having a time window (that specifies a release time and a
deadline), and the goal is to find a path starting at the depot that maximizes the number of vertices
visited in their time window. Note that orienteering is a special case when all vertices have the same
time window. Bansal et al. [BBCM04] use the point-to-point orienteering problem as a subroutine,
and show that an α-approximation algorithm for orienteering implies an O(α·log2 n)-approximation
for vehicle routing with time-windows. In fact, all the steps used in these reductions can be adapted
to the case of directed metrics as well. So there is an O(log4 n/ log logn)-approximation algorithm
for VRP with time-windows on asymmetric metrics.

A special case of the VRP with time-windows occurs when each vertex has the same release
time, and only the deadline is vertex dependent; this problem is deadline TSP. The results of
Bansal et al. [BBCM04] for this problem, along with the directed orienteering algorithm imply an
O(log3 n/ log log n)-approximation algorithm for directed deadline TSP.
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