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Abstract

Iterative rounding and relaxation have arguably become the method of choice in dealing with
unconstrained and constrained network design problems. In this paper we extend the scope of the
iterative relaxation method in two directions: (1) by handling more complex degree constraints in the
minimum spanning tree problem (namely laminar crossing spanning tree), and (2) by incorporating
‘degree bounds’ in other combinatorial optimization problems such as matroid intersection and lat-
tice polyhedra. We give new or improved approximation algorithms, hardness results, and integrality
gaps for these problems.

e Our mainresultis a (1, b+ O(log n))-approximation algorithm for the minimum crossing span-
ning tree (MCST) problem with laminar degree constraints. The laminar MCST problem is a
natural generalization of the well-studied bounded-degree MST, and is a special case of general
crossing spanning tree. We give an additive (log® m) hardness of approximation for general
MCST, even in the absence of costs (¢ > 0 is a fixed constant, and m is the number of degree
constraints). This also leads to a multiplicative 2(log® m) hardness of approximation for the
robust k-median problem [1], improving over the previously known factor 2 hardness.

e We then consider the crossing contra-polymatroid intersection problem and obtain a (2, 2b +
A —1)-approximation algorithm, where A is the maximum element frequency. This models for
example the degree-bounded spanning-set intersection in two matroids. Finally, we introduce
the crossing lattice polyhedron problem, and obtain a (1, b+ 2A — 1) approximation algorithm
under certain condition. This result provides a unified framework and common generalization
of various problems studied previously, such as degree bounded matroids.

1 Introduction

Iterative rounding and relaxation have arguably become the method of choice in dealing with uncon-
strained and constrained network design problems. Starting with Jain’s elegant iterative rounding scheme
for the generalized Steiner network problem in [18], an extension of this technique (iterative relaxation)
has more recently lead to breakthrough results in the area of constrained network design, where a number
of linear constraints are added to a classical network design problem. Such constraints arise naturally in
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a wide variety of practical applications, and model limitations in processing power, bandwidth or budget.
The design of powerful techniques to deal with these problems is therefore an important goal.

The most widely studied constrained network design problem is the minimum-cost degree-bounded
spanning tree problem. In an instance of this problem, we are given an undirected graph, non-negative
costs for the edges, and positive, integral degree-bounds for each of the nodes. The problem is easily
seen to be NP-hard, even in the absence of edge-costs, since finding a spanning tree with maximum
degree two is equivalent to finding a Hamiltonian Path. A variety of techniques have been applied to this
problem [9, 10, 15, 21, 22, 29, 30], culminating in Singh and Lau’s breakthrough result in [34]. They
presented an algorithm that computes a spanning tree of at most optimum cost whose degree at each
vertex v exceeds its bound by at most 1, using the iterative relaxation framework developed in [24, 34].

The iterative relaxation technique has been applied to several constrained network design problems:
spanning tree [34], survivable network design [24, 25], directed graphs with intersecting and crossing
super-modular connectivity [24, 4]. It has also been applied to degree bounded versions of matroids and
submodular flow [19].

In this paper we further extend the applicability of iterative relaxation, and obtain new or improved bi-

criteria approximation results for minimum crossing spanning tree (MCST), crossing contra-polymatroid
intersection, and crossing lattice polyhedra. We also provide some hardness results and integrality gaps
for these problems.
Notation. As is usual, when dealing with an undirected graph G = (V| E), for any S C V we let
da(S) == {(u,v) € E|u € S, v ¢ S} When the graph is clear from the context, the subscript
is dropped. A collection {Uy,--- ,U;} of vertex-sets is called laminar if for every pair U;, U; in this
collection, we have U; C U;, U; C U, or U; NU; = 0. A (p, f(b)) approximation for a minimum cost
degree bounded problem refers to a solution that (1) has cost at most p times the optimum that satisfies
the degree bounds, and (2) satisfies the relaxed degree constraints in which a bound b is replaced with a
bound f(b).

1.1 Our Results, Techniques and Paper Outline

Laminar MCST. Our main result is for a natural generalization of bounded-degree MST (called Lam-
inar Minimum Crossing Spanning Tree or laminar MCST), where we are given an edge-weighted undi-
rected graph with a laminar family £ = {S;}"; of vertex-sets having bounds {b;}/" ,; and the goal is to
compute a spanning tree of minimum cost that contains at most b; edges from 6(S;) for each i € [m)].

The motivation behind this problem is in designing a network where there is a hierarchy (i.e. laminar
family) of service providers that control nodes (i.e. vertices). The number of edges crossing the boundary
of any service provider (i.e. its vertex-cut) represents some cost to this provider, and is therefore limited.
The laminar MCST problem precisely models the question of connecting all nodes in the network while
satisfying bounds imposed by all the service providers.

From a theoretical viewpoint, cut systems induced by laminar families are well studied, and are
known to display rich structure. For example, one-way cut-incidence matrices are matrices whose
rows are incidence vectors of directed cuts induced by the vertex-sets of a laminar family; It is well
known (e.g., see [23]) that such matrices are totally unimodular. Using the laminar structure of degree-
constraints and the iterative relaxation framework, we obtain the following main result, and present its
proof in Section 2.

Theorem 1 There is a polynomial time (1,b+ O(logn)) bicriteria approximation algorithm for laminar
MCST. That is, the cost is no more than the optimum cost and the degree violation is at most an additive
O(log n). This guarantee is relative to the natural LP relaxation.



This guarantee is substantially stronger than what follows from known results for the general min-
imum crossing spanning tree (MCST) problem: where the degree bounds could be on arbitrary edge-
subsets E1, ..., E,,. In particular, for general MCST a (1,0 + A — 1) [4, 19] is known where A is
the maximum number of degree-bounds an edge appears in. However, this guarantee is not useful for
laminar MCST as A can be as large as 2(n) in this case. If a multiplicative factor in the degree violation
is allowed, Chekuri et al. [12] recently gave a very elegant (1, (1 + €)b+ O(% log m)) guarantee, which
subsumes the previous best (O(logn), O(log m) b) result [6]. However, these results also cannot be used
to obtain a small additive violation, especially if b is large'. In particular, both the results [6, 12] for gen-
eral MCST are based on the natural LP relaxation, for which there is an integrality gap of b + Q(y/n)
even without regard to costs and when m = O(n) [33] (see also Section 3.2). Furthermore, combined
with the recent hardness result of Charikar et al. [8] on discrepancy minimization, it follows that it is
NP-hard to achieve an additive o(/n) guarantee on degree for MCST (we give more details later). On
the other hand, Theorem 1 shows that a purely additive O(logn) guarantee on degree (relative to the LP
relaxation and even in presence of costs) is indeed achievable for MCST, when the degree-bounds arise
from a laminar cut-family.

The algorithm in Theorem 1 is based on iterative relaxation and uses two main new ideas. Firstly, we
drop a carefully chosen constant fraction of degree-constraints in each iteration. This is crucial as it can
be shown that dropping one constraint at a time as in the usual applications of iterative relaxation can
indeed lead to a degree violation of 2(A). Secondly, the algorithm does not just drop degree constraints,
but in some iterations it also generates new degree constraints, by merging existing degree constraints.

All previous applications of iterative relaxation to constrained network design treat connectivity and
degree constraints rather asymmetrically. While the structure of the connectivity constraints of the under-
lying LP is used crucially (e.g., in the ubiquitous uncrossing argument), the handling of degree constraints
is remarkably simple. Constraints are dropped one by one, and the final performance of the algorithm is
good only if the number of side constraints is small (e.g., in recent work by Grandoni et al. [16]), or if
their structure is simple (e.g., if the ‘frequency’ of each element is small). In contrast, our algorithm for
laminar MCST exploits the structure of degree constraints much more carefully.

Hardness Results. We obtain the following hardness of approximation for the general MCST problem
(and its matroid counterpart). In particular this rules out any algorithm for MCST that has additive
constant degree violation, even without regard to costs.

Theorem 2 Unless N'P has quasi-polynomial time algorithms, the MCST problem admits no polyno-
mial time O(log®m) additive approximation for the degree bounds for some constant ¢ > 0; this holds
even when there are no costs.

The proof for this theorem is given in Section 3, and uses a two-step reduction from the well-known
Label Cover problem. First, we show hardness for a uniform matroid instance. In a second step, we then
demonstrate how this implies the result for MCST claimed in Theorem 2.

As mentioned above, in very recent work Charikar et al. [8] showed that it is NP-hard to obtain better
than O(+/n) additive approximation for discrepancy minimization. This implies a b + €(y/n) hardness
of approximation for MCST, which is much stronger than Theorem 2. Still our hardness result has some
advantages. Theorem 2 has the additional property that all degree bounds in its hard instances are unit;
whereas the degree bounds in the hard instances implied by [8] are £2(n). This turns out to be useful

' An approximation algorithm for MCST is said to have additive degree guarantee of  if, given any instance with bounds
b, its solution has degree < b + (3. In particular, the (1 + €) - b + O(+ log m) degree guarantee from [12] does not imply any
non-trivial additive guarantee since it has a multiplicative factor ahead of b.



in the (seemingly unrelated) context of robust (or min-max) k-median [1]. In this problem, there are m
different client-sets in a metric and the goal is to open k facilities that are simultaneously good (in terms
of the k-median objective) for all the client-sets. Anthony et al. [1] obtained a logarithmic approximation
algorithm for this problem, and showed that it is hard to approximate better than factor 2. The following
result shows that the robust k-median problem is indeed harder to approximate than usual k-median, for
which O(1)-approximation algorithms are known [7, 3]. We present its proof in Section 3.1.

Corollary 3 Robust k-median is Q(log® m)-hard to approximate even on uniform metrics (for some fixed
constant ¢ > 0), assuming N'P does not have quasi-polynomial time algorithms.

Degree Bounds in More General Settings. We consider crossing versions of other classic combina-
torial optimization problems, namely contra-polymatroid intersection and lattice polyhedra [17].

A set function ¢ : 2 — 7 (on groundset E) is called supermodular (w.r.t. the Boolean lattice
(2F,C,n,V)) if, for each A, B C E we have g(A) + g(B) < g(AU B) + g(AnN B). The contra-
polymatroid associated with such an integral supermodular function g is the polyhedron {z € R¥ :
z(U) > ¢g(U), VU C E, x > 0}. It is well-known (see Equation (44.38) [32]) that this linear system is
box totally dual integral; in particular the polytope {z € R : z(U) > ¢(U), YU C E, 0 < z < 1}
is integral. Moreover, it is also known (Corollary 46.1d in [32]) that the intersection of two contra-
polymatroids (given by integral supermodular functions 1,79 : 2¥ — 7Z) is box totally dual integral.
Hence {z € R : 2(U) > max{r1(U),r2(U)} VU C E, 0 < z < 1} is an integral polytope. Contra-
polymatroid intersection contains, for example, the spanning-set intersection in two matroids. We study
the natural degree bounded version of this problem, i.e.

Definition 4 (Minimum crossing contra-polymatroid intersection) Let 1,72 : 2F — 7 be two su-
permodular functions, cost function ¢ : E — Ry and {E;}icr be a collection of subsets of E with
corresponding bounds {b; };c1. Then the goal is to minimize:

{cTz ‘ z(S) > max{ri(5),r2(S)},VS C E;
(B <b;, Viel, ze{0,1}*L

In particular, this definition captures the degree-bounded version of spanning-set intersection in two
matroids (e.g., the bipartite edge-cover problem). We note that this definition does not capture alternate
notions of matroid intersection, such as intersection of bases in two matroids; hence it does not apply to
the degree-bounded arborescence problem. 2

Let A = maxecp |{i € [m] | e € E;}| be the largest number of sets E; that any element of E
belongs to, and refer to it as frequency. The proof of this theorem can be found in Section 4.

Theorem 5 Any optimal basic solution x* of the linear relaxation of the minimum crossing contra-
polymatroid intersection problem can be rounded into an integral solution & such that:

z(S) > max{r1(S5),r2(S)}, VS C E; T(E;) <2, +A—1,Viel; and e <2clpr.

The algorithm for this theorem again uses iterative relaxation, and its proof is based on a ‘fractional
token’ counting argument similar to the one used in [4]. We also observe that the natural iterative relax-
ation steps are insufficient to obtain a better approximation guarantee.

*In an earlier version of the paper [5], we had incorrectly claimed that our result extends to degree-bounded arborescence.



It can be observed that uncrossing techniques play an essential role when analyzing iterative re-
laxation algorithms on combinatorial optimization problems where, additionally, some sort of “degree
bound constraints” have been added to the linear inequality system. Thus, when looking for some gen-
eral framework of systems, let’s say totally dual integral” (TDI) system, for which iterative relaxation
techniques lead to “good” approximation guarantees for the corresponding crossing problem, the lattice
polyhedron model, as introduced by Hoffman and Schwartz [17] seems to be a promising candidate.

Crossing Lattice Polyhedra. Lattice polyhedra form a unified framework for various discrete optimiza-
tion problems (like, e.g., contra-polymatroid intersection, or planar min cut). They are polyhedra of
type:
{z e R” | z(p(S)) > r(5), VSeF}

where F denotes some arbitrary non-empty finite set, F relates to a collection of subsets of F via some
mapping p : F — 2P, and F induces a lattice-type structure (F, <, A, V) with some partial order (F, <)
and binary meet and join operations A and V. It is required that F and p satisfy certain submodularity
and consecutive properties (which are easily seen to be true for the Boolean lattice with the identity
map), and 7 is supermodular w.r.t. A and V. A precise definition is given in Section 5, where we also
mention some examples of lattice polyhedra. The key property of lattice polyhedra is that the uncrossing
technique can be applied. Using this uncrossing property it is not hard to see that the underlying system
is box-TDI [17], and min-max theorems for several classical discrete optimization problems find their
explanation this way. The integrality result of Hoffman and Schwartz was just a theoretical existence
result without algorithmic foundation. Recently, the first combinatorial algorithm was found [27]. We
refer the reader to [32] for a more comprehensive treatment of this subject.

Thus, as uncrossing techniques are crucial in almost all iterative relaxation approaches for optimiza-
tion problems with degree bounds, we generalize our work even further and consider crossing lattice
polyhedra which arise from lattice polyhedra by adding “degree-constraints” of the form a; < z(E;) <
b; for a given collection {E; C E | i € I} and lower and upper bounds a,b € R!. We show that the
standard LP relaxation for the general crossing lattice polyhedron problem is weak; in Section 5.1 we
give instances of crossing planar min-cut where the LP-relaxation is feasible, but any integral solution
violates some degree-bound by €2(y/n). For this reason, we henceforth focus on a restricted class of
crossing lattice polyhedra in which the underlying lattice (F, <) satisfies the following monotonicity

property:
() S<T = |p(S)| <|p(T)] VS,TecF.

We obtain the following theorem whose proof is given in Section 5.

Theorem 6 For any instance of the crossing lattice polyhedron problem in which F satisfies property
(), there exists an algorithm that computes an integral solution of cost at most the optimal, where all
rank constraints are satisfied, and each degree bound is violated by at most an additive 2A — 1.

We note that the above property (x) is satisfied for matroids, and hence Theorem 6 matches the
previously best-known bound [19] for degree bounded matroids (with both upper/lower bounds). Also
note that property () holds whenever F is ordered by inclusion.

1.2 Related Work

As mentioned earlier, the basic bounded-degree MST problem has been extensively studied [9, 10, 15,
21, 22, 29, 30, 34]. The iterative relaxation technique for degree-constrained problems was developed



in [24, 34].

MCST was first introduced by Bilo et al. [6], who presented a randomized-rounding algorithm that
computes a tree of cost O(logn) times the optimum where each degree constraint is violated by a mul-
tiplicative O(logn) factor and an additive O(log m) term. Subsequently, Bansal et al. [4] gave an algo-
rithm that attains an optimal cost guarantee and an additive A — 1 guarantee on degree; recall that A
is the maximum number of degree constraints that an edge lies in. This algorithm used iterative relax-
ation as its main tool. Recently, Chekuri et al. [12] obtained an improved (1, (1 + €)b+ O(% logm))
approximation algorithm for MCST, for any € > 0; this algorithm is based on pipage rounding.

The minimum crossing matroid basis problem was introduced in [19], where the authors used itera-
tive relaxation to obtain (1) (1,b + A — 1)-approximation algorithm when there are only upper bounds
on degree, and (2) (1,b + 2A — 1)-approximation algorithm in the presence of both upper and lowed
degree-bounds. The [12] result also holds in this matroid setting. [19] also considered a degree-bounded
version of the submodular flow problem and gave a (1,b + 1) approximation guarantee.

The bounded-degree arborescence problem was considered in Lau et al. [24], where a (2,2b + 2)
approximation guarantee was obtained. Subsequently Bansal et al. [4] designed an algorithm that for
any 0 < e < 1/2, achieves a (1/¢,b,/(1 — €) + 4) approximation guarantee. They also showed that
this guarantee is the best one can hope for via the natural LP relaxation (for every 0 < ¢ < 1/2). In
the absence of edge-costs, [4] gave an algorithm that violates degree bounds by at most an additive two.
Recently Nutov [28] studied the arborescence problem under weighted degree constraints, and gave a
(2, 5b) approximation algorithm for it.

Lattice polyhedra were first investigated by Hoffman and Schwartz [17] and the natural LP relaxation
was shown to be totally dual integral. As stated above, the integrality result of Hoffman and Schwartz
was not accompanied by an algorithm. In the last decades, several algorithms, often of greedy-type,
have been established for special subclasses of lattice polyhedra. The farthest reaching greedy-type
algorithms for lattice polyhedra are, most probably, the algorithms in [14] and [13]. However, in all
these algorithms, the rank function was required to be monotone increasing on the underlying lattice, a
property which does not hold for, e.g., contra-polymatroid intersection. Recently, the first combinatorial
algorithm was established for lattice polyhedra in general [27].

2 Crossing Spanning Tree with Laminar degree bounds

In this section we prove Theorem 1 by presenting an iterative relaxation-based algorithm with the stated
performance guarantee. During its execution, the algorithm selects and deletes edges, and it modifies
the given laminar family of degree bounds. A generic iteration starts with a subset F' of edges already
picked in the solution, a subset F of undecided edges, i.e., the edges not yet picked or dropped from the
solution, a laminar family £ on V, and residual degree bounds b(.5) for each S € L.

The laminar family £ has a natural forest-like structure with nodes corresponding to each element of
L. Anode S € L is called the parent of node C' € L if S is the inclusion-wise minimal set in £ \ {C'}
that contains C'; and C' is called a child of S. Node D € L is called a grandchild of node S € L if S
is the parent of D’s parent. A node that has no parent is called root. Nodes S,T € L are siblings if
they have the same parent node; we also define the set of all root nodes to be siblings. The level of any
node S € L is the length of the path in this forest from S to the root of its tree. We also maintain a
linear ordering of the children of each £-node. A subset B C L is called consecutive if all nodes in B
are siblings (with some parent S) and they appear consecutively in the ordering of S’s children. In any
iteration (F, E, L, b), the algorithm solves the following LP relaxation of the residual problem.
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For any vertex-subset W C V and edge-set H, we let H(W) := {(u,v) € H | u,v € W} denote
the edges induced on W and 6 (W) := {(u,v) € H | u € W, v ¢ W} the set of edges crossing .
The first two sets of constraints are spanning tree constraints while the third set corresponds to the degree
bounds. Let = denote an optimal extreme point solution to this LP. By reducing degree bounds b(.5), if
needed, we assume that x satisfies all degree bounds at equality (the degree bounds may therefore be
fractional-valued). Let o := 24.

Definition 7 An edge e € E is said to be local for S € L if e has at least one end-point in S but is
neither in E(C) norin §(C)N4&(S) for any grandchild C of S. Let local(S) denote the set of local edges
for S. Anode S € L is said to be good if |local(S)| < a.

-
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Figure 1: Example of local edges.

Figure 1 shows a set .S, its children By and Bs, and grand-children C1, ..., Cy; edges in local(S)
are drawn solid, non-local ones are shown dashed.

Initially, F is the set of edges in the given graph, F' « (), £ is the original laminar family of vertex
sets for which there are degree bounds, and an arbitrary linear ordering is chosen on the children of each
node in £. In a generic iteration (F, E, £, b), the algorithm performs one of the following steps (see also
Figure 2):

1. Ifx, = 1 for some edge e € E then F' — F U{e}, E — E\ {e}, and set b(S) < b(S) — 1 for
all S € £ withe € §(95).

2. If z, = 0 for some edge e € F then E «— E \ {e}.

3. DropN: Suppose there at least |£|/4 good non-leaf nodes in £. Then either odd-levels or even-
levels contain a set M C L of |£|/8 good non-leaf nodes. Drop the degree bounds of all children
of M and modify £ accordingly. The ordering of siblings also extends naturally.



4. DropL: Suppose there are more than |£|/4 good leaf nodes in £, denoted by A/. Then partition N
into parts corresponding to siblings in £. For any part { Ny, --- , Ny} C N consisting of ordered
(not necessarily contiguous) children of some node S

(a) Define M; = No;—1 U Ny; forall 1 < i < |k/2] (if k is odd Ny, is not used).

(b) Modify £ by removing leaves { N1, - - - , Ny} and adding new leaf-nodes { M7, - -+ , M| /2 }
as children of S (if £ is odd Ny, is removed). The children of S in the new laminar family are
ordered as follows: each node M; takes the position of either No;_; or No; (arbitrarily), and
other children of S are unaffected.

(c) Set the degree bound of each M; to b(M;) = b(Na;—1) + b(Ng;).

S S

J O
NN N T
1 /D\ F \ DropN step DropL step
g Good non-leaf S Good leaves {Ni}?:1
K \ s D\
L E/
1 /Ig\ 3 /4 M, T |:|]WQ

Figure 2: Examples of the degree constraint modifications DropN and DropL.

Assuming that one of the above steps applies at each iteration, the algorithm terminates when £ = ()
and outputs the final set F' as a solution. It is clear that the algorithm outputs a spanning tree of G. An
inductive argument (see e.g. [24]) can be used to show that the LP (1) is feasible at each iteration and
¢(F) 4 zewr < 2, Where z, is the original LP value, z.,, is the current LP value, and F' is the chosen
edge-set at the current iteration. Thus the cost of the final solution is at most the initial LP optimum z,.
Next we show that one of the four iterative steps always applies.

Lemma 8 In each iteration, one of the four steps above applies.

Proof: Let z* be the optimal basic solution of (1), and suppose that the first two steps do not apply.
Hence, we have 0 < z} < 1forall e € E. The fact that z* is a basic solution together with a standard
uncrossing argument (e.g., see [18]) implies that * is uniquely defined by

2(E(U) = |U| - |[F(U)| -1 YUEeS, and xz(5(S))=0b(S), VSecr,

where S is a laminar subset of the tight spanning tree constraints, and £ is a subset of tight degree
constraints; moreover this set of constraints are linearly independent and |E| = |S| + |L'|.

A simple counting argument using extreme-point properties of z* yields 2|S| < | E| (see, e.g., [34]);
we give a proof below for completeness.



Claim 9 The number |S| of tight linearly independent spanning tree constraints of =* is at most |E|/2.

Proof: Recall that F denotes the support of the extreme point solution z*. Consider any U € S. Let
{W;} denote the set of U’s children in S; i.e. the inclusion-wise maximal sets in S\ {U} that are subsets
of U. We will show that |E(U) \ U;E(W;)| > 2; note that this suffices to prove the claim.

Observe that * (E(U) \ U, E(W;)) = «*(E(U)) — >_, «*(E(W;)) is an integer since U and {W;}
are tight spanning tree constraints (with integer values). Moreover E(U) \ |J; E(W;) # 0 since the
constraints U and {W;} are linearly independent; hence z* (E(U) \ U, E(W;)) > 0 (recall z} > 0
for all e € E). Thus we have z* (E(U) \ U, E(W;)) > 1. As 2} < 1forall e € E, it follows that
E(U)\ GEW,)| > 2 .

Using this claim and |E| = |S| + |£'], we obtain |S| < |£'| and |E| < 2|L'| < 2|L].

From the definition of local edges, we get that any edge e = (u, v) is local to at most the following
six sets: the smallest set S; € L containing u, the smallest set So € L containing v, the parents P;
and P, of S7 and S; resp., the least-common-ancestor L. of P} and P», and the parent of L. Thus
> ser local(S)| < 6|E|. From the above, we conclude that ) ¢ - [local(S)| < 12|£]. Thus at least
|£]/2 sets S € £ must have |local(S)| < a = 24, i.e., must be good. Now either at least |£|/4 of them

must be non-leaves or at least |£|/4 of them must be leaves. In the first case, step 3 holds and in the
second case, step 4 holds. [

It remains to bound the violation in the degree constraints, which turns out to be rather challenging.
We note that this is unlike usual applications of iterative rounding/relaxation, where the harder part is in
showing that one of the iterative steps applies.

It is clear that the algorithm reduces the size of £ by at least |£]|/8 in each DropN or DropL iteration.
Since the initial number of degree constraints is at most 2n — 1, we get the following lemma.

Lemma 10 The number of drop iterations (DropN and DropL) is T := O(logn).

Performance guarantee for degree constraints. We begin with some notation. The iterations of the
algorithm are broken into periods between successive drop iterations: there are exactly T' drop-iterations
(Lemma 10). In what follows, the ¢-th drop iteration is called round t. The time t refers to the instant just
after round ¢; time O refers to the start of the algorithm. At any time ¢, consider the following parameters.

e [; denotes the laminar family of degree constraints.
e F; denotes the undecided edge set, i.e., support of the current LP optimal solution.

e For any set B of consecutive siblings in Ly, Bnd(B,t) =  ycpb(IV) equals the sum of the
residual degree bounds on nodes of B.

e For any set BB of consecutive siblings in Ly, Inc(B, t) equals the number of edges from d g, (UnepN )
included in the final solution.

Recall that b denotes the residual degree bounds at any point in the algorithm. The following lemma
is the main ingredient in bounding the degree violation.

Lemma 11 For any set B of consecutive siblings in L (at any time t), Inc(B,t) < Bnd(B,t)+4a- (T —
t).



Observe that this implies the desired bound on each original degree constraint .S: using ¢ = 0 and
B = {S}, the violation is bounded by an additive 4« - T" term.

Proof: The proof of this lemma is by induction on 7" — ¢t. The base case t = T’ is trivial since the
only iterations after this correspond to including 1-edges: hence there is no violation in any degree
bound, i.e. Inc({N},T) < b(N) forall N € Lr. Hence for any B C L (not necessarily consecutive),
Inc(B,T) <> negInc({N},T) < > negb(N) = Bnd(B,T).

Now suppose t < T, and assume the lemma for ¢ + 1. Fix a consecutive B C L£;. We consider
different cases depending on what kind of drop occurs in round ¢ + 1.

DropN round. Here either all nodes in B get dropped or none gets dropped.

Case 1: None of B is dropped. Then observe that B is consecutive in L;1 as well; so the inductive
hypothesis implies Inc(B,t + 1) < Bnd(B,t + 1) + 4« - (T —t — 1). Since the only iterations strictly
between round ¢ and round ¢ + 1 involve edge-fixing, we have Inc(B,t) < Bnd(B,t) — Bnd(B,t+ 1) +
Inc(B,t+1) < Bnd(B,t) + 4o - (T'—t — 1) < Bnd(B,t) + 4a - (T — t).

Case 2: All of B is dropped. Let C (possibly empty) denote the set of all children (in £;) of nodes
in B. Note that C consists of consecutive siblings in £;;, and inductively Inc(C,¢ 4+ 1) < Bnd(C,t +
1) +4a- (T —t—1). Let S € L; denote the parent of the B-nodes; so C are grand-children of
S in L;. Let 2’ denote the optimal LP solution just before round t + 1 (when the degree bounds are
still given by £;), and H = E;;1 the support edges of /. At that point, we have b(N) = 2/(§(N))
forall N € BUC. Also let Bnd'(B,t + 1) := Y o5 b(NN) be the sum of bounds on B-nodes just
before round ¢ + 1. Since S is a good node in round ¢ + 1, "(B,t + 1) — Bnd(C,t + 1)| =
> neb(N) = X pec DM = X nep® (0(N)) = D prec @' (6(M))| < 2. The last inequality
follows since S is good and all edges contributing to that difference lie in local(.S); the factor of 2
appears since some edges, e.g., the edges between two children or two grandchildren of S, may get
counted twice. Note also that the symmetric difference of d 7 (UnegN) and 6 (Uprec M) is contained
in local(.S). Thus 05 (UnepNV) and 6 (Uprec M) differ in at most o edges.

Again since all iterations between time ¢ and ¢ + 1 are edge-fixing:

Inc(B,t) < Bnd(B,t) —Bnd'(B,t+ 1) + |65 (UnesN) \ 0 (Uprec M)
+Inc(C,t + 1)
< Bnd(B,t) Bnd'(B,t+ 1) + a+ Inc(C,t + 1)
< Bnd(B,t) —Bnd'(B,t+1) +a+Bnd(C,t + 1) +4a - (T —t — 1)
< d(B,t) Bnd'(B,t+ 1) + a+Bnd'(B,t + 1) + 2a + 4a - (T —t — 1)
< Bnd(B,t) +4a- (T —1t)

The first inequality above follows from simple counting; the second follows since &g (UnepN)
and 0 (Uprec M) differ in at most « edges; the third is the induction hypothesis, and the fourth is
Bnd(C,t + 1) < Bnd'(B,t + 1) + 2« (as shown above).

DropL round. In this case, let S be the parent of B-nodes in £;, and N’ = {Ny,---, N,} be all the
ordered children of S, of which B is a subsequence (since it is consecutive). Suppose indices 1 < 7(1) <
7T(2) < -+ < (k) < p correspond to good leaf-nodes in N. Then for each 1 < ¢ < |k/2], nodes

Nr(2i—1) and Ny (9;) are merged in this round. Let {n(i) | e < i < f} (possibly empty) denote the
indices of good leaf-nodes in 3. Then it is clear that the only nodes of B that may be merged with nodes
outside B are Ny () and Ny(y); all other B-nodes are either not merged or merged with another B-node.
Let C be the inclusion-wise minimal set of children of S in L, that is consecutive and contains:
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Children of node S in £; and L;,4
Squares are good leaf nodes in L;; circle nodes are unaffected by DropL round

Arcs denote the merging of good leaves, and position of the new nodes

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(a) Example has p = 11 siblings (b) Example has p = 9 siblings
and k = 6 good leaves. and k£ = 5 good leaves.

Figure 3: Deriving set C (shown dotted) from B (shown dashed) in DropL round.

e all nodes of B\ {Nﬂ(i)}le, and
e every new leaf node resulting from merging two good leaf nodes of 5.

We remark that C may contain more nodes than these two types, but it is chosen to be the minimal
consecutive set containing all the above nodes. See also Figure 3 for some examples. Note that Up;cc M
consists of some subset of 3 and at most two good leaf-nodes from N \ B. These two extra nodes (if
any) are Ny (1) and Ny (s 1), which might be merged with N () and N (s respectively. Again let
Bnd'(B,t + 1) := Y negb(IV) denote the sum of bounds on B just before drop round ¢ + 1, when
degree constraints are £;. Let H = FE;; be the undecided edges in round ¢ + 1. By the definition of
bounds on merged leaves, we have Bnd(C, ¢ + 1) < Bnd'(B,t + 1) + 2. The term 2« is present due to
the (possibly) two extra good leaf-nodes described above.

Claim 12 We have |0 (UnepN) \ 0g(UprecM)| < 2a.

Proof: We say that N € N is represented in C if either N € C or N is contained in some node of C.
Let D consist of (i) nodes of B that are not represented in C, and (ii) nodes of N\ B that are represented
in C. Observe that by definition of C, the set D C {Ny(c—1); Nr(e)s Nx(f)> Nr(+1)}; in fact it can be
easily seen that |D| < 2. Moreover D consists of only good leaf nodes. (See Figure 3 for an example).
Thus, we have | Urep 0i(L)| < 2a. Now note that the edges in 0 (UnepN) \ dg(Unrec M) must be
in Urepdg(L). This completes the proof. [

As in the previous case, we have:

Inc(B,t) < Bnd(B,t) —Bnd (B,t+1) + |6g(UneN) \ 6 (UnrecM)|
+Ine(C, t+1)
< Bnd(B,t) — Bnd'(B,t + 1) + 2a + Inc(C,t + 1)
< Bnd(B,t) —Bnd' (B,t +1) + 2a+Bnd(C,t + 1) + 4o - (T —t — 1)
< Bnd(B,t) —Bnd'(B,t +1) + 2a + Bnd' (B,t + 1) + 2a + 4o - (T —t — 1)
= Bnd(B,t) +4a- (T —1t)
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The first inequality follows from simple counting; the second uses Claim 12, the third is the induction
hypothesis (since C is consecutive), and the fourth is Bnd(C, ¢+ 1) < Bnd’(B,t + 1) + 2« (from above).
This completes the proof of the inductive step and hence Lemma 11. [

3 Hardness Results

In this section we prove Theorem 2; i.e. unless NP has quasi-polynomial time algorithms, there is
no polynomial time O(log®m) additive approximation algorithm for degree bounds for the minimum
crossing spanning tree problem, where ¢ > 0 is some universal constant. This result also holds in the
absence of edge-costs. We note that this hardness result only holds for the general MCST problem, and
not the laminar MCST addressed earlier. The first step to proving this result is a hardness for the more
general minimum crossing matroid basis problem: given a matroid M on a ground set V' of elements, a
cost function ¢ : V' — R, and degree bounds specified by pairs {(E;, b;)}i" (where each E; C V' and
b; € N), find a minimum cost basis I in M such that |I N E;| < b; forall i € [m).

Theorem 13 Unless NP has quasi-polynomial time algorithms, the unweighted minimum crossing ma-
troid basis problem admits no polynomial time O(log®m) additive approximation algorithm for the
degree bounds for some fixed constant ¢ > (.

Proof: We reduce from the label cover problem [2]. The input is a bipartite graph H = (V1, Va, F') with
label set ¥ and constraints C,,,, C ¥ x 3 (consisting of ordered pairs of labels) for all (u,v) € F. The
goal is to compute an assignment f : V; | J Vo — 3 such that the maximum number of constraints are
satisfied, where constraint C,, ,, is said to be satisfied if and only if (f(u), f(v)) € Cy. The following
result is well known.

Theorem 14 ([31]) There exists a universal constant v > 1 such that for every k € N, there is a reduc-
tion from any SAT instance (having size N) to a label cover instance (H = (V1,Va, F'), ¥, {Cu v }(uw)er })
with |H|, |F| = N®®) and |$| = 2°®) such that:

e [fthe SAT instance is satisfiable, the label cover instance has optimal value |F|.
e Ifthe SAT instance is not satisfiable, the label cover instance has optimal value < |F|/~.

For our reduction, it is convenient to reduce to the following (equivalent) version of the label cover
problem. We construct a graph G = (U, E) where U = (V1 | V2) x X and

E = {((v1,a), (v2,b)) : (v1,v2) € F and (a,b) € Cy, 4, }.

Observe that the vertex set U is clearly partitioned into n = |V;|+|Va| parts Uy, - - - , U, each having size
||, and all edges in E are between distinct parts. We denote this instance by (G = (U, E), |X|, |F|).
The goal here is to pick one vertex from each part {U;}? ; so as to maximize the number of induced
edges. Clearly this is equivalent to the above definition of the label cover problem. Note also that
E| < 2P [P

Restating Theorem 14 yields: there is a constant v > 1 such that for every k € N, there is a reduction
from SAT instances (of size N) to “label cover” instances (G = (U, E), ¢, t) such that:

o If the SAT instance is satisfiable, the label cover instance has optimal value ¢.

o If the SAT instance is not satisfiable, the label cover instance has optimal value < t/~*.
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o |G| = N®®) number of labels ¢ = 2°(%), | E| < 2, and the reduction runs in time NO®*).

We consider a uniform matroid M with rank ¢ on ground set E (recall that any subset of ¢ edges is
a basis in a uniform matroid). We now construct a crossing matroid basis instance Z on M. There is
a set of degree bounds corresponding to each part i € [n]: for every collection C' of edges incident to
vertices in U; such that no two edges in C' are incident to the same vertex in Uj;, there is a degree bound
in Z requiring at most one element to be chosen from C. Note that the number of degree bounds m is at
most |E|¢ < NOK 2")_ The following claim links the SAT and crossing matroid instances.

Claim 15 [Yes instance] If the SAT instance is satisfiable, there is a basis (i.e. subset B C E with
|B| = t) satisfying all degree bounds.

[No instance] If the SAT instance is unsatisfiable, every subset B' C E with |B'| > t/2 violates some
degree bound by an additive p = ~*/2 JV2.

Proof: Observe that if the original SAT instance is satisfiable, then the matroid M contains a basis
obeying all the degree bounds: namely the ¢ edges 7" C F induced in the optimal solution to the label
cover instance. This is because if we consider any U, then all the T™-edges having a vertex in U; as their
endpoint, have the same endpoint. Thus, for any degree bound corresponding to collection C' (as defined
above), at most one 7™ -edge can lie in C.

Now consider the case that the SAT instance is unsatisfiable. Let B’ C E be any subset with
|B’| > t/2. We claim that B’ contains at least p = 7*/2//2 edges from some degree-constrained set
of edges. Suppose (for a contradiction) that |B’ N C| < p for each degree constraint C'. This means in
particular that each part {U;}7"_; contains fewer than p vertices that are incident to edges of B’. For each
part i € [n], let W; C Uj; denote the vertices incident to edges of B’; note that |W;| < p. Consider the
label cover solution obtained as follows. For each i € [n], choose one vertex from W; independently and
uniformly at random. Clearly, the expected number of edges in the resulting induced subgraph is at least
|B'|/p* > # = t/~*. This contradicts the fact that the value of label cover instance is strictly less than
t/~k. |

The steps described in the above reduction can be done in time polynomial in m and |G|. Also,
instead of randomly choosing vertices from the sets W;, we can use conditional expectations to derive
a deterministic algorithm that recovers at least ¢/p? edges. Setting k& = ©(loglog N) (recall that N is
the size of the original SAT instance), we obtain an instance of bounded-degree matroid basis of size
~m < NO(k2Y) < N8N for some constant a. Also p > yk/2/2 > 282(k) > logb N, whereb > 0isa
constant. Note that log m < log®*! N, which implies p > log®m for ¢ = a—f’rl > 0, a constant. Thus it
follows that for this constant ¢ > 0 the bounded-degree matroid basis problem has no polynomial time
O(log®m) additive approximation algorithm for the degree bounds, unless NP has quasi-polynomial
time algorithms. [

We now prove Theorem 2.

Proof: [Theorem 2] We show how the bases of a uniform matroid can be represented in a suitable
instance of the crossing spanning tree problem. Let the uniform matroid from Theorem 13 consist of
e elements and have rank ¢ < e; recall that t > /e and clearly m < 2¢. We construct a graph as in
Figure 4, with vertices vy, - - - , ve corresponding to elements in the uniform matroid. Each vertex v; is
connected to the root by two vertex-disjoint paths: (v;, u;, ) and (v;, w;, ). There are no costs in this
instance. Corresponding to each degree bound (in the uniform matroid) of b(C') on a subset C' C [¢],
there is a constraint to pick at most |C| + b(C) edges from §({w; | ¢ € C'}). Additionally, there is a
special degree bound of 2e — t on the edge-set E' = J;_; 6(w;); this corresponds to picking a basis in
the uniform matroid.
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Figure 4: The crossing spanning tree instance used in the reduction.

Observe that for each i € [e], any spanning tree must choose exactly three edges amongst { (7, u;), (u;, v;),
(r,w;), (w;, v;)}, in fact any three edges suffice. Hence every spanning tree 7" in this graph corresponds
to a subset X C [e] such that: (I) 7" contains both edges in d(u;) and one edge from &(w;), for each
i € X, and (II) T' contains both edges in §(w;) and one edge from ¢(u;) for each i € [e] \ X.

From Theorem 13, for the crossing matroid problem, we obtain the two cases:
Yes instance. There is a basis B* (i.e. B* C [e], |B*| = t) satisfying all degree bounds. Consider the
spanning tree

T = {(r,w;), (us, v;), (r,w;) | i € B*}U{(r, w;), (v, w;), (ryu;) | @ € [e] \ B*}.

Since B* satisfies its degree-bounds, 7™ satisfies all degree bounds derived from the crossing matroid
instance. For the special degree bound on E’, note that |T* N E’| = 2e — |B*| = 2e — t; so this is also
satisfied. Thus there is a spanning tree satisfying all the degree bounds.

No instance. Every subset B’ C [e] with |B’| > ¢/2 (i.e. near basis) violates some degree bound by
an additive p = Q(log®m) term, where ¢ > 0 is a fixed constant. Consider any spanning tree 7" that
corresponds to subset X C [e] as described above.

1. Suppose that | X| < t/2; then we have [T N E’| = 2e — |X| > 2e — t + 4, i.e. the special degree
bound is violated by t/2 > Q(v/e) = Q(log"/? m).

2. Now suppose that | X'| > ¢/2. Then by the guarantee on the no-instance, 7" violates some degree-
bound derived from the crossing matroid instance by additive p.

Thus in either case, every spanning tree violates some degree bound by additive p = Q(log®m).

By Theorem 13, it is hard to distinguish the above cases and we obtain the corresponding hardness
result for crossing spanning tree, as claimed in Theorem 2. [

3.1 Hardness for Robust k-median

Another interesting consequence of Theorem 13 is for the robust k-median problem [1]. Here we are
given a metric (V, d), m client-sets {.S; C V' },, and bound k; the goal is to find a set F' C V of k
facilities such that the worst-case connection cost (over all client-sets) is minimized, i.e.

. m
min  max d(v, F).
FCV,[Fl=k i=1
vES;
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Above d(v, F') denotes the shortest distance from v to any vertex in F. Anthony et al. [1] gave an
O(log m+log k)-approximation algorithm for robust k-median, and showed that it is hard to approximate
better than factor two. At first sight this problem may seem unrelated to crossing matroid basis. However
using Theorem 13, we obtain the poly-logarithmic hardness result stated in Corollary 3.

Proof: Recall that in a uniform metric, the distance between every pair of vertices is one. In this case
the robust k-median problem can be rephrased as:

min  max |S;\ F|, where {S; C Vi, are the client-sets.
FCV,|F|=k i=1

The hard instances of crossing matroid basis in Theorem 13 are in fact for uniform matroids where
every degree upper-bound equals one. i.e. there is a ground-set V, degree bounds given by { E; C V'}I"' |,
and rank ¢; the goal is to find (if possible) a subset I C V with |I| = ¢ such that |I [ E;| < 1 for all
i € [m]. Theorem 13 showed that it is hard to distinguish the following cases: (Yes-case) there is
some I C V with |I| = t and max;e|,) [ N E;| < 15 and (No-case) for every I C V' with [I| = ¢,
maX;c(y,) |1 N Ei| > p = Q(log®m).

These hard instances naturally correspond to the robust k-median problem on uniform metric V,
client-sets {£; C V}I,, and bound k = |V| — t. It is clear that the robust k-median objective is at
most one in the Yes-case, and at least p in the No-case. Thus we obtain a multiplicative p hardness of
approximation for robust k-median on uniform metrics. This proves Corollary 3. [

3.2 Integrality Gap for general MCST

We now present the b + Q(/n) integrality gap instance for minimum crossing spanning tree. While
such gaps instances are easy to obtain if one allows m to be super-polynomially large (for example, by
setting a degree bound for each subset of edges), the nice property of the example here is that m is quite
small, in fact m = O(n). This result is due to Mohit Singh [33], we thank him for letting us present the
example here.

The graph is the same as the one used for the hardness result. The vertex-set is {r} (J{v;, u;, w; }_,
son = 3e + 1. The edges are {(r,u;) | i € [e]} U {(vi,w;) | i € [e]} and {(r,w;) | i € [e]} U{(vi, w;) |
i € [e]}. See also Figure 4. There are no costs in this instance.

The ‘degree bounds’ for the MCST instance are derived from the lower bound for the discrepancy
problem [11]. From discrepancy theory there exists a collection {.S; C [e]}5_; of subsets such that,

m%f{“XﬂSﬂ - \YﬂSjH > p, forevery X C [e].
j=

Above X = [e] \ X as usual, and p = Q(y/€) = Q(y/n). In other words, for every way of partitioning
[e] into two sets, there is some set .S; such that the partition induced on S; has a large imbalance.
There are m = 2e degree bounds, defined as follows. For each j € [e] there is a bound of |S;| +
[1S;1/2] on each of the edge-sets U; = Uies,d(ui) = {(r,u;), (ui, vi) bies;, and Wj = Ujegs;6(w;) =
{(rywi), (wi, vi)}iESj .

Consider the fractional solution to the natural LP relaxation that sets each edge to value 3/4. It is
easily seen that it is indeed a fractional spanning tree and satisfies all the degree bounds.

On the other hand, we claim that any integer solution must violate some degree bound by additive
£ — 1. Note that every spanning tree 7" in this graph corresponds to a subset X C [e] such that: (I) T’
contains both edges in d(u;) and one edge from d(w; ), for each i € X, and (II) T contains both edges in
§(w;) and one edge from 6 (u;) for each i € X. The number of edges used by tree T in the degree-bounds
(for each j € [e]) are:
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o [TNU;|=2|XNS;|+|XNS;|=]S;|+|X NS, and
° |TﬂWj‘ = ‘XﬂSj’—FQ‘YﬂSj’ = |S]’+|YHSJ‘

From the discrepancy instance, it follows that max§_; 1 X NS;| = [X NS;|| > p;let k be the index
achieving this maximum. Then we have:

— S
max{|Tﬁ Uk‘, ’TQW]J} = |Sk| —|—max{\X ﬂSk|, ‘XﬂSkH > |Sk’ + ’;’ + g

Thus the degree-bound for either Uy, or Wy, is violated by additive g — 1.

Remark: The above construction is essentially a reduction from discrepancy minimization to MCST.
Combined with the hardness result in [8] this implies that, unless P = NP, MCST admits no o(y/n)
additive approximation in degree when the number of degree bounds m = O(n). We note that degree
bounds in this instance have large values, i.e. {2(n). On the other hand, all degree bounds in Theorem 13
have unit values— this was crucial in proving the hardness for robust k-median.

4 Minimum Crossing Contra-Polymatroid Intersection

In this section we consider the crossing contra-polymatroid intersection problem (see Definition 4) and
prove Theorem 5. The algorithm (given as Algorithm 1) for this problem is based on iteratively relaxing
the following natural LP relaxation.

min E Ce " Te

ecE’

2(SNE)>r(S)—|FNS| VS CE
2(SNE')>ry(S)— |[FNS| VS CE
v(E;NE") <, Vie W
0<z. <1 Ve € E'.

At a generic iteration, £/ C F denotes the set of unfixed elements, ' C E the set of chosen elements
(recall that F denotes the groundset of the instance), W C I the set of remaining degree bounds, and
bl (for each ¢ € W) the residual degree-bound in the ith constraint. Observe that this LP can indeed
be solved in polynomial time by the Ellipsoid algorithm: the separation oracle for the first two sets of
constraints involve submodular function minimization for the two functions g;(S) = z(S N E’) + |S N
F| — r;(S) (with i = 1,2). The resulting fractional solution can then be converted to an extreme point
solution of no larger cost, as described in Jain [18].

Note that this algorithm rounds variables of value z*(e) > % to 1, and hence we loose a factor of two
in the cost and in the degree bounds. Theorem 5 follows as a consequence if we can show that in each
iteration, either some variable can be rounded, or some constraint can be dropped.

Lemma 16 If x* € RE is an optimal extreme point solution to the above LP for crossing contra-
polymatroid intersection, with 0 < z*(e) < %for all e € E', then there exists 1 € W such that

|E;NE|<[2b]]+A -1
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Algorithm 1 Algorithm for minimum crossing contra-polymatroid intersection.
1: Initially, set B’ = E, F =0, W = I, b, = b;, forall i € T
2: while £/ # () do
3:  Compute an optimal extreme point solution z* of the LP(E’, F, W);
for all e € ' with z*(e) = 0 do
B — B\ {e}
end for
for all e € E’ with z*(e) > 1 do
F— FU{e} B — E'"\ {e}
b, — b, —x*(e), forall i € W withe € E;
10:  end for
11:  foralli € W with |E; N E'| < [2b)] + A — 1do
12: W — W\ {i}
13:  end for
14: end while
15: Return the incidence vector of I;

R A A

Proof: Let 7/ = {x(E'NS)|[z*(SNE’) =r1(S)—|SNF|, SC E}fori=1,2denote the tight sets
from the first two constraints of the LP respectively. Let B’ = {x(E' N E;)|z*(E; N E') =1, i € W}
denote the tight degree constraints. Since x* is an extreme point solution (and 0 < x* < 1), there exist
linearly independent tight sets 7; C 77, 7o C 7, and B C B’ such that |E'| = |T1| + |72| + |B|.

Since z* is modular and 7;(S) — |S N F| (for i = 1,2) are supermodular on 2, it can be assumed
(using uncrossing arguments, see eg. Chapter 44 in [32]) that each of (77, C) and (73, C) forms a chain®.
The following claim goes back to a similar result for spanning trees as stated in [4].

Claim 17 For eachi = 1,2, we have |T;| < x*(E'); additionally if |T;| = *(E') then E' € T,.

Proof: We prove the claim for i = 1. Let 73 = {S; C ... C Sk} where S, C E’. Let Sy = ) and
consider an arbitrary pair of subsequent chain elements S; C Sj;1, forany j € {0,1,...,k —1}. Since
x} > 0 forall e € E' it follows that *(S;j41 \ S;) > 0. Hence, by the integrality of r1(S) — |S N F|
and tight constraints S; and S 11,

2 (St \ 8j) = & (Sjt1) — 27(55) = r1(Sj1) — [Sjra N F = ri(S5) + 95 N F| > 1.

Summing over ¢ = 0, ...,k — 1 we therefore obtain the inequality:
k—1
7 () 2 @ (Sp) = Yo" (S0 \ 55) = k = [T,
=0

with equality only if E/ = Sj. ]
We now proceed with the proof of Lemma 16. Suppose (for a contradiction) that for all ¢ € W,
|E;NE'| > [2b;] +A. Foreachi € W, define Sp; := >_ _c pirp, (1 —227) = [E' N By — 22" (E' N E).
Then we have Sp; > |E' N E;| — 2b; > |E' N E;| — [2b;] > A. Hence >,y Sp; > A - [W].
Foreache € E',letr, := |[{i € W : e € E;}| < A the maximum element frequency. Note also that
0<1-—2zf <1foreache € E'. Now,

dSp = D re-(1—2z) <AL (1-2a7)

ieW ecE'’ ecE’

3A family (£, C) is a chain if and only if for every X,Y € £, either X C Y or Y C X.
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= A-(|E'-2-2%(E)) <A (B - 7] - |Tl)

The last inequality uses Claim 17. Note that equality holds above only if E’ € 7; N 75 (by Claim 17),
which would contradict the linear independence of 77 and 75. Thus we have:

S sp <A (B~ [Tl T]) = A |Bl < AW
€W

However this contradicts the assumption |E’ N E;| > [2b,] + A foralli € W. |

Proof: [Theorem 5] Lemma 16 implies that an improvement is possible in each iteration of Algorithm 1.
Note also that restricting the current LP solution (to E’) yields a feasible solution to the residual LP in
the next iteration. Since we only round elements that the LP sets to value at least half, the cost guarantee
is immediate. Consider any degree bound ¢ € I; let b} denote its residual bound when it is dropped, and
F' (resp. E’) the set of chosen (resp. unfixed) elements at that iteration. Again, rounding elements of
fractional value at least half implies | E; N E”| < |2b; —2b)| = 2b; — [2b}] since b; is integer. Furthermore,
the number of E;-elements in the support of the basic solution at the iteration (i.e., £’) when constraint
i is dropped is at most [2b;] + A — 1. Thus the number of E;-elements chosen in the final solution is at
most |E; N F'| + |E;NE'| <2b; — [2b)] 4+ [20,] + A—1=2-b; + A — 1. n

Tight Example. We note that the natural iterative relaxation steps (used above) are insufficient to obtain
a better approximation guarantee. Consider the special case of the crossing bipartite edge cover problem.
The instance consists of graph G which is a 4n-length cycle, with its edges partitioned into two perfect
matchings Fy and F,. There is a degree-bound of n on each of F; and Fs; so A = 1. Consider the
fractional solution to the LP-relaxation that assigns value of % to all edges. It is indeed a fractional
edge-cover since each vertex is covered to extent one. The degree-bounds are clearly satisfied. It is also
an extreme point: note that this is the unique fractional solution minimizing the all-ones cost vector.
For this extreme point solution, the largest edge-value is %, and the support-size (i.e. 2n) of its degree-
constraints is twice their bound (i.e. n). Thus the iterative relaxation must either pick a half-edge or drop
a degree-constraint that is potentially violated by factor two.

S Minimum Crossing Lattice Polyhedra

Before formally defining the lattice polyhedron problem, we need to introduce some terminology. We use
notation similar to [14]. The groundset of the problem is denoted by E. Let (F, <) be a partially ordered
set with F # (). We consider a lattice-type structure (F, <, A, V), where the two commutative binary
operations, meet A and join V, are defined on all pairs A, B € F,suchthat ANB < A,B < AV B.
Note that our definition is more general than the usual definition of a lattice, since the join A VV B is not
required to be the least common upper bound of A and B. In the lattice polyhedron model, we are given
a supermodular function r : F — Z, on (F, <, A, V), i.e. r satisfies

r(A)+r(B)<r(AAB)+r(AVvB), foral A,B¢cF.

Throughout this paper, we call r the rank function of the lattice polyhedron. Finally, there is a set-valued
function p : F — 2F relating the lattice F to the groundset E, so that  and p satisfy the following two
properties:

1. Consecutive property: If A < B < C'then p(A) N p(C) C p(B),
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2. Submodularity: Forall A, B € F, p(AV B)U p(AA B) C p(A) U p(B),

Given a ground set F, a lattice F, a mapping p : F — 2F, so that the consecutive and submod-
ularity property are satisfied, and a supermodular function r : F — Z,, the polyhedron {z € R¥ |
D eep(s) Te = 1(S), VS € F}is alattice polyhedron. Hoffman and Schwartz [17] showed that the
underlying linear inequality system is box-TDI.

Definition 18 (Minimum crossing lattice polyhedron) Given a lattice polyhedron (E, (F,<),r, p,c),
a cost function ¢ : E — R, and lower/upper bounds {a; }ic1 and {b; };c on a collection { E; C E};cy,
the goal is to minimize:

x| Z . >71(8), VS eF; a;<uz(E)<b,Viel, zec{0,1}F
e€p(S)

As mentioned earlier, several discrete optimization problems fit into the lattice polyhedron model
(see e.g. [32]). We give some examples below.

Example 1: Crossing (contra-)polymatroids. Consider the case where F = 2%, p is the identity map,
and the partial order in F is the canonical one that is induced by set inclusion. If 7 is supermodular on
the Boolean lattice (2%, C,N,U), then P(r) = {z € R | " gz > r(5), VS C E} is a (contra-
)polymatroid in the sense of Edmonds. For any integral cost function ¢ € Z%, the polymatroid greedy
algorithm efficiently finds an integral vector in P(r) of minimal cost. The crossing contra-polymatroid
problem now searches for the minimum cost vector in P(r) satisfying certain degree bounds.

Example 2: Crossing contra-polymatroid intersection. Consider the case of two polymatroids P(r)
and P(ry), where the two supermodular functions 71 and ry are defined on the same ground set E.
The contra-polymatroid intersection problem, i.e., the problem to find a vector of minimal cost in the
intersection of P(r) and P(r3), can be modeled as a lattice polyhedron problem via the following
reduction: let F := {S' : S C E}|J{S” : S C E} with p(S’) = p(S”) = S for each subset S C E.
The partial order is:

S'<T' ¥VS,TCE and S <T'and 8" >T", ;WSCTCE.

The meet (A) and join (V) operators are defined to be the greatest common lower bound and least common
upper bound, respectively. This is easily seen to satisfy the consecutivity and submodularity properties.
The rank function r for the lattice polyhedron has r(S’) = r1(S) and 7(S”) = r3(S), forall S C E,
which is supermodular on F. The crossing contra-polymatroid intersection problem asks for the best
vector in the intersection of P(r1) and P(r2) satisfying degree bounds.

Example 3: Crossing s, t-planar min cut. Let G = (V, E') be a (directed or undirected) graph with
s,t € V, and capacities ¢ : E — Z on the edges. Furthermore, let the elements of F correspond to
s-t paths in G (i.e., p maps each element of F to the edge-set of that s, t-path). The crossing min-cut
problem now asks for an edge set C' C E of minimal capacity so that C' forms an s, t-cut in G, and C'
satisfies certain degree bounds. For the classical min-cut (or dual max-flow) problem, the rank function is
the constant all-ones function, i.e., an edge set forms a s, t-cut if each of the s, ¢-paths in F is hit at least
once. We restrict to the special case where G is s, t-plane, i.e., where G is given in a planar embedding
with s and ¢ on the outer boundary. We consider the partial order which sets for any pair of s, t-paths
P7 Qs

P<Q@Q <= P “below” () in the planar representation.
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Again, the meet (A) and join (V) are defined to be the greatest common lower bound and least common
upper bound respectively. For s, t-plane graphs, this poset induces a lattice satisfying the consecutive and
submodularity properties [26]. Moreover, the all-ones rank function is certainly supermodular. Thus, the
crossing s, t-planar min-cut problem, which involves finding a minimum cost s, t-cut in G that obeys the
degree bounds, fits into the model of crossing lattice polyhedra.

5.1 Integrality gap for general crossing lattice polyhedra

We first show that there is a bad integrality gap for crossing lattice polyhedra. Consider the s, t-planar
min-cut instance on graph G = (V, E) in Figure 5 with vertices s, € V as shown. Define edge-sets
E; == {(vi-1, ui,j)}le U{ (v, ui,j)}le for each ¢ € [k]; here we set vg = s and vy, = t. There are only
degree upper-bounds in this instance, namely a bound of one on each {Ez}i’“:1 Note also that A = 1 in
this instance, and that the size of the ground-setis n = |E| = ©(k?).

u1,1 U2,1 Uk

Uk U2,k Uk, k

Figure 5: The integrality gap instance for crossing s, {-planar min-cut.

Consider the LP solution that sets z, = i for every edge e € E. Itis clearly feasible for the rank
constraints (every s — ¢ path has z-value one). Furthermore, x(E;) = |E;|/(2k) = 1 for all i € [k]; i.e.
the degree constraints are also satisfied. Hence the LP relaxation is feasible.

On the other hand, consider any integral solution / C E thathas |[I N E;| < k — 1foralli € [k]. It
can be checked directly that there is an s — ¢ path using only edges in £ \ I. Thus any integral feasible
solution J must have max;ex |J N E;| > k, i.e. it violates some degree-bound by at least an additive
k—1=Q(y/n) term.

5.2 Algorithm for crossing lattice polyhedra satisfying monotonicity

Given this bad integrality gap for general crossing lattice polyhedra, we are interested in special cases
that admit good additive approximations. In this section we consider lattice polyhedra that satisfy the
following monotonicity property, and provide an additive approximation algorithm.

(x) S<T = |p(9)|<|p(T)|, forall S,T € F

As noted earlier, this property is satisfied by all matroids, and so our results generalize that of Kiraly
et al. [19]. In the rest of this section we prove Theorem 6. The algorithm is again based on iterative
relaxation. At each iteration, we maintain the following:

e [’ C F of elements that have been chosen into the solution.

e F' C E\ F of undecided elements.
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e W C [m] of degree bounds.

Initially, let E" = E, F = () and W = [m]. In a generic iteration with E’, F, W, we solve the
following LP relaxation on variables {x. | e € E'}, called LP,(E', F,W):

min ¢’z
z(p(S)) 2 r(S) — [F N p(S)], VS eF
a; — |[FNE;)| <z(E;) <b —|FNE;], Vie W
0<ax <1, Ve € E'.

This LP can be solved in polynomial time using the Ellipsoid algorithm with the algorithm from [27]
as the separation oracle for the rank constraints. Moreover, as shown in [18] we can also find (in poly-
nomial time) an optimal extreme point solution, again using a separation oracle for the rank constraints.
Consider an optimal basic feasible solution = to the above LP relaxation. The algorithm then does one
of the following in iteration (E', F, W), until E' = W = ().

1. If there is e € E’ with z, = 0, then £/ — E’\ {e}.

2. Ifthereis e € F' withz, = 1,then F' +— F U {e} and E' — E’\ {e}.
3. Ifthere is i € W with |E; N E'| < 2A, then W «— W\ {i}.

We note that this algorithm is a natural extension of the one for matroids [19] and the one for spanning
trees [34]. However the correctness proof (next subsection) relies only on properties of lattice polyhedra
and the monotonicity property ().

5.3 Proof of Theorem 6

Assuming that one of the steps (1)-(3) applies at each iteration, we will show that the final solution F™*
has cost at most the optimal value, satisfies the rank constraints, and violates each degree constraint by
at most an additive 2A — 1. First, we show that one of (1)-(3) applies at each iteration (E’, F, W).

Lemma 19 Suppose (F, <) is a lattice satisfying the consecutive and submodular properties, and con-
dition (x), function r is supermodular, and x is a basic feasible solution to LP,, with 0 < z. < 1 for
all e € E'. Then there exists some i € W with |E; N E'| < 2A.

We first establish some standard uncrossing claims (Claim 20 and Lemma 21), before proving this
lemma. We also need some more definitions. Two elements A, B € F are said to be comparable if either
A < Bor B < A; they are non-comparable otherwise. A subset £ C F is called a chain if £ contains
no pair of non-comparable elements. Note that a chain in F does not necessarily correspond to a chain
in 2% (with the usual subset relation) under mapping p.

Let r'(S) := r(S) — |[F N p(S)| for all S € F denote the right hand side of the rank constraints in
the LP solved in a generic iteration (E’, F, W).

Claim 20 7’ is supermodular.

Proof: This follows from the consecutive and submodular properties of lattice (F, <). Consider any
A, B € F,and

[FNpal+[F0ppl = [FN(paUps)l+[FN(panps)l
> |F N (parsUpavs)| +|F N (panps)|
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> |FN(parB Y pave)| + |F N (pars Npavs)|
= |FNpars|+|FNpavsl

The second inequality follows from submodularity (i.e. paUpp 2 parBUpAvB), and the third inequality
uses parNpave C paNpp by the consecutive property (since AANB < A, B < AV B). This combined
with supermodularity of r implies r'(A) + 7/ (B) < r'(AAB)+1'(AV B) forall A, B € F. n

For any element A € F, let x(A) € {0,1}* be the incidence vector of p(4) C E'. Let T := {A € F |
x(pa) = r'(A)} denote the elements in F that correspond to tight rank constraints in the LP solution z of
this iteration. Using the fact that »’ is supermodular (from above), and by standard uncrossing arguments,
we obtain the following.

Lemma 21 If S,T € F satisfy x(ps) = r'(S) and x(pr) = r'(T), then:
2(p(SAT))=r"(SAT) and x(p(SVT))=r(SVT)

Moreover, x(S) + x(T) = x(SAT) + x(SVT).

Proof: We have the following sequence of inequalities:

r(SAT)+ 7' (SVT)

IN

z(psat) + z(psvr)

z(psat N psvr) + x(psaT U psvr)

z(psar N psvr) + z(ps U pr)
(
(

VANVAN

z(ps M pr) + x(ps U pr)
ps) + (pr)

|
8

/
r

(S) +r'(T)
r(SAT)+r'(SvT)

IN

The first inequality is by feasibility of x, the third inequality is the submodularity property, the fourth
inequality is by the consecutive property (and definition of A and V), and the last inequality is supermod-
ularity of r’. Thus we have equality throughout, in particular z(p(SVT)) = r/(SVT) and (p(SAT)) =
r'(S A'T). Finally since . > 0 for all e € E’, we also have x(S) + x(T) = x(SAT)+ x(SVT). m

Given Claim 20 and Lemma 21, we immediately obtain the following (see eg. [32], Chapter 60).

Lemma 22 ([32]) There exists a chain L C T such that the vectors {x(A) | A € L} are linearly
independent and span {x(B) | B € T }.

We are now ready for the proof of Lemma 19.

Proof: [Lemma 19] |E’| is the number of non-zero variables in basic feasible x. Hence there exist
tight linearly independent constraints: £ C F corresponding to rank-constraints and B C W degree-
constraints, such that |E’| = |£| + |B|. Furthermore, by Lemma 22, we may assume that £ is a chain in
F, say consisting of the elements 51 < S5 < --- < Sg. We claim that,

\p(Sj)\( — “1p(S )>]>2 foreach1 < j <k (2)

The above condition is clearly true for j = 1: since z(p(S1)) = 7/(S1) > 1 (it is positive and integer-
valued), and z. < 1forall e € E’. Consider any j > 2. By the consecutive property on S; < S;_1 < S
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(forany 1 < ¢ < j—1), we have p(S;) Np(St) € p(Sj-1). So, p(5;)\ (Ui;lp(st)> = p(S;) \p(Sj-1)-
We now claim that |p(S;) \ p(Sj—1)| > 2, which would prove (2). Since S;_; < S;, assumption (*)
implies that there is at least one element e € p(.S;) \ p(S;j—1). Moreover, if this is the only element, i.e.,
if p(S;) \ p(Sj—1) = {e}, then p(S;—1) = p(S;) \ {e} must be true (again by property (x)). But this
causes a contradiction to the non-integrality of x.:

ze =z (p(S;)) — 2 (p(Sj-1)) = 1" (p(S;)) — ' (p(Sj-1)) € Z.

Now, equation (2) implies that k = |£| < |ET/‘ Hence |E’| < 2|B].

Suppose (for contradiction) that |E; N E'| > 2A 4+ 1 forall i € W. Then ),y |E; N E'| >
(2A 4+ 1) - [W]. Since each element in E’ appears in at most A sets {E; };cyw, we have A - |E'| >
Yoiew |[EiNE'| > (2A + 1) - [W]. Thus |E'| > 2|W| > 2|B|, which contradicts |E’| < 2|B| from
above. [

We are now able to prove the main result of this section:

Proof: [Theorem 6] Since the algorithm only picks 1-elements into the solution F', the guarantee on cost
can be easily seen. As argued in Lemma 19, at each iteration (E’, F, W) one of the Steps (1)-(3) apply.
This implies that the quantity | E’| + |W| decreases by 1 in each iteration; hence the algorithm terminates
after at most |E'| + |I| iterations. To see the guarantee on degree violation, consider any ¢ € I and let
(E', F,W) denote the iteration in which it is dropped, i.e. Step (3) applies here with |E; N E'| < 2A
(note that there must be such an iteration, since finally W = ()). Since a degree bound is dropped at this
iteration, we have 0 < x, < 1 for all e € E’ (otherwise one of the earlier steps (1) or (2) applies).

1. Lower Bound: a; — |F N E;| < x(E;NE') < |[E'NE;| <2A,ie.a; < |FNE;|+2A —1. The
final solution contains at least all elements in F', so the degree lower bound on F; is violated by at
most 2A — 1.

2. Upper Bound: The final solution contains at most |F' N E;| + |E’ N E;| elements from E;. If
E; N E’' = (), the upper bound on Ej; is not violated. Else, 0 < z(F; N E') < b; — |F N E4, i.e.
b > 1+ |FNE,and |FNE;|+ |E'NE;| <b; 4+ 2A — 1. So in either case, the final solution
violates the upper bound on F; by at most 2A — 1.

Observing that all the steps (1)-(3) preserve the feasibility of the LP},, it follows that the final solution

satisfies all rank constraints (since £’ = () finally). [ |

Acknowledgement: We thank Mohit Singh [33] for the integrality gap for general MCST, and Chandra
Chekuri for finding an error in the arborescence result in an earlier version [5] of this paper.

References

[1] B. Anthony, V. Goyal, A. Gupta, and V. Nagarajan, A Plant Location Guide for the Unsure: Ap-
proximation Algorithms for Min-Max Location Problems, Math. Oper. Res., 35, 2010, 79-101.

[2] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, The hardness of approximate optima in lattices, codes,
and systems of linear equations, J. Comput. Syst. Sci., 54(2), 1997, 317-331.

[3] V. Arya, N. Garg, R. Khandekar, A. Meyerson, and K. Munagala, and V. Pandit, Local search
heuristics for k-median and facility location problems, SIAM J. on Computing, 33(3), 544-562,
2004.

23



[4] N. Bansal, R. Khandekar and V. Nagarajan, Additive Guarantees for Degree-Bounded Directed
Network Design, SIAM J. Comput., 39(4), 2009, 1413-1431.

[5] N. Bansal, R. Khandekar, J. Kénemann, V. Nagarajan, and B. Peis, On Generalizations of Network
Design Problems with Degree Bounds, In Proceedings of Integer Programming Combinatorial Op-
timization (IPCO), 2010, 110-123.

[6] V. Bilo, V. Goyal, R. Ravi and, M. Singh, On the crossing spanning tree problem, In APPROX
2004, 51-60.

[7] M. Charikar, S. Guha, E. Tardos, and D.B. Shmoys, A Constant-Factor Approximation Algorithm
for the k-Median Problem, J. Comp. and Syst. Sciences, 65(1), 129-149, 2002.

[8] M. Charikar, A. Newman, and A. Nikolov, Tight Hardness Results for Minimizing Discrepancy, In
Sympoisum on Discrete Algorithms (SODA), 2011, 1607-1614.

[9] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar, What would Edmonds do? Augmenting paths
and witnesses for degree-bounded MSTs, Algorithmica, 55(1), 2009, 157-189.

[10] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar, A push-relabel approximation algorithm for
approximating the minimum-degree MST problem and its generalization to matroids, Theor. Com-
put. Sci., 2009, 410(44), 4489-4503.

[11] B. Chazelle, The Discrepancy Method: Randomness and Complexity, Cambridge University Press,
2000.

[12] C. Chekuri, J. Vondrék and Rico Zenklusen, Dependent Randomized Rounding for Matroid Poly-
topes and Applications, http://arxiv.org/abs/0909.4348, 2009.

[13] U. Faigle and B. Peis, Two-phase greedy algorithms for some classes of combinatorial linear pro-
grams, In SODA, 2008, 161-166.

[14] A. Frank, Increasing the rooted connectivity of a digraph by one, Math. Programming 84 (1999),
565-576.

[15] M.X. Goemans, Minimum Bounded-Degree Spanning Trees, In FOCS, 273-282, 2006.

[16] F. Grandoni, R. Ravi, M. Singh, Iterative Rounding for Multiobjective Optimization Problems, In
ESA, 2009, 95-106.

[17] A. Hoffman and D.E. Schwartz, On lattice polyhedra, In Proceedings of Fifth Hungarian Combi-
natorial Coll. (A. Hajnal and V.T. Sos, eds.), North-Holland, Amsterdam, 1978, pp. 593-598.

[18] K. Jain, A factor 2 approximation algorithm for the generalized Steiner network problem, Combi-
natorica, 2001, 39-61.

[19] T. Kirdaly, L.C. Lau and M. Singh, Degree bounded matroids and submodular flows, In Proceedings
of Integer Programming and Combinatorial Optimization (IPCO), 2008, 259-272.

[20] P. N. Klein, R. Krishnan, B. Raghavachari and R. Ravi, Approximation algorithms for finding low
degree subgraphs, Networks, 44(3), 2004, 203-215.

24



[21] J. Konemann and R. Ravi, A matter of degree: Improved approximation algorithms for degree
bounded minimum spanning trees, SIAM J. on Computing, 31:1783-1793, 2002.

[22] J. Kénemann and R. Ravi, Primal-Dual meets local search: approximating MSTs with nonuniform
degree bounds, SIAM J. on Computing, 34(3):763-773, 2005.

[23] B. Korte and J. Vygen. Combinatorial Optimization. Springer, New York, 4th ed., 2008.

[24] L.C. Lau, J. Naor, M. R. Salavatipour and M. Singh, Survivable network design with degree or
order constraints, SIAM J. on Computing, 39(3), 2009, 1062—-1087.

[25] L.C. Lau and M. Singh, Additive Approximation for Bounded Degree Survivable Network Design,
In STOC, 2008, 759-768.

[26] J. Matuschke and B. Peis, Lattices and Maximum Flow Algorithms in Planar Graphs, In WG 2010,
324-335.

[27] S. T. McCormick and B. Peis, A Primal-Dual Algorithm for Weighted Abstract Cut Packing, In
Proceedings of Integer Programming and Combinatorial Optimization (IPCO) 2011, 324-335.

[28] Z. Nutov, Approximating Directed Weighted-Degree Constrained Networks. In APPROX, 2008,
219-232.

[29] R. Ravi, M.V. Marathe, S.S. Ravi, D.J. Rosenkrantz, and H.B. Hunt, Many birds with one stone:
Multi-objective approximation algorithms, In STOC, 1993, 438-447.

[30] R.Raviand M. Singh, Delegate and Conquer: An LP-based approximation algorithm for Minimum
Degree MSTs. In ICALP, 2006, 169—180.

[31] R. Raz, A Parallel Repetition Theorem, SIAM J. Computing, 27(3), 763-803, 1998.
[32] A. Schrijver, Combinatorial Optimization, Springer, 2003.
[33] M. Singh, Personal Communication, 2008.

[34] M. Singh and L.C. Lau, Approximating minimum bounded degree spanning trees to within one of
optimal, In STOC, 2007, 661-670.

25



