The Euclidean k-Supplier Problem

Viswanath Nagarajan!, Baruch Schieber!, and Hadas Shachnai?*

1 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
2 Computer Science Department, Technion, Haifa 32000, Israel

Abstract. In the k-supplier problem, we are given a set of clients C' and
set of facilities F' located in a metric (CUF, d), along with a bound k. The
goal is to open a subset of k facilities so as to minimize the maximum dis-
tance of a client to an open facility, i.e., mingc g, sj=x Maxyec d(v,S),
where d(v,S) = minyes d(v,u) is the minimum distance of client v to
any facility in S. We present a 1 + /3 < 2.74 approximation algorithm
for the k-supplier problem in Euclidean metrics. This improves the previ-
ously known 3-approximation algorithm [9] which also holds for general
metrics (where it is known to be tight). It is NP-hard to approximate Eu-
clidean k-supplier to better than a factor of v/7 &~ 2.65, even in dimension
two [B]. Our algorithm is based on a relation to the edge cover problem.
We also present a nearly linear O(n-log? n) time algorithm for Euclidean
k-supplier in constant dimensions that achieves an approximation ratio
of 2.965, where n = |C' U F|.

1 Introduction

Location problems are an important class of combinatorial optimization prob-
lems that arise in a number of applications, e.g., choosing sites for opening plants,
placing servers in a network, and clustering data. Moreover, the underlying dis-
tance function in many cases is Euclidean ({5 distance). In this paper, we study
a basic location problem on Euclidean metrics.

The Euclidean k-supplier problem consists of n points in p-dimensional space,
that are partitioned into a client set C' and a set of facilities F'. Additionally, we
are given a bound k < |F|. The objective is to open a set S C F of k facilities
that minimizes the maximum distance of a client to its closest open facility. The
k-supplier problem is a generalization of the k-center problem, where the client
and facility sets are identical.

On general metrics, the k-supplier problem admits a 3-approximation al-
gorithm [9]. There is a better 2-approximation algorithm for k-center, due to
Hochbaum and Shmoys [§] and Gonzalez [6]. Moreover, these bounds are best
possible assuming P # N P. On Euclidean metrics, Feder and Greene [5] showed
that it is NP-hard to approximate k-supplier better than v/7 and k-center better
than v/3. Still, even on 2-dimensional Euclidean metrics, the best known ap-
proximation ratios remain 3 for k-supplier and 2 for k-center. In this paper, we
derive the following improvement for Euclidean k-supplier:

* Work partially supported by the Israel Science Foundation (grant number 1574/10),
and by funding for DIMACS visitors.

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 290-301] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

The Euclidean k-Supplier Problem 291

Theorem 1. There is a (1 + \/3)-approzimation algorithm for the Euclidean
k-supplier problem in any dimension.

It is worth noting that it remains NP-hard to approximate the k-supplier problem
better than 3 if we use ¢ or £, distances, even in 2-dimensional space [5]. Thus,
our algorithms make heavy use of the Euclidean metric properties.

In many applications, such as clustering, the size of the input data may be
very large. In such settings, it is particularly useful to have fast (possibly lin-
ear time) algorithms. Geometry plays a crucial role here, and many optimization
problems have been shown to admit much faster approximation algorithms in ge-
ometric settings than in general metrics, for example TSP [I], k-median [7I10], or
matching [T5IT4T]. These papers consider the setting of low constant dimension,
which is also relevant in practice; the running time is typically exponential in the
dimension. For the Euclidean k-supplier problem in constant dimension, [5] gave
a nearly linear O(nlog k) time 3-approximation algorithm; whereas the best run-
ning time in general metrics is quadratic O(nk) [9J6]. Extending some ideas from
Theorem [I] we obtain a nearly linear time algorithm for Euclidean k-supplier
having an approximation ratio better than 3.

Theorem 2. There is an O(n - log? n) time algorithm for Euclidean k-supplier
in constant dimensions that achieves an approximation ratio == 2.965.

It is unclear if our algorithm from Theorem [0 admits a near-linear time im-
plementation: the best running time that we obtain for constant dimensions is
O(n*®logn). Both of our algorithms extend easily to the weighted k-supplier
problem, where facilities have weights {w; : f € F'}, and the goal is to open a
set of facilities having total weight at most k.

Our Techniques and Outline. The (1 + v/3)-approximation algorithm (The-
orem [I]) is based on a relation to the minimum edge cover problem, and is very
simple. Recall, the edge cover problem [I3] involves computing a subset of edges
in an undirected graph so that every vertex is incident to some chosen edge; this
problem is equivalent to maximum matchingﬂ The entire algorithm is:

“Guess” the value of opt. P is a mazimal subset of clients C whose pairwise
distance is more than \/3 - opt. Construct a graph G on vertices P that con-
tains an edge for each pair u,v € P of clients that are both within distance opt
from the same facility. Compute the minimum edge cover in G and output the
corresponding facilities.

The key property (which relies on the Euclidean metric) is that any facility
can “cover” (within distance opt) at most two clients of P, which leads to a
correspondence between k-supplier solutions and edge-covers in G. The main
difference from [9I8J6] is that our algorithm uses information on pairs of clients
that can be covered by a single facility.

To implement the algorithm, we apply the fastest known algorithm for edge-
cover, due to Micali and Vazirani [I1], that runs in time O(Egv/Vg). In our

! In any n-vertex graph without isolated vertices, it is easy to see that the minimum
edge cover has size n minus the cardinality of maximum matching.

292 V. Nagarajan, B. Schieber, and H. Shachnai

setting this is O(n'%). However, in p-dimensional space, the algorithm to con-
struct graph G takes O(pn?) time in generalE which results in an overall runtime
of O(pn?). These results appear in Section

When the dimension is constant, which is often the most interesting set-
ting for optimization problems in Euclidean space, we show that a much better
runtime can be achieved. Here, we can make use of good approximate near-
est neighbor (ANN) data structures and algorithms [214I3]. These results state
that with O(nlogn) pre-processing time, one can answer (1 + €)-approximate
nearest-neighbor queries in O(logn) time each; where € > 0 is any constant. This
immediately gives us an O(nlogn) time algorithm to construct G, and hence an
O(n'®) time implementation of Theorem M at the loss of a 1+ € factor. Also, in
the special case of dimension two, we can show that G is planar (see Section [2)),
so we can use the faster O(n'!7) time planar matching algorithm due to Mucha
and Sankowski [I2] and obtain an O(n''7) time implementation of Theorem [
However, it seems that there are no additional properties of G that we are able
to use due to the following.

e Any degree 3 planar graph can be obtained as graph G for some instance of
2-D Euclidean k-supplier, and the fastest known matching algorithm even
on this family of graphs still runs in O(n'!7) time [12]. Indeed, there is a
linear time reduction [12] from matching on general planar graphs to degree
3 planar graphs.

e Even in 3-D, the graph G does not necessarily exclude any fixed minor [So,
for higher constant dimensions, we need a general edge cover algorithm [I1].

In Theorem] we provide a different algorithm (building on ideas from Theo-
rem [I]) that achieves near-linear running time, but a somewhat worse approxi-
mation ratio of 2.965: which is still better than the previous best bound of 3.
The main idea here is to reduce to an edge cover problem on (a special class
of) cactus graphs. Since (weighted) edge cover (and matching) on cactus graphs
can be solved in linear time, the overall running time is dominated by the pro-
cedure to construct this edge-cover instance. Although the graph construction
procedure here is more complicated, we show that it can also be implemented
in O(n) time using ANN algorithms [2]. The details appear in Section Bl

Remark: Our ideas do not extend directly to give a better than 2-approximation
for the Euclidean k-center problem, which remains an interesting open question.

2 The (1+ \/§)-Approximation Algorithm

For any instance of the k-supplier problem, it is clear that the optimal value
is one of the |F| - |C| distances between clients and facilities. As with most
bottleneck optimization problems [9], our Algorithm [2.1] uses a procedure that

2 The factor of p appears because, given a pair of points in p-dimension, it takes O(p)
time to even compute the Euclidean distance between them.
3 Recall that a graph is planar iff it does not contain K5 nor K33 as a minor.

The Euclidean k-Supplier Problem 293

takes as input an additional parameter L (which is one of the possible objective
values) and outputs one of the following:

1. a certificate showing that the optimal k-supplier value is more than L, or
2. a k-supplier solution of value at most o - L.

Above, a = 1 4 /3 is the approximation ratio. The final algorithm uses binary
search to find the best value of L.

Algorithm 2.1. Algorithm for Euclidean k-supplier

1: pick a maximal subset P C C of clients such that each pairwise distance in P is
more than v/3 - L.
2: construct graph G = (P, E) with vertex set P and edge set £ = F1 U E»

E, = {(u,v) : u,v € P,3f € F with d(u, f) <L and d(v, f) < L}. (1)
Ey ={(u,u) : uw€ P, 3f € F with d(u, f) < L and Vv € P, (u,v) ¢ E1}. (2)

3: compute the minimum edge cover I' C E in G.

4: if |I'| > k then

5: the optimal value is larger than L.

6: else

7 output the facilities corresponding to I" as solution.

We now prove the correctness of this algorithm. We start with a key property
that makes use of Euclidean distances.

Lemma 1. For any facility f € F, the number of clients in P that are within
distance L from f is at most two.

Proof. To obtain a contradiction suppose that there is a facility f with three
clients ¢y, ¢a, ¢35 € P having d(f, ¢;) < L for i € {1,2,3}. Consider now the plane
containing ci, ce and c3 (which need not contain f). By taking the projection
f' of f onto this plane, we obtain a circle centered at f’ of radius at most L
that has {c;}2_; in its interior. See Figure [l (A). Hence, the minimum pairwise
distance in {¢;}3_, is at most /3 - L. This contradicts the fact every pairwise
distance between vertices in P is greater than V3 L. The lemma now follows. B

This lemma provides a one-to-one correspondence between the edges E defined
in (I)-@) and facilities H = {f € F : Ju € P with d(u, f) < L}. Note that
facilities in H that are within distance L of exactly one client in P give rise to
self loops in E. Clearly, if the optimal k-supplier value is at most L then there is
a set H' of at most k facilities in H so that each client in P lies within distance
L of some facility of H’'. In other words,

Claim 3. If the optimal k-supplier value is at most L then graph G contains an
edge cover of size at most k.

Recall that an edge cover in an undirected graph is a subset of edges where each
vertex of the graph is incident to at least one edge in this subset. The minimum
size edge cover of a graph can be computed in polynomial time using algorithms

294 V. Nagarajan, B. Schieber, and H. Shachnai

Clients ¢y, ¢g, c3 within distance L

‘ Possible edge crossing between (x,y) and (2/,y')
from facility f

Fig. 1. Examples for (A) Lemma/[ll and (B) Lemma [3]

for maximum matching, see, e.g., [13]. By Claim Bl if the minimum edge cover
I' is larger than k£ then we have a certificate for the optimal k-supplier value
being more than L. This justifies Step @l On the other hand, if the minimum
edge cover I' has size at most k then (in Step [[]) we output the corresponding
facilities (from H) as the solution.

Lemma 2. If the algorithm reaches Step [then I' corresponds to a k-supplier
solution of value at most (14 +/3)L.

Proof. To reduce notation, we use I" to denote both the edge cover in G and its
corresponding facilities from H. Since I" is an edge cover in G, each client v € P
is within distance L of some facility in I

< .
max diu, Iy < L (3)
Now, since P C C is a maximal subset satisfying the condition in Step [for
each client v € C'\ P there is some u € P with d(u,v) < v/3L. Using (@) and
triangle inequality, it follows that max,cc d(v,I") < (v/3 +1)L. [

Finally, we perform a binary search over the parameter L to determine the
smallest value for which there is a solution. This proves Theorem [l

Weighted Supplier Problem. Our algorithm extends easily to the weighted
supplier problem, where facilities have weights {wy : f € F'}, and the objective is
to open facilities of total weight at most k£ that minimizes the maximum distance
to any client. In defining edges in the graph G (Equation ({)-(2)) we also include
weights of the respective facilities. Then we find a minimum weight edge cover
I', which can also be done in polynomial time [13].

2.1 Running Time

We use n = |F|+]|C| to denote the total number of vertices. For arbitrary dimen-
sion p > 2, the running time can be naively bounded by O(pn?). This running

The Euclidean k-Supplier Problem 295

time is dominated by the time it takes to construct the graph G. The edge
cover problem can be solved via a matching algorithm [ITJI3] that runs in time
O(E(G)\/V(G)) = O(n*/?) since here V(G) < |C| and E(G) < |F|.

When dimension p is constant, we provide a better running time implemen-
tation. There are two main parts in our algorithm: constructing the graph G
and solving the edge cover problem on G. A naive implementation of the first
step results in an O(n?) running time. We show below that the runtime can be
significantly improved, while incurring a small loss in the approximation ratio.

Constructing Graph G. The main component here is a fast data structure
for approzimate nearest neighbor search from Arya et al. [2].

Theorem 4 ([2]). Consider a set of n points in RP. Given any € > 0, there is

a constant ¢ < p[1+ 6p/e|? such that it is possible to construct a data structure
in O(pnlogn) time and O(pn) space, with the following properties:

e For any “query point” q € RP and integer £ > 1, a sequence of £ (1 + €)-

approximate nearest neighbors of q can be computed in O((c+¥{p)logn) time.

e Point insertion and deletion can be supported in O(logn) time per update.

We will maintain such a data structures P for clients. First, we implement the
step of finding a maximal “net” P C C in Algorithm

Algorithm 2.2. Algorithm for computing vertices P of G

1: initialize P < () and P <+ 0.

2: for v e C do

3: o' + approximate nearest neighbor of v in P (or NIL if P = ().
4: if d(v,v") > V3(1 +€)L or v'=NIL then

5 P < PU{v} and insert v into P.

6: output P.

Since we use (1 + €)-approximate distances, the condition in Step M ensures
that every pairwise distance in the final set P is at least v/3L. Moreover, for each
u € C'\ P, there is some v € P satisfying d(u,v) < v/3(1 + ¢)L. By Theorem []
the time taken for each insertion and nearest-neighbor query in P is O(logn);
so the total running time of this Algorithm is O(nlogn).

Next, Algorithm 23] shows how to compute the edge set E in ([I)-([2l).

Since all pairwise distances in P are larger than /3L, Lemma [I implies that
each facility f € F is within distance L of at most two clients in P. This is
the reason we only look at the two approximate nearest neighbors (u and v)
of f. Again, the condition for adding edges ensures that there is an edge in F
for every facility in the set H = {f € F : Ju € P with d(u, f) < L}; since we
use approximate distances, there might be more edges in F. By Theorem [the
time for each 2-nearest neighbors query is O(clogn). Thus, the total time is
O(enlogn), which is O(nlogn) for any constant dimension p.

Computing Edge-Cover on G. Finding a minimum size edge cover is equiv-
alent to finding a maximum cardinality matching on G. The fastest algorithm

296 V. Nagarajan, B. Schieber, and H. Shachnai

Algorithm 2.3. Algorithm for computing edges E of G

1: construct data structure P containing points P, and initialize E < (.
2: for f € F do

3: u < approximate nearest neighbor of f in P.

4 v ¢— approximate second nearest neighbor of f in P.

5 if d(u, f) < (1+e¢€)L and d(v, f) > (1 +¢€)L then

6: set E <+ EU{(u,u)}.

7 ifd(u, f) < (14+¢€)L and d(v, f) < (1 +€)L then

8 set £+ EU{(u,v)}.

9: output E.

for matching on general graphs takes O(E(G)+/V (G)) time [I1]. This results in
an O(n?/?) running time in our setting, since we only deal with sparse graphs.

We can obtain a better running time in p = 2 dimensions, by using the
following additional property of the graph G.

Lemma 3. If dimension is p =2 and € < 0.2, the graph G is planar.

Proof. Consider the natural drawing of graph G in the plane: each vertex in P is
a point, and each edge (u,v) € E is represented by the line segment connecting
u and v. To obtain a contradiction suppose that there is some crossing, say
between edges (z,y) and (2',y’), see also Figure[Il (B). Notice that the distance
between the end-points of any edge in E is at most 2(1 + €) L, and the distance
between any pair of points in P is at least v/3L. Hence (setting ¢ < 0.2), for
any edge (u,v) and vertex w € P, the angle uwv is strictly less than 90°. Using
this observation on edge (z,y) and points 2’ and y’, we obtain that the angles
za'y and xy'y are both strictly smaller than 90°. Similarly, for edge (2’,y’) and
points = and y, angles «’zy’ and z’yy’ are also strictly smaller than 90°. This
contradicts with the fact that the sum of interior angles of quadrilateral xa'yy’
must equal 360°. [|

Based on this lemma, we can use the faster O(n*/?) time randomized algorithm
for matching on planar graphs, due to Mucha and Sankowski [12]. Here, w < 2.38
is the matrix multiplication exponent. Thus, we have shown:

Theorem 5. For any constant 0 < ¢ < 0.2, there is a (1 + €)(1 4+ V/3) factor
approzimation algorithm for Euclidean k-supplier that runs in time: O(n'-5 logn)
for any constant dimension p, and O(n*17logn) for p =2 dimensions.

The additional logn factor comes from the binary search that we perform over
the parameter L. We note that for larger dimension p > 3, the graph G does
not necessarily have such nice properties. In particular, even in 3-dimensions G
does not exclude any fixed minor.

3 Nearly Linear Time 2.965- Approximation Algorithm

In this section, we give an O(n log? n) time approximation algorithm for Eu-
clidean k-supplier in fixed dimensions. The approximation ratio we obtain is

The Euclidean k-Supplier Problem 297

2.965 which is worse than the 1 4+ v/3 bound from the previous section. We do
not know a near-linear time implementation achieving that stronger bound. The
algorithm here uses some ideas from the previous reduction to an edge-cover
problem. But to achieve near-linear running time, we do not want to solve a
general matching problem (even on planar graphs). Instead, we show that us-
ing additional Euclidean properties one can reduce to an edge-cover problem
on (a special case of) cactus graphs. This approach gives a nearly linear time
algorithm, since matching on cactus graphs can be solved in linear time.

Let 0 < p < 1 be some constant and 0° < «, 8 < 30° be angles, the values of
which will be set later. To reduce notation, throughout this section, we normalize
distances so that the parameter L = 1 (guess of the optimal value). For any point
v, we denote the ball of radius one centered at v by B(v). Two clients ¢ and ¢’ are
said to intersect if (i) d(c,¢’) < 2 and (ii) there is some facility f € B(c)NB(c);
if in addition, d(c,c’) > 2cos 3 then we call it a fringe intersection. Note that
when ¢ and ¢’ have a fringe intersection, for any point v € B(¢)NB(c¢’) the angles
Zvec and Zvc'c are at most 3.

Given a client ¢ and facility f € B(c),
we say that another client ¢ is in an-
tipodal position with respect to (abbre-
viated w.r.t.) (f,c) if the angle fec' is
more than 180° — ¢ if in addition, ¢ and
¢’ have a fringe intersection, we say that
' has a fringe antipode intersection with
(f,c). See figure to the right.

As in the previous section, the algorithm here builds a graph G on clients as
vertices and facilities as edges. However, this procedure is more complex, since
we want the resulting graph to have simpler structure: so that the edge cover
problem on G can be solved in linear time.

The graph G is constructed iteratively, where each iteration adds a new com-
ponent H as follows. We initialize H with an arbitrary pair ¢y, co of clients that
have a fringe intersection, say with facility fo € B(c1) N B(cz2); so H has vertices
V(H) = {c1,c2} and an edge (c1, c2) that is labeled fo. (If there is no such pair,
we pick an arbitrary client ¢g and set H = {cp} to be a singleton component.)
Throughout the iteration, we maintain (at most) two endpoint clients x and y
along with facilities f € B(x) and g € B(y); the role of these will become clear
shortly. We will also refer to the tuples (x, f) and (y,¢) as endpoints. Initially,
set © < c1, f + fo, y < c2 and g < fo.

We repeatedly add to component H a new client c¢ satisfying the following:

e ¢ has a fringe antipode intersection with either {(x, f) or (y, g).
e If © # y and c intersects both, then ¢ must be fringe antipode w.r.t. both

{z, f) and (y, g).
e ¢ does not intersect any client in V(H) \ {z,y}.

For a client ¢ that satisfies these three conditions and is added to H, we distin-
guish the following two cases:

298 V. Nagarajan, B. Schieber, and H. Shachnai

CASE 1: Client c¢ intersects exactly one of {z,y}, say = (the other case is iden-
tical). Let f' € B(x) N B(c) denote the facility in the (fringe) intersection of x
and c. Add vertex ¢ to V(H) and an edge (z,c) labeled f’. Also set x < ¢ and
f< 7.

CASE 2: Client c intersects both = and y. Let f1 € B(z) N B(c) and fy €
B(y) N B(c) denote the facilities in the (fringe) intersections of z and ¢ and of y
and ¢, respectively. In this case, add vertex ¢ to V(H), and edges (¢, z) labeled
f1 and (¢, y) labeled fo. Set x < ¢, f < f1, y < cand g + fo.

The construction of component H ends when there are no new clients that
can be added. At this point, we remove all clients that intersect with any client
in V(H) (these will be covered by a subset of facilities in E(H)), and iterate
building the next component of G. Finally, we output an edge cover of G as the
solution to the k-supplier problem.

Next, we prove some useful properties of the graph G.

Lemma 4. FEach component H is a cactus, where its simple cycles are linearly
ordered. Hence, the edge-cover problem on G is solvable in linear time.

Proof. Tt is easy to show by induction that H is a cactus with linearly ordered
simple cycles. In each step, H grows by a new vertex ¢ and (i) one edge from
¢ to z (after which = < ¢), or (ii) two edges, from ¢ to x and y (after which
x,y <).

A linear time algorithm for (weighted) edge-cover (and weighted matching)
on cactus graphs can be obtained via a dynamic program. Here we just state
an algorithm for the unweighted case of linearly ordered cycles. Such a graph
G is given by a sequence (v1,vs, ..., v,) of vertices, disjoint cycles C1,...,Cr_1
and a path C, containing v,.. The cycles C1,...,C,_1 and path C, are vertex-
disjoint except at the v;s: for each j € [r — 1], C; N {v;}i—; = {vj,vj41}, and
Cr N {vib, = o}

For any i € [r], let T'[i,0] denote the minimum edge cover in the graph G; :=
C;UCiy1---UC,; and T'[i, 1] the minimum edge cover for graph G; when vertex
v; 18 not required to be covered. The base cases T'[r,0] and T'[r, 1] can be easily
computed by considering all minimal edge covers of path C,.. We can write a
recurrence for T'[i, %] as follows. Let e;41 and f; 11 denote the two edges incident
to v;41 in the cycle C;. Define the following minimal edge covers in C; (each is
unique subject to its condition).

° Fl-l (resp. Ff) contains neither e;11 nor f; 11, and covers vertices C; \ v; 41

(resp. Cy \ {vi, vig1}).

e I? (resp. I}') contains e;+1 but not f;y1, and covers vertices C; (resp.

Ci \ {vi}).

o [’ i5 (resp. Ff) contains f; 1 but not e;11, and covers vertices C; (resp.
Ci \ {vi}).

e I'7 (resp. I'?) contains both fi1; and e;1; and thus not the other edge
incident to e; 41, and covers vertices C; (resp. C; \ {v;}).

The Euclidean k-Supplier Problem 299

Then we have for all r € [r — 1],
T[i,0] := min {T[i + 1,0] + I}, T[i + 1,1] + min {1, 17, I} }

T[i,1] == min {T[i 4+ 1,0] + I'?, T[i + 1,1] 4+ min {I}}, I, I?}}

Clearly this dynamic program can be solved in linear time. [|

Claim 6. If the optimal k-supplier value is at most 1, then graph G has an edge
cover of size k.

Proof. We show that each facility can cover at most two clients in V(G), and
that there is an edge in G between every pair of clients in V(G) that can be
covered by a single facility. This would imply the claim.

Note that if a pair of vertices in V(@) intersect then this intersection is fringe
intersection, i.e., any such pairwise distance is at least 2cos 3 > /3. Hence,
by Lemma [I] each facility can cover (within distance one) at most two clients
of V(G). Moreover, by the construction of each component H, the edge set
E(H) contains all intersections between pairs of vertices in V(H). Also, clients
in different components of G do not intersect. This is because we remove all
clients intersecting with V(H) after constructing component H. |

We now prove that this algorithm achieves an approximation ratio 3 — p. Below
we consider a particular component H. The variables x, f,y, g will denote their
values at the end of H’s construction (unless specified otherwise).

Claim 7. For any client v € V(H) and edge (facility) e = (u,u') € E(H)
such that {e,u) ¢ {(f,x), (9,y)}, and client v € C that intersects u, either
d(e,v) <3—p ord(v,V(H)) <2—p.

Proof. The Claim holds trivially for v € V(H). Consider clients u € V(H) and
v e C\V(H) as stated. If d(u,v) < 2cosf then, clearly, d(v, V(H)) < d(v,u) <
2 cos 8. Else, if v is not in antipodal position w.r.t. (e, u), then by the cosine rule,
d(e,v) < V12 +22+2-2cosa (see Figure 2al)

(a) v is not antipodal w.r.t. (e,u). (b) (e,u) was an endpoint and ¢ was added.

Fig. 2. Cases from Claim [7]

Below, we assume that 2 cos 8 < d(u,v) < 2 and u is in antipode position w.r.t.
(e, u). Since (e, u) ¢ {(f,), (g9,y)}, one of the following two cases must be true.

300 V. Nagarajan, B. Schieber, and H. Shachnai

CASE 1: At some earlier iteration, (e,u) was an endpoint and some client ¢
was added due to a fringe antipode intersection w.r.t. (e,u). In this case we
will bound d(v, V(H)) < d(v,c). Since both v and ¢ are in antipode position
w.r.t. {e,u), the angle Zvuc is at most 2a. Again by the cosine rule, d(v,c) <
V22 422 — 2.2 2cos2a (see Figure 2h).

CASE 2: At some earlier time, (¢/,u) was an endpoint where ¢/ = (w,u) # e,
and e = (u,u’) was added due to «' having a fringe antipode intersection w.r.t.
(€’,u). In this case, we will bound d(v, V(H)) < d(v, w); recall w € V(H) is the
earlier occurring vertex of e’. See also the figure on the right.

Since u' is antipodal w.r.t. (e’,u), the
angle Ze'uu’ is between 180° — o and
180°. Moreover, u’ has a fringe intersec-
tion with v and e € B(u) N B(u'), so the
angle Zeuw' is at most 5. Hence Zeue' is
between 180° — (a+) and 180°. Again,
Zeuw is between 180°—« and 180°, since
v is in antipodal position with (e, u). So
Zvue’ is at most 2+ 5. Finally, Ze'uw
is at most 3 since u and w have a fringe
intersection with ¢’ € B(w) N B(u).

Thus we have Zvuw < 2a + 23. By the cosine rule,

d(v,w) < /22422 —2-2-2cos(2a + 28).
We need to choose p, «, and 3 so that the following three constraints hold:

1. 2cosB<2—p

2. Vb+4cosa<3—p
3. \/8—8cos(2a+2B)<2—p

Setting p < 0.035, a ~ 18.59°, and [~ 10.73° satisfies all three constraints.
Thus, the claim holds in all the above cases. |

Lemma 5. Any edge cover I' of G corresponds to a k-supplier solution of value
at most 3 — p.

Proof. Since I' is an edge cover of G, it covers clients V(G) within distance one.
It is clear that each client in C' intersects with some client in V(G). It suffices to
show that for each component H and client v € C'\ V(H) that intersects some
u € V(H), the distance d(v,I") <3 — p.

Let e € I' N B(u) be the edge (facility) in the edge cover I' that is incident
to vertex uw € V(H). If (e, u) ¢ {(f,z), (9,y)} (at the end of constructing com-
ponent H) then by Claim [T either d(e,v) < 3 — p or d(v,V(H)) < 2 — p. So,
d(v,I') < min{d(e,v), 1 +d(v,V(H))} <3 —p.

Now, suppose (e,u) = (f,z) when the construction of H is complete (the
other case of (g,y) is identical). We consider the following cases:

The Euclidean k-Supplier Problem 301

CASE 1: Client v does not have a fringe antipode intersection w.r.t. (f,). Then,
as in the initial cases of Claim[7 d(v,I") < d(v, f) < 3 — p.

CASE 2: Client v intersects with some client v’ € V/(H) \ {z,y}. Then applying
Claim [T to v’ and edge ¢’ € I' N B(u') yields d(v, I") < 3 — p.
CASE 3: If none of the above two cases hold, then we must have y # x and v has

a non antipode intersection w.r.t. (g, y): otherwise, v would have been added to
H as a new client. Let ¢/ € I' N B(y), and consider two sub-cases:

e If ¢’ = g, then since v has a non antipodal intersection w.r.t. (g, y), d(v, I') <
d(v,e’) =d(v,g) <3 —p.
o If ¢/ # g, then Claim[7 applies since ¢’ € E(H)\{f, g} and yields d(v, I') <
3—p.
In all the cases, we have shown d(v, I") < 3 — p, which proves the lemma. [|

In the full version we give the details of implementing this algorithm in near-
linear time, which completes the proof of Theorem [2

References

1. Arora, S.: Nearly linear time approximation schemes for Euclidean TSP and other
geometric problems. In: FOCS, pp. 554-563 (1997)
2. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An opti-
mal algorithm for approximate nearest neighbor searching in fixed dimensions.
J. ACM 45(6), 891-923 (1998)
3. Chan, T.M.: Approximate nearest neighbor queries revisited. Discrete & Compu-
tational Geometry 20(3), 359-373 (1998)
4. Clarkson, K.L.: An algorithm for approximate closest-point queries. In: Symposium
on Computational Geometry, SoCG, pp. 160-164 (1994)
5. Feder, T., Greene, D.H.: Optimal algorithms for approximate clustering. In: STOC,
pp. 434444 (1988)
6. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293-306 (1985)
7. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In:
STOC, pp. 291-300 (2004)
8. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Mathematics of Operations Research 10(2), 180-184 (1985)
9. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms
for bottleneck problems. J. ACM 33(3), 533-550 (1986)
10. Kolliopoulos, S.G., Rao, S.: A nearly linear-time approximation scheme for the
Euclidean k-median problem. STAM J. Comput. 37(3), 757-782 (2007)
11. Micali, S., Vazirani, V.V.: An O(v/VE) Algorithm for Finding Maximum Matching
in General Graphs. In: FOCS, pp. 17-27 (1980)
12. Mucha, M., Sankowski, P.: Maximum matchings in planar graphs via gaussian
elimination. Algorithmica 45(1), 3-20 (2006)
13. Schrijver, A.: Combinatorial optimization. Springer, New York (2003)
14. Vaidya, P.M.: Approximate minimum weight matching on points in k-dimensional
space. Algorithmica 4(4), 569-583 (1989)
15. Vaidya, P.M.: Geometry helps in matching. SIAM J. Comput. 18(6), 1201-1225
(1989)

	The Euclidean k-Supplier Problem
	Introduction
	The (1+3)-Approximation Algorithm
	Running Time

	Nearly Linear Time 2.965-Approximation Algorithm

