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In the Stochastic Orienteering problem, we are given a finite metric space, where each node contains a job with some
deterministic reward and a random processing time. The processing time distributions are known and independent across
nodes. However the actual processing time of a job is not known until it is completely processed. The objective is to
compute a non-anticipatory policy to visit nodes (and run the corresponding jobs) so as to maximize the total expected
reward, subject to the total distance traveled plus the total processing time being at most a given budget of B. This
problem combines aspects of the stochastic knapsack problem with uncertain item sizes [18], as well as the deterministic
orienteering problem [8].

In this paper, we consider both non-adaptive and adaptive policies for Stochastic Orienteering. We present a constant-
factor approximation algorithm for the non-adaptive version, and an O(log log B)-approximation algorithm for the adap-
tive version. We extend both these results to directed metrics and a more general sequence orienteering problem.

Finally, we address the Stochastic Orienteering problem when the node rewards are also random and possibly corre-
lated with the processing time, and obtain an O(logn log B)-approximation algorithm; here n is the number of nodes in
the metric. All our results for adaptive policies also bound the corresponding “adaptivity gaps”.
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1. Introduction

Consider the following problem: you start your day at home with a set of jobs to run at various locations
(e.g., at the bank, the post office, the grocery store), but you only have limited time to run those jobs in
(say, you have from 9am until S5pm, when all these shops close). Each successfully completed job j gives
you some fixed reward 7;. You know the time it takes you to travel between the various job locations:
these distances are deterministic and form a metric (V, d). However, you do not know the amount of time
you will spend processing each job (e.g., standing in the queue, filling out forms). Instead, for each job 7,
you are only given the probability distribution 7; governing the random amount of time you need to spend
performing j. That is, once you start performing the job 7, the job finishes after S; time units and you get
the reward, where \S; is a random variable denoting the size, and distributed according to ;. Before you
reach the job, all you know about its size is what can be gleaned from the distribution 7; of S;; and even
having worked on j for ¢ units of time, all you know about the actual size of j is what you can infer from
the conditional distribution (S; | S; > t). We consider a non-preemptive setting, where each job must be
run to completion once started (we can also handle a variant where job cancellations are allowed). The
goal is now a natural one: given the metric (V, d), the starting point p, rewards of jobs, the time budget B,
and the probability distributions for all the jobs, give a policy for traveling around and processing the jobs
that maximizes the expected reward accrued. Due to the hard budget constraint, there might be a partially
finished job at the horizon B— such jobs do not contribute to the objective.

The case when all the sizes are zero (i.e., S; = 0 with probability 1) is the deterministic orienteering
problem, for which we now know a (2 + €)-approximation algorithm [8, 12]. Another special case, where
all the jobs are located at the start node (i.e. the metric is zero), but the sizes are random, is the stochastic
knapsack problem, which also admits a (2 + ¢)-approximation algorithm [18, 6]. However, the stochastic
orienteering problem above, which combines aspects of both these problems, seems to have been hitherto
unexplored in the approximation algorithms literature.

Furthermore, it is not known even for stochastic knapsack, whether an optimal adaptive policy can always
be represented using polynomial space; moreover certain questions on the optimal policy are PSPACE-
hard [18]. This raises the issue of how well we can approximate the optimal adaptive policies, by policies of
polynomially bounded descriptions? Indeed, a natural class of policies which fit this description are the so-
called non-adaptive solutions. A non-adaptive solution for stochastic orienteering is simply a permutation
P of points in the metric space starting at the root p: we visit the points in this fixed order, performing the
jobs at the points we reach, until time runs out. The ratio of the expected reward of the best non-adaptive
policy to that of the optimal adaptive policy is called the adaptivity gap of the problem [18].

1.1. Our Results and Techniques

Our main result is the following:

THEOREM 1. There is an O(loglog B)-approximation algorithm for adaptive stochastic orienteering.

The algorithm also gives a bicriteria approximation guarantee that for any € > 0 finds a solution that spends
time (1 + €) - B and whose expected reward is O(loglog %) times the expected reward of the optimal policy
using time B. ‘

Our proof proceeds by first showing the following structural result that bounds the adaptivity gap: there
exists a value W* such that the optimal non-adaptive solution which spends at most W* time in processing
jobs and B — W* time in traveling, gets an Q(1/loglog B) fraction of the optimal reward. Naively we
would expect only a logarithmic fraction of the reward by considering log, B possibilities for W* (all
powers of two). However, we do better, and the underlying structure result (Lemma 4) is the technical heart
of the paper. The proof is via a martingale argument. We then obtain Theorem 1 by combining Lemma 4
with the following result about non-adaptive stochastic orienteering.

THEOREM 2. There is an O(1)-approximation algorithm for non-adaptive stochastic orienteering.
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It turns out that the dependence on O(log log B) for the adaptivity gap is not just a byproduct of our analysis.
Indeed, very recently, Bansal and Nagarajan [4] have established an 2(v/loglog B) lower bound on the
adaptivity gap of the stochastic orienteering problem!

Most previous adaptivity gaps in the literature are proved using linear programming relaxations that
capture optimal adaptive policies, and then rounding the fractional LP solutions to get non-adaptive policies.
However, we do not know a good relaxation for even the deterministic orienteering problem, so taking this
approach seems difficult. Thus we argue directly about the optimal adaptive policy to prove our adaptivity
gap results. In particular, we use a martingale argument to show the existence of a “path” (i.e., a non-adaptive
policy) with large reward within the optimal “tree” (i.e., the optimal adaptive policy).

Next, we extend our results to a generalization of the basic orienteering problem called sequence orien-
teering. In this problem we are given a sequence of k “portal vertices”, and a solution to sequence orienteer-
ing must visit the portals in the given order while not exceeding the budget. (A formal definition appears in
Section 2.) The basic orienteering problem corresponds to having a single portal, namely the starting vertex
p. Our results for sequence orienteering also extend to the case of directed metrics. The performance of our
algorithms for this problem is as follows:

THEOREM 3. The stochastic sequence orienteering problem admits the following guarantees.
e An O(«)-approximation algorithm for the optimal non-adaptive policy
e An O(«-loglog B)-approximation algorithm for the optimal adaptive policy.
Here, the quantity o denotes the best approximation ratio for the point-to-point orienteering problem.

The point-to-point orienteering problem [2] is the special case of sequence orienteering with £ = 2: namely,
given a metric with rewards at vertices, a length bound B, starting and ending vertices s and ¢ respec-
tively, find an s-t path of length at most B that maximizes the reward on its vertices. The best approx-
imation ratio known for point-to-point orienteering is o = 2 + € for symmetric metrics [12], and o =

O (min{ lé‘g”ig”n, log2 Opt}) in directed metrics [28, 12]. As far as we know, even the deterministic version
of sequence orienteering has not been studied before, and a central step in proving Theorem 3 is to give an
O(«)-approximation algorithm for deterministic sequence orienteering.

A second generalization is to the setting where both the rewards and job sizes are random and not neces-

sarily independent of each other. In this setting we show the following result.

THEOREM 4. There is a polynomial-time algorithm that outputs a non-adaptive policy for correlated
stochastic orienteering, achieving an O(lognlog B)-approximation to the best adaptive policy. Moreover,
this problem is at least as hard as the orienteering-with-deadlines problem.

The orienteering-with-deadlines problem [2] is one where we are given a metric with deadlines at vertices
and a starting vertex p, and want to compute a path starting at p (at time zero) that maximizes the number
of vertices visited before their respective deadlines. The currently best approximation algorithm for the
orienteering-with-deadlines problem achieves an O(logn) ratio [2].

1.2. Related Work

The (deterministic) orienteering problem is known to be APX-hard, and the first constant-factor approxi-
mation algorithm was due to Blum et al. [8]. Their factor of 4 was improved by [2] and ultimately by [12] to
(2+¢) for every € > 0. There is a PTAS known for the orienteering problem on low-dimensional Euclidean
space [16]. The orienteering problem has also been useful as a subroutine for obtaining approximation
algorithms for other vehicle routing problems such as TSP with deadlines and time-windows [2, 13, 14].

To the best of our knowledge, the stochastic version of the orienteering problem has not been studied
before from the perspective of approximation algorithms. Heuristics and empirical guarantees for a similar
problem were given by Campbell et al. [10].

The stochastic knapsack problem [18] is a special case of stochastic orienteering, where all the jobs are
located at the root p itself. Dean et al. [18] gave the first constant factor approximation algorithm for this
basic problem. Recently, Gupta et al. [22] considered an extension with correlated rewards and sizes, and
obtained a different O(1)-approximation algorithm.
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Another very related body of work is on budgeted learning with metric costs. Specifically, in the work
of Guha and Munagala [21], there is a collection of Markov chains located in a metric, each state of each
chain having an associated reward. When at a Markov chain at location j, the policy can advance that
chain one step every unit of time. Given a bound of L time units for traveling, and a bound of C' time
units for advancing Markov chains, the goal is to maximize some function (say the sum or the max) of
rewards of the final states in expectation. [21] gave an elegant constant factor approximation algorithm
for this problem (under some mild conditions on the rewards) via a reduction to classical orienteering
using Lagrangean multipliers. Our algorithm/analysis for the “knapsack orienteering” problem (defined in
Section 2) is inspired by theirs; the analysis of our algorithm though is simpler, due to the problem itself
being deterministic. This can be used to obtain a constant-factor approximation algorithm for the variant of
stochastic orienteering with two separate budgets for travel time and processing time. However, it is unclear
how to use the approach from [21] to obtain an approximation ratio better than O(log B) for the (single
budget) stochastic orienteering problem that we consider.

Approximation algorithms have been studied for adaptive versions of a number of combinatorial opti-
mization problems. Many of these results, machine scheduling [27], knapsack [18], budgeted learning [20],
matchings [3] etc. are based on LP relaxations that capture certain expected values of the optimal adaptive
policy. Such an LP-based approach was also used in earlier optimality proofs for some stochastic queuing
problems [25] and the multi-armed bandit problem [5]. An LP-based approach is not directly useful for
stochastic orienteering since we do not know good LP relaxations even for deterministic orienteering.

On the other hand, there are also other papers on stochastic matchings [17], stochastic knapsack [7, 6]
and optimal decision trees [26, 1, 23] that have had to reason about the optimal adaptive policies directly.
We hope that our martingale-based analysis for stochastic orienteering will add to the set of tools used for
adaptive optimization problems.

1.3. Outline

We begin with some definitions in Section 2, and then give an algorithm for the deterministic knapsack
orienteering problem in Section 3, which will be a crucial sub-routine in the subsequent algorithms. We then
present a constant-factor approximation algorithm for non-adaptive stochastic orienteering (Theorem 2)
in Section 4. This naturally leads us to our main result in Section 5, the O(loglog B)-adaptivity gap for
stochastic orienteering (Theorem 1). In Section 6 we consider the stochastic sequence orienteering problem
and extend our results to this general setting (Theorem 3). Then in Section 7, we obtain a poly-logarithmic
approximation algorithm for the variant of stochastic orienteering where rewards and sizes are correlated
(Theorem 4). Finally, as mentioned earlier, our model is non-preemptive, i.e. each job is run to completion
once started. In Section 8 we show that the same results can be obtained in the setting where jobs can be
prematurely canceled.

2. Definitions and Notation

Stochastic Orienteering. An instance of stochastic orienteering (StocOrient) is defined on an underlying
metric space (V,d) with ground set |V| = n and symmetric integer distances d : V' x V' — Z* (satisfying
the triangle inequality) that represent travel times. Each vertex v € V' is associated with a stochastic job,
which is also referred to as v. For most of the paper (with the exception of Section 7), each job v has a
fixed reward r, € Z*; and a random processing time (also called size) S,,, which is distributed according to
a known but arbitrary probability distribution 7, : R™ — [0, 1]. We are also given a starting “root” vertex p,
and a budget B on the total time available.

The only actions allowed to an algorithm are to travel to a vertex v and begin processing the job there:
when the job finishes after its random length S, of time, we get the reward r, (so long as the total time
elapsed, i.e., travel time plus processing time, is at most B), and we can then move to the next job. Recall
that this is a non-preemptive model. We show in Section 8 that all our results extend to a related model that
allows cancelations: here we can cancel any job at any time without receiving its reward, but we are not
allowed to attempt this job again in the future. Furthermore, once we complete a job, we are not allowed to
revisit it and process it again. If the application requires that a job be allowed to run multiple times, then we
can place many identical copies of the job at the vertex where it is located, and use our algorithms.
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Note that any solution (policy) corresponds to a decision tree where each “state” depends on which
previous jobs were processed, and what information we obtained about their sizes. Now the goal is to devise
a policy which, starting at the root p, decides for each possible state the next job to visit and process. Such
a policy is called “non-anticipatory” due to the fact that its action at any point in time can only depend
on already observed information. The objective is to obtain a policy that maximizes the expected sum of
rewards of jobs successfully completed before the total time (travel and processing) reaches the threshold of
B. The approximation ratio of an algorithm is defined to be the ratio of the expected reward of an optimal
policy to that of the algorithm’s policy.

Stochastic Sequence Orienteering. We also consider (in Section 6) a substantial generalization of the
stochastic orienteering problem. In the stochastic sequence orienteering problem, the input is a directed

metric (V,d), sequence (sq,...,s;) of portal vertices, bound B, and at each vertex v € V': reward r, and
random size S, ~ 7,. A solution here is an adaptive path that visits vertices (and processes the respective
jobs) such that the portals s, ..., sy are necessarily visited and in that order. The objective is to maximizes

the expected reward obtained such that the total time taken is at most B. Since any policy must visit all the
portals, if it is running some job v when the residual budget equals the distance from v to the remaining
portals, then job v is canceled and the policy terminates by directly visiting the remaining portals. Note that
the basic stochastic orienteering problem is the special case of kK =1 and a symmetric metric.

Stochastic Orienteering with Correlated Rewards. Another extension that we consider (in Section 7)
is the setting of correlated rewards and sizes. In correlated stochastic orienteering (CorrOrient), the job
sizes and rewards are both random, and correlated with each other. The distributions across different vertices
are still independent. (Recall that the stochastic knapsack version of this problem also admits a constant
factor approximation algorithm [22]).

Adaptive and Non-Adaptive Policies. We are interested in both adaptive and non-adaptive policies, and
in particular, want to bound the ratio between the optimal adaptive and non-adaptive policies. An adaptive
policy is a decision tree where each node is labeled by a job/vertex of V, with the outgoing arcs from a
node labeled by j corresponding to the possible sizes in the support of ;. A non-adaptive policy, on the
other hand, is simply given by a path P starting at p: we just traverse this path, processing the jobs that
we encounter, until the total (random) size of the jobs plus the distance traveled reaches B. A randomized
non-adaptive policy may pick a path P at random from some distribution before it knows any of the size
instantiations, and then follows this path as above. Note that in a non-adaptive policy, the order in which
jobs are processed is independent of their processing time instantiations.

Finally, for any integer m > 0 we use [m] to denote the set {0,1,...,m}.

3. The (Deterministic) Knapsack Orienteering Problem

We now define a variant of the orienteering problem which will be crucially used in the rest of the paper.
Recall that in the basic orienteering problem, the input consists of a metric (V, d), the root vertex p, rewards
T, for each job v, and total budget B. The goal is to find a path P of length at most B starting at p that
maximizes the total reward Zve p Ty Of vertices in P.

In the knapsack orienteering problem (KnapOrient), we are given a metric (V, d), root vertex p, and two
budgets: L which is the “travel” budget, and W which is the “knapsack” budget. Each job v has a reward
7., and also a “size” §,. A feasible solution is a path P originating at p having length at most L, such that

the total size 5(P) := ) 5, is at most W. The goal is to find a solution P of maximum reward ) _,7,.

THEOREM 5. There is an O(1)-approximation algorithm AlgKO for the KnapOrient problem.

Proof.The idea of the proof is to consider the Lagrangian relaxation of the knapsack constraint; we remark
that such an approach was also taken in [21] for a related problem. This way we alter the rewards of items
while still optimizing over the set of feasible orienteering solutions. For a suitable choice of the Lagrange
parameter, we will show that we can recover a solution with large (unaltered) reward while meeting both
the knapsack (W) and length (L) constraints.
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For a value A > 0, define an orienteering instance Z(\) on metric (V, d) with root p, travel budget L, and
profits 7 :==7, — \- 3, at each v € V. Note that the optimal solution to this orienteering instance has value
at least Opt — A - W, where Opt is the optimal value of the original KnapOrient instance.

Let Alg,(\) denote an c-approximate solution to Z(\) as well as its profit; we have o = 2 + § via the
algorithm from [12]. By exhaustive search, let us find:

)\*::max{)\ZO:Algo()\)Z )\QVV} (3.1)

Observe that by setting A = %, we have Alg, (A\) > (Opt — A\W)/a = % =2 Thus A\* > ;)Tpvt'

Let o denote the path in solution Alg,(A\*),and let ) © _ 5, =y - W for some y > 0. Partition the vertices
of o into ¢ = max{1, |2y|} parts o1, ..., 0. with Zver S, <W forall j € {1,...,c}. This partition can be
obtained by greedy aggregation since max,cy s, < W (all vertices with larger size can be safely excluded
by the algorithm). Set o’ <— 0y, for k = argmax$_, 7(0;). We then output o’ (which follows path o but only
visits vertices in oy) as our approximate solution to the KnapOrient instance. Clearly ¢’ satisfies both the

length and knapsack constraints. It remains to bound the reward we obtain.

?(0_,)>7‘(0') S AYWAA Wja )\*W‘<y+1/a>

- c - c c

v

A*W—min{y—i—l, 1+1} > AW
a 2 2ay «

The second inequality is by 7(0) — A* - 5(0) = Alg,(\*) > ATW due to the choice (3.1), which implies that
7o) > A 3(0) + 2 = Xy + 2 W by the definition of y. The third inequality is by ¢ < max{1,2y}.
The last inequality uses v > 2. It follows that 7(o”) > %, giving us the desired approximation ratio. [ |

As an aside, this Lagrangian approach can be used to obtain a constant-factor approximation algorithm
for a two-budget version of stochastic orienteering (with separate bounds on travel and processing times).
But it is unclear if this can be extended to the single-budget version. In particular, we are not able to show
that the Lagrangian relaxation (of processing times) has objective value £2(Opt). This is because different
decision paths in the Opt tree might vary a lot in their processing times, implying that there is no reasonable

candidate for a Lagrange multiplier.

In the next subsection we discuss some simple reductions from StocOrient to deterministic orienteering
that fail to achieve a good approximation ratio. This serves as a warm up for our algorithm which reduces
StocOrient to KnapOrient; we outline this in Subsection 3.2.

3.1. A Strawman Approach: Reduction to Deterministic Orienteering

A natural approach for StocOrient is to replace stochastic jobs by deterministic ones with size equal to
the expected size E[S,], and find a near-optimal orienteering solution P to the deterministic instance which
gets reward R. One can then use this path P to get a non-adaptive policy for the original StocOrient instance
with expected reward Q(R). Indeed, suppose the path P spends time L traveling and W processing the
deterministic jobs such that L + W < B. Then, picking a random half of the jobs and visiting them results
in a non-adaptive solution for StocOrient which travels at most L and processes jobs for time at most 1W/2
in expectation. Hence, Markov’s inequality says that with probability at least 1/2, all jobs finish processing
within W time units and we get the entire reward of this sub-path, which is Q(R).

However, the problem is in showing that R = Q(Opt)—i.e., that the deterministic instance has a solution
with reward that is comparable to the StocOrient optimum.

The above simplistic reduction of replacing random jobs by deterministic ones with mean size fails
even for stochastic knapsack: suppose the knapsack budget is B, and each of the n jobs has size Bn with
probability 1/n, and size 0 otherwise. Note that the expected size of every job is now B. Therefore, a
deterministic solution can pick only one job, whereas the optimal solution would finish €(n) jobs with high
probability. However, observe that this problem disappears if we truncate all sizes at the budget, i.e., set the
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deterministic size to be the expected “truncated” size E[min(S;, B)] where \S; is the random size of job j.
We also have to set the reward to be r; Pr[S; < B] to discount the reward from impossible size realizations.
Now E[min(W;, B)] reduces to B/n and so the deterministic instance can now get 2(n) reward. Indeed,
this is the approach used by [18] to get an O(1)-approximation algorithm and adaptivity gap.

But for StocOrient, is there a good truncation threshold?

Considering E[min(.S;, B)] fails on the example where all jobs are co-located at a point at distance B — 1
from the root. Each job v has size B with probability 1/B, and 0 otherwise. Truncation by B gives an
expected size Eg, ., [min(S,, B)] = 1 for every job, and so the deterministic instance gets reward from
only one job, while the StocOrient optimum can collect 2( B) jobs. Now noticing that any algorithm has to
spend B — 1 time traveling to reach any vertex that has some job, we can instead truncate each job j’s size at
B —d(p, j), which is the maximum amount of time we can possibly spend at j (since we must reach vertex
7 from p). However, while this fix works for the aforementioned example, the following example shows that

such a deterministic instance might only get an O(%) fraction of the optimal stochastic reward.
e 00 ~——B/4—>
O O—0—0
p V1 Vo Vlog B

FIGURE 3.1. Bad example for replacing by expectations.

Consider n = log B jobs on a line as in Figure 3.1. For i = 1,2,...,log B, the i‘" job is at distance
B(1 —1/2%) from the root p; job i takes on size B/2" with probability p := 1/log B and size 0 otherwise.
Each job has unit reward. The optimal (adaptive and non-adaptive) solution to this instance is to try all the
jobs in order 1,2, ...,log B : with probability (1 — p)'°8® a1 /e, all the jobs instantiate to size 0 and we
will accrue reward (log B).

In the deterministic orienteering instance, each job i has its expected truncated size p; = E[min{S;, B —
d(p,i)}] = B/(2"log B). A feasible solution consists of a subset of jobs where the total travel plus expected
sizes is at most B. Suppose j is the first job we pick along the line. Then, because of its size being y;
we cannot reach any jobs in the last y; length of the path. The number of these lost jobs is log 1, =
log B — j —loglog B because of the geometrically decreasing gaps between jobs. Hence we can reach only
jobs 7,5+ 1,7 +loglog B — 1, giving us a maximum profit of loglog B even if we ignore the space these
jobs would take. (Since their sizes decrease geometrically, we can indeed get all but a constant number of
these jobs.)

This shows that replacing jobs in a StocOrient instance by their expected truncated sizes gives a deter-
ministic instance whose optimal reward is smaller by an €( 101;{30 5 ) factor.

3.2. Our Approach: Reduction to Knapsack Orienteering

The reason why the deterministic techniques described above worked for stochastic knapsack, but failed
for stochastic orienteering is the following: the total sizes of jobs is always roughly B in knapsack (so
truncating at B was the right thing to do). But in orienteering, it depends on the total time spent traveling,
which in itself is a random quantity, even for a non-adaptive solution. One way around this is to guess the
amount of time W spent processing jobs (up to a factor of 2) which gets the largest profit, and use that as
the truncation threshold, to define a knapsack orienteering instance. It seems that such an approach should
lose an €2(log B) fraction of the optimal reward, since there are log, B choices for the truncation parameter
W . Somewhat surprisingly, we show that this algorithm actually gives a much better reward: it achieves
a constant factor approximation relative to a non-adaptive optimum, and an O(loglog B)-approximation
when compared to the adaptive optimum!

Given an instance Z,, of StocOrient with optimal (non-adaptive or adaptive) solution having expected
reward Opt, our algorithm is outlined in Figure 3.2. However, there are many details to be addressed, and
we flesh out the details of this algorithm over the next two sections. We will prove that a = O(1) for
non-adaptive StocOrient, and o = O(loglog B) in the adaptive case.
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Step 1: Enumerate over all choices for the truncation threshold WW. Construct a suitable instance Zy, (W) of
Knapsack Orienteering (KnapOrient), with the guarantee that the optimal reward from this KnapOrient
instance Zy,(1V) is at least Opt/«.

Step 2: Use Theorem 5 on Zy,, to find a path P with reward 2(Opt/«).

Step 3: Convert this KnapOrient solution P into a non-adaptive policy for StocOrient (Lemma 1).

FIGURE 3.2. High Level Overview

4. Non-Adaptive Stochastic Orienteering

Here we consider the non-adaptive StocOrient problem, and present an O(1)-approximation algorithm
(Theorem 2). This also contains many ideas used in the more involved analysis of the adaptive setting.

Recall that the input consists of metric (V, d) with each vertex v € V representing a stochastic job having
a deterministic reward r, € Z* and a random processing time/size .S, distributed according to 7, : Rt —
[0,1]; we are also given a root p and budget B. A non-adaptive policy is an ordering o of the vertices
(starting with p), which corresponds to visiting vertices (and processing the respective jobs) in the order o.
The goal in the non-adaptive StocOrient problem is to compute an ordering that maximizes the expected
reward, i.e., the total reward of all items which are completed within the budget of B (travel + processing
times). We first perform some preprocessing on the input instance. Throughout, Opt will denote the optimal
non-adaptive solution to the given StocOrient instance, as well as its expected reward.

ASSUMPTION 1. We may assume that:
e No single-vertex solution has expected reward more than Opt/8.
e Foreachvertexu €V, Prg, ., [S. > B—d(p,u)] <1/2.
The resulting optimal value remains at least % - Opt.

Proof.(1) Note that we can enumerate over all single vertex solutions (there are only n of them) and output
the best one— if any such solution has value greater than Opt/8 then we already have an 8-approximate
solution. So the first assumption follows.

(2) For the second assumption, call a vertex u bad if Prg,,,[S. > B — d(p,u)] > 1/2. Notice that if
Opt visits a bad vertex then the probability that it continues further decreases geometrically by a factor 1/2,
because the total budget is exceeded with probability at least 1/2. Therefore, the total expected reward that
Opt collects from all bad jobs is at most twice the maximum expected reward from any single bad vertex.
By the first assumption, the maximum expected reward from any single vertex is at most Opt/8. So the
expected reward obtained by ignoring bad vertices is at least % - Opt. [ |

DEFINITION 1 (TRUNCATED MEANS). For any vertex uw € V and any positive value Z > 0, let
tu (Z) := Eg,m, [min(S,, Z)] denote the expected size truncated at Z. Note that for all Z, > Z; > 0,
tu (Z1) < pru (Zo) and i, (21 + Z2) < pru (Z1) + p (Z2).

DEFINITION 2 (VALID KnapOrient INSTANCES). Given an instance Z,,, of StocOrient and value W <
B, define KnapOrient instance Zy,, (W) := KnapOrient(V,d,{(5,,7r.) : Vu € V}, L, W, p) where:

(i) The travel budget L = B — W and size budget is W.
(ii) For all u € V, its deterministic size S, = p,, (W).

Recall that AlgKO is an O(1)-approximation algorithm for KnapOrient. Algorithm 1 for non-adaptive
StocOrient proceeds in the following manner: (i) it enumerates over all possible powers-of-two for the
choice of size budget W (see the definition of valid KnapOrient instances), (ii) uses AlgKO to find a near-
optimal solution for each of the valid KnapOrient instances, and finally (iii) converts the best of them
into a non-adaptive StocOrient solution. The final part of this procedure is characterized by the following
Lemma 1. The proof is similar to that used in earlier works on stochastic knapsack [18].

LEMMA 1. Given any solution P to KnapOrient instance Z,,(W') for any W < B, having reward R,
we can obtain in polynomial time a non-adaptive policy for StocOrient of expected reward R/12.
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Proof.To reduce notation, let P also denote the set of vertices visited in the solution to Z,(W).

L::{ueP:uu(W)>2/} and S::{ueP:uu(W)ST}

Notice that |L| < 4 since ), uo (W) < W by the size budget in Z;,(W). By averaging max{r, : u €
L} > r(L)/3. Moreover, by Assumption 1 the best single vertex solution (to StocOrient) among L has
expected reward at least § - max{r, :ue L} >r(L)/6.

Since each v € S has p, (W) < W/4 and 3 o pa (W) < W, we can partition S into 3 parts such
that each part has total size at most W/2. Again by averaging, one of these parts S’ C S satisfies
Y wes M (W) <W/2 and 7(S") > r(S)/3. Consider the following non-adaptive policy for StocOrient:
visit (and process) vertices in S’ in the order of P. By triangle inequality, the travel time is at most that of
P, namely B — W. By Markov’s inequality, with probability at least 1/2, the total processing time of S is
at most W. Hence the expected reward of this policy to StocOrient is at least § - 7(S") > r(S) /6.

The better of the two policies above (from L and S) has reward at least R/12. [ ]

Algorithm 1 Algorithm AlgSO for StocOrient on input Z,, = (V. d, { (7, 7.) : Yue V}, B, p)
1: forallveV do

2: let R, :=71,-Prg, ., [S, < (B —d(p,v))] be the expected reward of the single-vertex solution to v.
3: end for

4: with probability 1/2, just visit the vertex v with the highest R, and exit.

5: delete all vertices u € V with Prg, ., [S. > B—d(p,u)] >1/2.

6: fori=0,1,...,[log B] do

7. set W= B/2'

8: let P, be the path returned by AlgKO on the valid KnapOrient instance Zy,(W).

9: let R; be the reward of this KnapOrient solution P;.
10: end for
11: let P;« be the solution among { P, };c(iog 5] With maximum reward R;.

—_
[\

: output the non-adaptive StocOrient policy corresponding to P+, using Lemma 1.

Therefore, in order to prove a constant approximation ratio, it suffices to show the existence of some
W = B/2' for which the optimal value of Z;,,(W) is (Opt). Formally,

LEMMA 2. Given any instance ZL,, of non-adaptive StocOrient satisfying Assumption 1, there exists
W = B/2! for some i € {0,1,...,[log B|} such that I;,,(W') has optimal value at least Opt/50.

The rest of this section proves this result. We restrict attention to vertices satisfying the condition in Assump-
tion 1; let Opt’ > 2 - Opt denote the resulting optimal value.

Without loss of generality, let the optimal non-adaptive ordering be {p = vy, v1,%s,...,v,}. For any
v;eVilet Dy =3"7_ d(v;_1, v;) denote the total distance spent before visiting vertex v;. Note that while
the total time (travel plus processing) spent before visiting any vertex is a random quantity, the distance (i.e.
travel time) is deterministic, since we deal with non-adaptive policies. Let j* be the first index j such that

Zi<j Mo, (B-D;) > K-(B-Djy) 4.2)

Here K is some constant which we will fix later. Observe that this condition is trivially satisfied when
D; = B; so we may assume, without loss of generality, that D;«_; < B — 1.

LEMMA 3. For index j* as in (4.2), we have Zigj*—l r,, > Opt'/2.
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Proof.We first deal with the corner case that D;« = B. In this case, v, is the last possible vertex visited by
the optimal solution. By Assumption 1, the expected reward from vertex v,~ even if it is visited directly from
the root, is at most Opt/8. So the expected reward from the first j* — 1 vertices is at least Opt’ — é -Opt >
Opt/2, which implies the lemma. In the following, we assume that D« <B-1.

CLAIM 1. The optimal solution visits a vertex indexed j* or higher with probability < el= 5ok,
Proof.If the optimal solution visits vertex v;« then we have ) . <j+Su; < B — Dj«. This also implies
that >, .. min(S,,, B — Djx) < B — D;s. Now, for each i < j* let us define a random variable
X, = 25w DDy Note that the X’s are independent [0, 1] random variables, and that E[X;] =

B—D;x

fo; (B — Dj+) /(B — D;). From this definition, it is also clear that the probability that the optimal solution
visits v;= is upper bounded by the probability that ) . ~j+ X < 1. To this end, we have from Inequality (4.2)
that 3, .. E[X;] > K. Therefore we can apply a standard Chernoff bound to conclude that

) ) .. _K_ 1
Pr [Optimal solution visits vertex v;«] < Pr [Z X, < 1] < el72ar
i<j*

This completes the proof. [ |

CLAIM 2. Conditional on reaching v;«, the expected reward obtained by the optimal policy from ver-
tices {v«,vjx41,...} is at most Opt'.

Proof.Consider the alternate policy {p = vy, v;+,vj+11,. .., v, } that skips all vertices before v;~. By triangle
inequality, the distance d(p, v;«) < Dj«. So the expected reward from this policy is at least the conditional
reward of the optimal policy obtained beyond vertex v;-. The claim now follows by optimality. [ |

Combining these two claims and setting K = 3.5, the expected reward from the first 7* — 1 vertices is at
least Opt’/2, which implies the lemma. ]

Recall that D« < B —1;let £ € Z, be such that B/2* < B— D;«_; < B/2'~'. Set W* = B/2*. We
will show that the KnapOrient instance Z;,,(WW*) has optimal value at least Opt’/(8K + 8). Consider path
P* = {(p=g,v1,...,v;+_1). The reward on this path is at least Opt’/2 and it satisfies the travel budget
B —W* in Z,,,(W*). The total size on this path is:

S o, (W) < Y p (B=Djr1) = Y p,(B=Dje 1)+ ., (B=Dj=1)
i< —1 i< —1 i<j*—1
<(K+1)(B=Djy) < 2(K+1)W*

The second inequality is by choice of j* in equation (4.2). Although P* may not satisfy the size budget
of W*, we obtain a subset P* C P* that does. Since each vertex has size at most W* and the total size
of P* is at most 2(K + 1)WW*, there is a partition of P* into at most 4(K + 1) parts such that each part
has size at most W*. (Such a partition can be obtained greedily: starting with the trivial partition with each
vertex of P* in a single part, repeatedly merge any two parts that have combined size at most W*. In the
final partition, every pair of parts has combined size more than W*; since the total size of P* is at most
2(K + 1)W*, the final number of parts is at most 4K + 4.) Choosing the maximum reward part amongst
these yields a feasible solution to Z,,,(W*) of value at least 8(%’11) > %, setting K = 3.5. This completes
the proof of Lemma 2.

Combining Lemmas 1 and 2, we obtain Theorem 2. The approximation ratio obtained by this approach
(after optimizing parameters) is around 500. We chose not to present the calculations here, so as to focus
only on the main ideas. We note however that obtaining a significantly smaller constant factor seems to
require additional techniques.
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5. Adaptive Stochastic Orienteering

In this section we consider the adaptive StocOrient problem. We will show the same algorithm (Algo-
rithm AlgSO) is an O(log[log B])-approximation algorithm to the best adaptive solution, thus proving
Theorem 1. Note that this also establishes an adaptivity gap of O(loglog B).

Assumption 1 holds in this adaptive setting as well; the proof is almost identical and not repeated here.
This decreases the optimal value by a constant factor: we refer to the resulting optimal adaptive policy (and
its expected reward) by Opt.

Recall the definition of valid KnapOrient instances and Lemma 1. The main result that we need is an
analog of Lemma 2, namely:

LEMMA 4. Given any instance L,, of adaptive StocOrient satisfying Assumption 1, there exists W =
B/2" for some i € {0,1,..., [log B} such that Z,,,(W') has optimal value (Opt/loglog B).

Before we begin, recall the typical instance Z,, := StocOrient(V,d, {(7.,7.) : Yu € V'}, B,p) of the
stochastic orienteering problem.

Roadmap. We begin by giving a roadmap of the proof. Let us view the optimal adaptive policy Opt as
a decision tree where each node is labeled with a vertex/job, and the children correspond to different size
instantiations of the job. For any sample path P in this decision tree, consider the first node xp where the
sum of expected sizes of the jobs processed until x p exceeds the “budget remaining” by some small factor—
here, if L, p is the total distance traveled from the root p to this node zp by visiting vertices along P, then
the remaining budget is B — L, p. Call such a node a frontier node, and the frontier is the union of all such
frontier nodes. To make sense of this definition, note that if the orienteering instance was non-stochastic
(and all the sizes were equal to their expectations), then we would not get any reward from portions of the
decision tree on or below the frontier nodes. Unfortunately, since job sizes are random for us, this is not
necessarily the case. The main idea in the proof is to show that we do not lose too much reward by truncation:
i.e., even if we truncate Opt along this frontier, we still obtain an expected reward of ©(Opt/log[log B])
from the truncated tree. Then, an averaging argument can be used to show the existence of some path P* of
length L where (i) the total rewards of jobs is ©2(Opt/log[log B]), and (ii) the sum of expected sizes of the
jobs is O(B — L). This gives us the candidate KnapOrient solution.

Viewing Opt as a Discrete Time Stochastic Process. Note that the transitions of the decision tree Opt
represent travel between vertices: if the parent node is labeled with vertex u, and its child is labeled with v,
the transition takes d(u,v) time. To simplify notation, we take every such transition, and subdivide it into
d(u,v) unit length transitions. The intermediate nodes added in are labeled with new dummy vertices, with
dummy jobs of deterministic size 0 and reward 0. We denote this tree as Opt’. Note that the amount of time
spent traveling to any node is exactly the number of edges from the root to this node. Now, if we start a
particle at the root, and let it evolve down the tree based on the random outcomes of job sizes, then the node
reached at timestep ¢ corresponds to some job with a random size and reward. This naturally gives us a
discrete-time stochastic process 7, which at every timestep picks a job of size S; ~ D, and reward R,;. Note
that S;, R, and the probability distribution D, all are random variables that depend on the outcomes of the
previous timesteps 0, 1,...,¢ — 1 (since the actual job that the particle sees depends on past outcomes). We
stop the process 7 at the first (random) timestep t.,,4 such that Zii”od S; > (B — tenq)—this is the natural
point to stop, since it is precisely the time step when the total processing plus the total distance traveled
exceeds the budget B.

Some notation: Nodes will correspond to states of the decision tree Opt’, whereas vertices are points in
the metric (V,d). The level of a node x in Opt’ is the number of hops in the decision tree from the root to
reach x—this is the timestep when the stochastic process would reach x, or equivalently the travel time to
reach the corresponding vertex in the metric. We denote this by level(z). Let label(z) be the vertex labeling
x. We abuse notation and use S, r,, 7, and ., (-) to denote the size, reward, size distribution and truncated
mean for node x—hence S, = Siabei(z)> T's = Tiabel(z)> Tz = Tiabel(z) AN Lo (+) = fliabei(z) (+). We use 2’ < x to
denote that 2’ is an ancestor of x.
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Now to begin the proof of Lemma 4. We assume that there are no co-located stochastic jobs, i.e., there
is only one job at every vertex. Note that this also implies that we have to travel for a non-zero integral
distance between jobs. This is only to simplify the exposition of the proof: we explain how to discharge this
assumption at the end of this section.

Defining the Frontiers. Henceforth, we will focus on the decision tree Opt’ and the induced stochastic
process 7. Consider any intermediate node x and the sample path from the root to 2 in Opt’. We call z a
star node if x is the first node along this sample path for which the following condition is satisfied:

Yowiey Mo (B —level(z)) > 8K (B —level(x)) (5.3)

Above, K is a parameter that will later be set to ©(loglog B). Observe that this condition obviously holds
when level(z) = B, and that no star node is an ancestor of another star node. To get a sense of this definition
of star nodes, ignore the truncation for a moment: then x is a star node if the expected sizes of all the level(z)
jobs on the sample path until = sum to at least 8K (B — level(x)). But since we have spent level(z) time
traveling to reach z, the process only continues beyond vertex «x if the actual sizes of the jobs is at most

— level(x); i.e., if the sizes of the jobs are a factor 8K smaller than their expectations. If this were an
unlikely event, then pruning Opt’ at the star nodes would result in little loss of reward. And that is precisely
what we show.

Let Opt” denote the subtree of Opt’ obtained by pruning it at star nodes. Opt” does not include rewards
at star nodes. Note that leaf-nodes in Opt” are either leaves of Opt’ or parents of star nodes. In particular,
level(s) < B — 1 for each leaf-node s € Opt”. We will show that:

LEMMA 5. The expected reward in Opt” is at least Opt /2.

Remark: The difference from the analysis of the non-adaptive case is that we set parameter K =
O(loglog B) instead of a constant in the definition of the truncated tree Opt” (5.3). The main reason for the
larger factor is the difficulty in directly analyzing the truncated decision tree when the threshold B — level(x)
is changing. Instead, we prove Lemma 5 by grouping star nodes into log B “bands” according to geomet-
rically decreasing threshold values, and analyze each band separately as a martingale process. For a single
band we then use a concentration inequality to upper bound the loss by factor that is exponentially small in
K. Finally, adding the loss over the log B bands yields Lemma 5. The details now follow.

Before proving Lemma 5, we show how this implies Lemma 4.
Proof of Lemma 4: We start with the following claim that uses the definition of star nodes.

CLAIM 3. Every leaf node s € Opt” satisfies ) pt (B — level(s)) < 9K (B — level(s)).

Proof.By definition of Opt”, leaf-node s is not a star node (nor a descendant of one). So:

> o (B—level(s)) = > o (B —level(s)) + . (B—level(s)) < (8K +1)-(B—level(s)).
r=<s r<s
The inequality is by (5.3). This proves the claim. |

For each root-leaf path P in Opt” let Pr[P] denote the probability that this path is traced, and let r(P)
be the sum of rewards on P. Then, Lemma 5 implies ) _, Pr[P] - r(P) > Opt/2. So there exists a sample
path P* in Opt” to some leaf node s* with total reward at least Opt/2. Moreover, Claim 3 implies that the
sum of means (truncated at B — level(s*)) of jobs in P* is at most 9K (B — level(s*)).

Recall that every leaf in Opt” has level at most B — 1, so level(s*) < B — 1. Choose ¢ €
{0,1,...,[log B]} so that B/2¢ < B — level(s*) < 2B/2¢, and set W* = B/2‘. Then we have:

Zuw(W*) < Z,uw —level(s™)) < 9K -(B-—level(s*)) < 18K -W*

r=s* r=s*
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Consider the KnapOrient instance Zy,(WW*); we will show that it has optimal value at least Q(Opt/K),
which would prove Lemma 4. Note that path P* has length level(s*) < B — W*. The above calculation
shows that the total size of P* is at most 18 K - W*. Using the bin-packing-type argument as in the previous
section, we obtain a subset P’ C P* that has total size at most IW* and reward at least r(P*)/(36K) > 5.
Thus we obtain Lemma 4. u

We now prove Lemma 5. Group the star nodes into [log B] + 1 bands based on the value of B — level(x).
Star node z is in band i if B — level(z) € (B/2"**, B/2/] for 0 <i < [log B], and in band [log B] + 1 if
level(x) = B.

First consider star nodes of band [log B| + 1. Note that the policy terminates after these nodes (since B
time units have already been spent traveling). By Assumption 1, the loss in reward by ignoring star nodes
of band [log B + 1 is at most Opt/8.

Next we consider bands {0, ..., [log B|}. We use the following key lemma that upper bounds the prob-
ability of reaching star nodes in any particular band .

LEMMA 6. Foranyi€{0,...,[log B}, the probability of reaching band i is at most m.

Taking a union bound, the probability of reaching some band {0, ..., [log B} is at most ;5. Then we have
the following claim (similar to Claim 2 in the non-adaptive case).

CLAIM 4. Conditional on reaching any node = € Opt’, the expected reward obtained by the optimal
policy from nodes below x is at most Opt.

Proof.Consider the alternate adaptive policy that visits node x directly from the root. Using triangle inequal-
ity, the expected reward from this policy is at least the conditional reward of Opt’ obtained below vertex .
The claim now follows by optimality. [
Thus we obtain that the loss in reward by truncating at star nodes in bands {0, ..., [log B]} is at most
Opt/10. Combined with the loss due to band [log B] + 1, it follows that Opt” has reward at least Opt/2.
It only remains to prove Lemma 6, which we do in the rest of this section.

Proof of Lemma 6: Fix any . In order to bound the probability of reaching band-7, consider the following
altered stochastic process 7;: follow 7 as long as it could lead to a star node in band i. If we reach a node
y such that there is no band-¢ star node as a descendant of y, then we stop the process 7; at y. Else we
stop when we reach a star node in band :. An illustration of the optimal decision tree, the different bands
and altered processes is given in Figure 5.3. By a straightforward coupling argument, the probabilities of
reaching a band-¢ star node in 7 and in 7; are identical, and hence it suffices to bound the probability of
continuing beyond a band-i star node in 7;.

CLAIM 5. Foreachi€{0,1,...,[log B}, and any star node x in band i,

B Z. B
2K < > pe (B2 < 17K o

o/ <z

Proof.By definition of a star node (5.3), and since node x is in band-i, B/2""! < B — level(z) < B/2¢,

Z por (B/277) > Z fg <;(B - Ievel(x))) > % Z o (B —level(z))

! <z ' <z B ' <z

> AK(B —level(z)) > 2K

The first two inequalities used the monotonicity and subadditivity of s, (+).
Moreover, since ¥, the parent node of z, is not a star node, it satisfies

Z wer (B —level(y)) < 8K(B-—level(y)) = 8K(B—level(z)+1).

/<y
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level(v)

starnodes

frontier

FIGURE 5.3. Optimal decision tree example: dashed lines indicate the bands, x indicates star nodes.

But since we are not considering band number [log B+ 1 and all distances are at least 1, level(z) < B —1,
and hence B — level(z) + 1 < 2(B — level(x)) < 2B/2". Thus we have ), t1./ (B —level(y)) < 16K -
B/2. Now, ‘

S e (B2 = X (B2 4 (B2 <30 o (B—levely) + 55

! <z /<y B B B z/ <y
< 1 t - < 1 M
SI6K- S 4oy < 17K
The first inequality uses B — level(y) > B — level(x) > B/2"*!. This completes the proof. ]

CLAIM 6. Foranyi€ {0,1,...,[log B|} and any star node x in band i, if process T; reaches x then:
. B B
Z min <S,;/, 22+1> < o

Proof.Clearly, if process 7; reaches node x, it must mean that ) , . S, < (B —level(z)) < B/2, else we
would have run out of budget earlier. And, the truncation can only decrease the left hand side. [ |
We now finish upper bounding the probability of reaching a star node in band ¢ using a Martingale analysis.
Define a sequence of random variables {Z;, t =0, 1, ...} where

t

Zi=Y (min {st,, ;il} — (B/2i+1)> : (5.4)

t'=0

Above, 11, (+) denotes the truncated mean (Definition 1) of random variable S/. Since the subtracted term
is precisely the expectation of the first term, the one-term expected change is zero and the sequence {Z;}
forms a martingale. In turn, E[Z,] = 0 for any stopping time 7. We will define 7 to be the time when the
process 7; ends—recall that this is the first time when (a) either the process reaches a band-i star node, or
(b) there is no way to get to a band-¢ star node in the future.

Claim 6 says that when 7; reaches any star node z, the sum over the first terms in (5.4) is at most
B/2¢, whereas Claim 5 says the sums of the means is at least 2K %. Because K > 1, we can infer that the
Z; < —K(B/2") for any star node (at level t). To bound the probability of reaching a star node in 7;, we
appeal to Freedman’s concentration inequality for martingales.
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THEOREM 6 (Freedman [19] (Theorem 1.6)). Consider a real-valued martingale sequence { Xy }1>o
such that Xo =0, and E [Xy11 | Xk, Xk—1,...,X0] =0 for all k. Assume that the sequence is uniformly
bounded, i.e., | X\| < M almost surely for all k. Now define the predictable quadratic variation process of
the martingale to be

Wi = ZLOE (X2 1 X1, X2, Xo]

forall k> 1. Then for all | > 0 and o > 0, and any stopping time T we have

T l2 2

Jj=0

We apply the above theorem to the Martingale difference sequence {X; = Z, — Z,_;}. Now, since
each term X, is just min(S;, 521) — u: (B/27!), we get that E[X, | X, ;,...] = 0 by definition of
e (B/2+1) = E [min(S;, 21%)1 Moreover, since the sizes and means are both truncated at B/2"!, we
have | X;| < B/2"™! with probability 1; hence we can set M = B/2"'. Finally in order to bound the
variance term W, we appeal to Claim 5. Indeed, consider a single random variable X; = min(.S;, 22%) —
pre (B/27+1), and abbreviate min(S;, 757) by Y. Then:

E[X?[ X1, ] = E[(V-E]’| = E[Y*]-E[P < Y EY] < %-ut(g/w)

Here, the first inequality uses Y > 0 and Y,,,., as the maximum value of Y. The last inequality uses the
definition of Y. Hence the term W, is at most (B/2"*")Y",_, uy (B/2"*1) for the process at time ¢. Now,
from Claim 5 we have that for any star node (say at level ¢) in band i, we have >, _, uy (B/2) <
17K (B/2%). Therefore we have W; < 9K - (B/2%)? for star nodes, and we set o to be this quantity.

So by setting £ = K (B/2%), 0> =9K(B/2")?, and M = B/2"!, we get that

Pr[reaching starnode in 7;] < Pr[|Z,|> K(B/2') and W, <9K(B/2')’] < 2e %/*.

Setting K = Q(log[log B]) and performing a simple union bound calculation over the [log B bands com-
pletes the proof of Lemma 6. |

Handling Co-Located Jobs. To help with the presentation in the above analysis, we assumed that a node
2 which is at depth [ in the decision tree for Opt is actually processed after the adaptive policy has traveled
a distance of [. In particular, this meant that there is at most one stochastic job per node. However, if we
define the truncations of any node (in equation (5.3)) by its actual length along the path, instead of simply
its depth/level in the tree, then we can handle co-located jobs in exactly the same manner as above. In this
situation, there could be several nodes in a sample path which have the same truncation threshold but it is
not difficult to see that the rest of the analysis would proceed in an identical fashion. We do not present
additional details here— the analysis in the next section handles this issue in a more general setting.

6. Stochastic Sequence Orienteering

In this section we consider a general stochastic sequence orienteering problem. The input is a directed
metric (V, d) with integer distances' where each vertex v € V' contains a job having reward r,, and a random
processing time (or size) S, ~ 7,. We are also given a specified sequence (s1, ..., sy) of portal vertices and
abound B € Z.. A solution (policy) is an adaptive path originating from s, that visits vertices (and pro-
cesses the respective jobs) such that the total time taken (travel plus processing) is at most B. An additional
constraint here is that the path must visit all the portals sy, ..., sg, and in that order; the policy terminates
after visiting vertex s;. The objective is to maximize the expected reward. Since the portal vertices are
always visited, we can assume without loss of generality, that they have zero rewards. One can view the

! The distance function d : V x V — Z, satisfies the triangle inequality, but is not necessarily symmetric.
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portals as essential jobs that any policy must complete (in the prescribed order), and the remaining vertices
as optional, from which a policy seeks to maximize reward.

A modeling assumption we make is that, since any feasible policy must visit each of these portal vertices
in that sequence, it must satisfy the following property. If the policy is running the job at some vertex v

after having visited portals (s, ...,s;) for some ¢ € {1,...,k — 1} and the remaining time becomes equal
to d(v, $;41) + Zf;.lﬂ d(s;,s;+1) then this job v is terminated (without accruing reward) and the policy
moves directly to vertices (s;.1, ..., k) and ends — it cannot accrue any reward from any vertex along this

shortest path (v, s;11,...,5k).

Notice that the basic stochastic orienteering problem (studied in the previous sections) is a special case
of stochastic sequence orienteering when k = 1 and the metric is symmetric.

An important subroutine in our algorithm for stochastic sequence orienteering is an approximation algo-
rithm for its deterministic version. The deterministic sequence orienteering with k£ = 2 has been studied
previously, called point to point orienteering [2, 28, 12]. Here, the input consists of a metric (V,d) with
rewards on vertices, bound B, and specified source (s;) and destination (s3) vertices; the goal is to compute
a path from s; to s, of length at most B that maximizes the total reward. A constant-factor approximation
algorithm is known for this problem in symmetric metrics [2], and the directed setting admits approximation
ratios of: O(log2 n/loglogn) [28] and O(log” Opt) [12]. Our first result is to show that the deterministic
sequence orienteering problem for arbitrary k, admits an O(«)-approximation algorithm, where « is the
best known approximation ratio for point to point orienteering.

Using this we obtain the main result of this section (Theorem 3), i.e. any a-approximation algorithm for
directed point to point orienteering can be used to obtain:

e An O(«)-approximation algorithm for non-adaptive stochastic sequence orienteering.

e An O(«-loglog B)-approximation algorithm for adaptive stochastic sequence orienteering.

We follow the same framework as for basic stochastic orienteering (i.e. undirected £ = 1 case). In Sub-
section 6.1 we obtain an O(«)-approximation algorithm for knapsack sequence orienteering. Then we use
this to obtain an O(«)-approximation algorithm for non-adaptive sequence orienteering in Subsection 6.2,
and an O(a - loglog B)-approximation algorithm for adaptive sequence orienteering in Subsection 6.3.

6.1. (Deterministic) Knapsack Sequence Orienteering

In the knapsack sequence orienteering problem, we are given a directed metric (V, d), a sequence of of
portal vertices to visit (sy,...,s;) and two budgets: L which is the “travel” budget, and W which is the
“knapsack” budget. Each job v has a reward 7, and also a “size” s,,. A feasible solution is a path P which
(i) visits sy,..., s in that order, (ii) has total length at most L, and (iii) total size 5(P):=>_ _,S, is at
most W. The goal is to find a feasible solution of maximum reward ) _,7,.

In order to devise an algorithm for this problem, we first consider the problem without the knapsack
constraint and give an O(«) approximation, where « is the approximation factor for the point-to-point
orienteering problem (i.e., kK = 2). Using this (and the Lagrangian relaxation 4 la Theorem 5), we show an
O(«)-approximation for the knapsack sequence orienteering problem.

6.1.1. Approximating Sequence Orienteering

In this problem, there are no sizes at vertices. The goal is to find a path visiting (sy,. .., s;) of length at
most B with maximum reward. Our main idea is to view this problem as that of submodular maximization
over a (partition) matroid, with an additional knapsack constraint. We first give a high-level description of
the algorithm. Let U; denote the set of all paths from s; to s;,;. Then, a sequence is simply a set of paths,
one from each U, i.e., an independent set in the partition matroid {U;,Us,...,U,_1} (with cardinality
bound of one on each part). Furthermore, the total reward of any subset of U~'U; can be represented by
a weighted coverage function, which is submodular. In order to ensure that the path we find has length
bounded by B, we define an appropriate knapsack constraint. So the overall problem reduces to submodular
maximization over the intersection of a partition matroid and a knapsack constraint. An additional issue
is that the groundset U¥"'U; is of exponential size: we deal with this using an implicit reduction from
knapsack constraints to partition matroids [24, 11]. We now present the details.

veP
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THEOREM 7. There is an O(«)-approximation algorithm for sequence orienteering, where o denotes
the best approximation ratio for directed point-to-point orienteering.

Proof.For this reduction, it will be convenient to define the groundset U = Uf;ll U; where
U, = {(P,i): Pisans; — s,y path}

Notice that this groundset is exponentially large; however our algorithm will not use it explicitly. Define
a partition matroid M on U, where subset S C U is independent if and only if |S N U;| <1 for each
index i € {1,...,k — 1}. Note that any base in M corresponds to a valid (sy,...,s;) sequence path. Let
Z(M) C 2Y denote the collection of independent sets in the partition matroid M.

In order to ensure the length bound of B, we define a knapsack constraint K. For each (P, i) € U define
weight wp,; = d(P) — d(s;,s:+1); and set the knapsack capacity to W := B — Z;:ll d(s;,s;+1). Let
I(K)={SCU:Y .gw. < W} C2Y denote the collection of “independent sets” in knapsack K.

CLAIM 7. There is an exact correspondence between:
1. Subsets S € Z(M)NZ(K), that are independent in both M and K.
2. Paths P of length at most B that contain vertices s1,. .., sy in that order.

Proof.In one direction, consider any S € Z(M) N Z(K). Note that each ¢ € {1,...,k — 1} contains a
“dummy element” e; € U; corresponding to the shortest path (s;,s;,1) with w(e;) = 0. If S is not a base
in the partition matroid M then augment it to a base, by adding element e; for each parti € {1,...,k—1}
with S NU; = 0. Since the dummy elements have zero weight, we still have S € Z(M) NZ(K). Now, S
corresponds to a collection P of s; — s;, 1 paths, exactly one for each i =1, ...,k — 1. By the definition of
weights in the knapsack /C, it follows that the total length of P is at most B. Concatenating the paths in P
yields the desired (sy, ..., s;) sequence path.

In the other direction, consider any (sy,...,s;) sequence path P. Clearly P is a concatenation of sub-
paths {P,..., P,_1}, where P, is an s; — s, path foreachi=1,...,k — 1. Consider the set S’ = {(P;, 1) :
i=1,...,k—1} CU. Clearly S’ € Z(M). Also, the total weight of S” in knapsack K is

e

—1 k—1
(d(P) —d(siy8i41)) < B—=) d(si;si11) = W,

1 =1

i

since P has length at most B. Thus S’ € Z(K) as well and hence S’ € Z(M) NZ(K). |
Now, define the objective function:

f(s) = er-min Z locp, 17, vVSCU

veV (Pi)es

Above r: V — R, denotes the rewards at different vertices, and 1,cp is the indicator of event “v € P”.
Note that f is a weighted coverage function, and so it is monotone and submodular on U. Therefore, by
Claim 7, the sequence orienteering problem is precisely:

max {f(S) : SeI(M)NZ(K)} 6.5)

Submodular maximization over the intersection of matroid and knapsack constraints admits a constant factor
approximation algorithm [24, 15]; but we need to take some more care since the groundset is not available
explicitly. Below we show that a slight modification of the approach in [24] suffices. Specifically, we show
that the knapsack K can be approximately simulated by another partition matroid.

THEOREM 8 ([24]).  Given any knapsack constraint ) ., w. - . < W and parameter { <|U|, there is
a polynomial (in {) time computable collection M, ..., My of T = {°WY) partition matroids such that:
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1. Forevery S € U_,I(M,) we have y,_sw. <2-W.
2. Forevery S CU with |S|<land )’  sw. <W we have S € UL Z(M,).

This follows directly from Lemma 3.3 in [24]. Although that result is only stated for ¢ = |U], it can
be extended to any [ as follows (our requirement will be for ¢ = k). Here we only mention the changes
required to the proof in [24]. We partition U into G = [log, ] + 1 groups according to geometrically
increasing weights. That is, Vo :={e € U:w. <W/l} and V; ={e € U : 7 - 2771 <w, < Y- - 27} for all
j=1,---,[log, ¢]. Then we guess upper bounds {n; : 1 < j < [log,¢]} of the numbers of elements from
each part V;, and define a partition matroid corresponding to this. While a nédive enumeration has a total of
(000 different partition matroids, it can be made polynomial using an enumeration idea from [11]. Using
this approach, the number 7" of partition matroids is polynomial is £.

In our setting, since we know all feasible sets in the intersection Z(M) NZ(K) are of size at most k, we
can use Theorem 8 with ¢ := k. So we can (approximately) reduce the knapsack constraint to a partition
matroid M’ that is obtained by enumerating over T = poly(k) possibilities. Moreover, each part in M’
corresponds to an index j € {0,...,log, k} such that elements in part j of M’ have weight at most 27 - W /k.
Thus solving (6.5) can be reduced to:

max {f(S) : Se€eZI(M)NZ(M')} (6.6)

The solution S* to this problem does not itself satisfy &, but we have w(S*) < 2-W. So a greedy par-
titioning can be used to obtain subsets S;, Sy and S3 such that S* = S; U Sy U S3 and w(S,) < W for
a = 1,2,3. Choosing the subset with maximum function value gives us S’ C §* with w(S") < W and
f(S8") > f(5%)/3, by sub-additivity. Thus an approximation algorithm for (6.6) leads to one for (6.5), at the
loss of an additional factor of three.

To solve (6.6) we use the natural greedy algorithm: always add element e € U that retains independence
and (approximately) maximizes the marginal increase in the objective. This is well known to achieve an
approximation ratio of (1 + 2p) assuming a p-approximate oracle for the greedy addition step [9]. We
observe below that this greedy step corresponds to the point to point orienteering problem: thus p = « and
we obtain a (1 4 2«)-approximation algorithm for (6.6) and (3 + 6«)-approximation algorithm for (6.5).

Recall the greedy step: given S C U find max {f(SU{e})— f(S) : ec U, SU{e} e Z(M)NIT(M')}.
We first enumerate over the parti € {1,...,k—1} of M and part j € {0,...,log, k} of M’, that correspond
to the candidate element e. If the upper bound on either of these parts is tight then e can not be added to S
otherwise S U {e} € Z(M)NZ(M’). Assuming the latter, we optimize over all elements corresponding to
parts ¢ and j (in M and M’ respectively); this is just:

. W
max {ZTU : Pisans; —s;;; path, d(P)Sd(Si,S¢+1)+2J~}

k
veEP

Above 7, = r, if vertex v is not already covered by S; and 7, = 0 otherwise. Note that the constraint that
P is an s; — s, path is due to part ¢ of M, and the bound on its length is from part j of M’. Observe
that this is precisely an instance of point to point orienteering (from s; to s;, 1), and hence we can use the
a-approximation algorithm assumed in the theorem. [ |

6.1.2. Approximating Knapsack Sequence Orienteering.

In the knapsack sequence orienteering problem (KnapSeqOrient), we are given a directed metric (V,d)
with sequence (sy,...,s;) of portal vertices, rewards and sizes at each vertex, and separate budgets L and
W. The goal is to find a path consistent with the sequence (si,...,s;) that maximizes the reward on it
such that its length is at most L and total size of its vertices is at most W. Using the Lagrangian relaxation
approach (exactly as in Theorem 5), we can reduce the knapsack sequence orienteering problem to an
instance of sequence orienteering, while losing a factor 2 in the approximation ratio.

THEOREM 9. There is an O(«a)-approximation algorithm for knapsack sequence orienteering, where
« denotes the best approximation ratio for directed point-to-point orienteering.
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In the next two subsections, we show how this result can be used within our framework for solving the
stochastic versions. Since most of the details are essentially same as in Sections 4 and 5, we only point out
the changes required in context of sequence orienteering.

6.2. Non-adaptive Sequence Orienteering

Here we use the O(«)-approximation algorithm for KnapSeqOrient to obtain an O(«)-approximation
algorithm for non-adaptive sequence orienteering. We define valid KnapSeqOrient instances Z, (V)
exactly as in Definition 2, which is parametrized by value W € {0, 1,..., B}: recall that the size budget is
W and travel budget is B — W. The algorithm remains the same as Algorithm 1. Observe that Assumption 1
can be enforced for sequence orienteering as well. Furthermore, implementing a KnapSeqOrient solution
as a non-adaptive policy for stochastic sequence orienteering follows directly by Lemma 1. Therefore, it
remains to prove an equivalent of Lemma 2, i.e. for some choice of W the optimal value of KnapSeqOrient
instance Zy, (W) is 2(Opt).

As in the proof of Lemma 2, let the non-adaptive optimum P* correspond to ordering vy, ..., v, where
the portal vertices (si,...,s;) appear in the prescribed order with v; = s, and v,, = s;. For any v; € V

recall that D; =7 d(v,_1, v,) is the travel time to visit v;; also define

k—1
b] = Dj + d(’l}j, Si) + Zd(si, Si+1)

l=i

where i € {1,...,k — 1} is the index such that v; appears between portals s; and s, ;. Note that D; is the
minimum amount of travel that must be incurred if the policy visits vertex v;; this is because in sequence
orienteering, we are required to visit all the portal vertices. Note that by triangle inequality, D; is non-
decreasing in j. Analogous to (4.2), let 7* denote the first index such that:

Zi<j Mo, (B _ﬁj) > K- (B _EJ) (6-7)

Here K is some constant. Having defined our “stopping point”, it is easy to see that Lemma 1 continues
to hold and the rest of the proof is completely identical, when we replace D with D. Thus we obtain an
O(«)-approximation algorithm for non-adaptive sequence orienteering.

6.3. Adaptive Sequence Orienteering

Here we use the O(«)-approximation algorithm for KnapSeqOrient to obtain an O(« - loglog B)-
approximation algorithm for adaptive sequence orienteering. We enforce Assumption 1, and it suffices to
show an analog of Lemma 4 that there is some choice of parameter W for which instance Z,,(W) has
value 2(Opt/loglog B). The proof given in Section 5 makes use of the metric being undirected, and we
need to generalize that to the directed setting. To this end, we use a different concentration inequality in
place of Freedman’s inequality, which is better suited in the directed setting.

Note that the optimal adaptive policy is a decision tree Opt, with nodes being vertices that are visited
and its branches corresponding to the random instantiation. (Here we do not subdivide Opt as done in
Section 5; we also do not assume that jobs are not co-located). For any node x in Opt, we denote by
level(x) the fravel time spent until node x; to reduce notation we will use x to also denote the vertex in
the metric that corresponds to z. For node x define lev(x) := level(x) + d(v;, s;) + Z’Z;.l d(s;, si+1) where
i€ {l,...,k — 1} is the index such that x appears between portals s; and s,,,. Note that lev(z) is the
minimum amount of travel that must be incurred if the policy visits node . By triangle inequality, lev(-) is
non-decreasing down the Opt tree.

Analogous to (5.3), node z is called a star node if it is the first node along its sample path for which:

>uie o (B—lev(z)) > 8K (B-—lev(z)) (6.8)

Here K = O(loglog B). This condition clearly holds when lev(x) = B; so the parent y of any star node x

must satisfy lev(y) < B — 1. We define Opt” by pruning Opt at star nodes (again, rewards at star nodes are
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not included in Opt”). Leaf-nodes in Opt” are either leaves in Opt or parents of star nodes. We will prove
Lemma 5; this would imply an analog of Lemma 4 (with KnapSeqOrient instances) exactly as in Section 5
(by replacing level by lev).

In proving Lemma 5, we again partition the star nodes x into bands depending on the value B — lev(z).
Star node z is in band i if B — lev(z) € (B/2"*!, B/2] for 0 < i < [log B], and in band [log B] + 1 if
lev(x) = B. By Assumption 1, as in Section 5, the loss in reward by truncating at band [log B] + 1 is at
most Opt/8. Moreover, an analogue of Claim 4 holds in this setting as well. So in order to bound the loss
from other bands, it suffices to prove the analog of Lemma 6:

For any i € {0, ..., [log B}, the probability of reaching band i is at most (6.9)

1
10[log B]"

We obtain the first part of Claim 5 (the second part is not true in the directed setting).

, B
For eachi € {0,1,...,[log B]} and star node z in band i: Z o (B/27") > 2K - % (6.10)
! <z

Claim 6 continues to hold,

For each i € {0,1,..., [log B]} and star node  in band i: » _ min (S ;i) < g (6.11)
z! <z

We use these two properties to bound the probability of reaching band 7. We also make use of a concen-
tration inequality due to Zhang [29] that is described below (we use this in place of Freedman’s inequality
because its form suits us better in applying it for directed metrics):

Let I, I, ... be a sequence of possibly dependent random variables; for each k& > 1 variable I depends
only on I;_1,...,I;. Consider also a sequence of random functionals & (Iy,...,I;) that lie in [0, 1]. Let
E;, [£x(11,. .., Ix)] denote expectation of &, with respect to I, conditional on Iy, ..., I;_;. Furthermore, let
T denote any stopping time. Then we have:

THEOREM 10 (Theorem 1 in [29]).

e T
e—1 (kz_;fk(fh---»lk)Jr(S)

We make use of this result by setting I}, to be the k" node seen in Opt, and
: S
&y, ... Iy) = mm{B/2’;+1 , 1}

Recall that for any node z, its instantiated size (i.e. processing time) is denoted .S,.. We define the stopping
time 7 as reaching either a band ¢ star node or a node that has no descendant band ¢ star node. At any band
1 star node, we have:

Pr| > By, &l k)] > < exp(=6),  V§>0.
k=1

6.10) = > En[&(n,..., 1) > 4K
k=1

611 = > &(hL,....I) <2
k=1
Combining these, the probability of reaching a band 7 star node is at most:

Pr i:EIk[fk(Il,...,Ik)}24-(i§k(11,...,1k)+l(—2)] < e KY),
k=1 k=1

where we use Theorem 10 with § = K — 2. Using K = ©(loglog B), we obtain that this probability is at
most 1/(10[log B + 1), which proves (6.9).
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7. Stochastic Orienteering with Correlated Rewards

In this section we consider the stochastic orienteering problem where the reward of each job is a random
variable that may be correlated with its processing time (i.e. size). The distributions at different vertices
are still independent of each other. The input to CorrOrient consists of a metric (V, d) with root vertex p
and a bound B. At each vertex v € V, there is a stochastic job with a given probability distribution over
(size, reward) pairs: for each t € {0,1,..., B}, the job at v has size ¢ and reward r, , with probability 7, ;.
Again we consider the non-preemptive setting, so once a job is started it must be run to completion unless
the budget B is exhausted. The goal is to devise a (possibly adaptive) policy that maximizes the expected
reward of completed jobs, subject to the total budget (travel time + processing time) being at most B. The
results of this section apply only to the basic orienteering setting, and not sequence orienteering.

When there is no metric in the problem instance, this is precisely the correlated stochastic knapsack
problem, and [22] gave a non-adaptive algorithm which is a constant-factor approximation to the optimal
adaptive policy; this used an LP-relaxation that is quite different from that in the uncorrelated setting.
The trouble with extending that approach to stochastic orienteering is again that we do not know of LP
relaxations with good approximation guarantees even for deterministic orienteering. We circumvented this
issue for the uncorrelated case by using a Martingale analysis to bypass the need for an LP relaxation,
which gave a direct lower bound. We adopt a similar approach for CorrOrient, but as Theorem 4 says,
our approximation ratio is only O(lognlog B) : this is because our algorithm here relies on the “deadline
orienteering” problem. Moreover, we show that CorrOrient is at least as hard to approximate as the deadline
orienteering problem, for which the best guarantee known is an O(logn) approximation algorithm [2].

7.1. The Non-Adaptive Algorithm for CorrOrient

We now present our approximation algorithm for CorrOrient, which proceeds via a reduction to suit-
ably constructed instances of the deadline orienteering problem [2]. An instance of deadline orienteering
(DeadlineOrient) consists of a metric (denoting travel times) with a reward and deadline at each vertex, and
a root vertex. The objective is to compute a path starting from the root that maximizes the reward obtained
from vertices that are visited before their deadlines.

Our high level approach, much like the earlier sections of the paper, is to reduce the stochastic problem to
a deterministic one where there is a travel budget and a size budget, i.e., a knapsack version of a deterministic
orienteering problem. In the uncorrelated stochastic orienteering problem, it did not matter when the tour
visited a vertex, as long as the job can finish with reasonable probability within the size budget allocated
by the tour (the rewards are fixed). Hence the deterministic problem was simply the orienteering problem,
with a knapsack constraint. In the correlated case however, the reward could in fact depend on when the job
is started with respect to the budget remaining. For example, if a job has reward 1 when its processing time
is B — 1, and 0 otherwise, and its expected size is 1, then to collect any reward from this job, we’d have
to start processing it by a time of 1. Therefore, we use the deadline orienteering problem as a deterministic
subproblem for stochastic orienteering with correlated rewards.

We solve a knapsack version of deadline orienteering by taking a Lagrangian relaxation of the processing
times, and then use an amortized analysis to argue that the reward is high in expectation. (In this it is similar
to the ideas of [21].) The crux of our proof is in showing that we can indeed reduce the stochastic problem
to the deadline orienteering problem, Namely, what deadlines do we choose for each job, and if we create
many copies with different deadlines for each job then how do we ensure that the reward is not over counted?

Notation. Let Opt denote an optimal decision tree. We classify every execution of a job in this decision
tree as belonging to one of (log, B + 1) types. For i € [log, B], a type-i job execution occurs when the
processing time spent before running the job lies in the interval [2° — 1,27"1 — 1). So if ¢’ is the distance
spent before reaching a type-i job then its start time lies in [t + 2 — 1, ¢/ 4+ 271 — 1). Note that the same
job might have different types on different sample paths of Opt; but for a fixed sample path down Opt,
it can have at most one type. If Opt(7) is the expected reward obtained from job runs of type i, then we
have Opt = ), Opt(i), and hence max;cpog, 5] Opt(i) > Q(@) -Opt. For all v € V and t € [B], let

R, ;= Zf;ot Tw.» * Ty, . denote the expected reward when job v’s size is restricted to being at most B — ¢.
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Note that this is the expected reward obtained from job v if it starts at time t. Recall that for any v € V, S,
denotes its random size which has distribution {m, ;}2

7.1.1. Reducing CorrOrient to (deterministic) DeadlineOrient

The high-level idea is the following: for any fixed ¢, we create an instance of DeadlineOrient to get an
O(logn) fraction of Opt(7) as reward; then choosing the best such setting of i gives us the O(lognlog B)-
approximation algorithm. To obtain the instance of DeadlineOrient, for each vertex v we create several
copies of it: for each time ¢ there is a copy corresponding to starting job v at time ¢ (and hence has reward
R, +). However, to prevent the DeadlineOrient solution from collecting reward from many different copies
of the same vertex, we make copies of vertices only when the reward changes by a constant factor. The
following claim is useful for defining such a minimal set of starting times for each job.

CLAIM 8.  Given any non-increasing function f : [B] — R.,, we can efficiently find a subset I C [B|:

=0 < max f(0) and > f) <3-f(t),  Vte[B).

LeI:0>t

Proof.The set I is constructed as follows.

Algorithm 2 Computing the support I in Claim 8.
1: leth<0, k<0, 1+0.

while k), € [B] and f(k;) >0 do

<+ max{ € [B]: f(£)>{ul L

kfh+1 %&, +1, 1+ IU{gh}

h<h+1.

end while

output set /.

A A R

Observe that B is always contained in the set I, and hence for any ¢ € [B], min{¢ >t : ¢ € I} is well-
defined. To prove the claimed properties let I = {¢, }} _,. For the first property, given any ¢ € [B] let £}, =
min{¢ >t¢: ¢ € I'}. We must have ¢;,_; <, and so k, <t. Hence f(¢;) > f(kn)/2 > f(t)/2; the first
inequality is by the choice ¢, in Algorithm 2, and the second inequality uses the fact that f is non-increasing.

We now show the second property. For any index h, we have k;, < ¢, < kpy1 < £,,1. Moreover,
f(kny1) = f(ln, + 1) < f(ki)/2 by the choice of ¢,. Given any t € [B] let ¢ be the index such that £, =
min{¢ >t: ¢ € I'}. Consider the sum:

Do) = fU)+ D fW) < fl)+ Y fk) < Fl)+2- flhgn) < 3-f(Ly)

h>q h>q+1 h>q+1

The first inequality uses f(¢;,) < f(ks), the next uses f (k1) < f(kn)/2 and a geometric summation, and
the last is by £, < k,,. Finally observe that t </,,s0 >, f(¢s) <3- f(t). This completes the proof. m

Consider any i € [log, B]. Now for each v € V, apply Claim 8 to the function f(t) := R, ;i to obtain
a subset I! C [B]. These subsets define the copies of each job that we will use.

For each ¢ and parameter A > 0 we define a deadline orienteering instance as follows.

DEFINITION 3 (DEADLINE ORIENTEERING INSTANCE Z;(A)). The metric is (V,d) with root vertex
p.Foreach v € V and ¢ € I’ there is a job (v, £) located at vertex v with deadline ¢ and reward 7;(v, ¢, \) :=
R, y19i_1 — X-E[min(S,, 2%)]. The objective in Z;(\) is to find a path originating at p that maximizes the
reward of the jobs visited within their deadlines.

Also define N; = {{(v,0) : £ € I}, v € V'}, the set of all jobs in instance Z;()). For each job (v,¢) € N,,
define its size s;(v,£) = s;(v) := E [min(S,, 2°)], and let r;(v,£) = R, ;1 0i ;.
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The co-located jobs {(v,¢) : ¢ € I'} in Z;(\) are copies of job v in the original CorrOrient instance,
where copy (v, ¢) corresponds to running v as a type-i job after distance ¢. The parameter \ can be thought
of as a Lagrangian multiplier, and so Z;(\) is a Lagrangian relaxation of a DeadlineOrient instance with
an additional constraint that the total size is at most 2°. It is immediate by the definition of rewards that
Opt(Z;(\)) is a non-increasing function of \.

The idea of our algorithm is to argue that for the “right” setting of A, the optimal DeadlineOrient solution
for I;(\) has value ©(Opt(i)), which is shown in Lemma 8. Moreover, as shown in Lemma 9, we can
recover a valid solution to CorrOrient from an approximate solution to I;(\).

LEMMA 7. Foranyi € [log B] and X > 0, the optimal value of the deadline orienteering instance Z;(\)
is at least Opt( ) N2,

Proof.Cons1der the optimal decision tree Opt of the CorrOrient instance, and label every node in Opt by
a (dist, size) pair, where dist is the total time spent traveling and size the total time spent processing jobs
before visiting that node. Note that both dist and size are non-decreasing as we move down Opt. Also,
type-i nodes are those where 2/ — 1 < size < 2'*! — 1. We use Opt(7) to denote the decision tree obtained
by retaining only type-i nodes in Opt; Opt(4) also denotes the expected reward from this decision tree.

For any vertex v € V, let X! denote the indicator random variable that job v is run as type-i in Opt,
and S, be the random variable denoting its instantiated size. Note that X and S, are independent: X' is
determined by the instantiations at vertices V' \ {v}, and S, depends only on vertex v (which is independent
of all other vertices). Also let Y =3 .. X! -min(S,,2") be the random variable denoting the sum of
truncated sizes of type-¢ jobs. By definition of type-i, we have that Y* < 2 - 2° with probability one, and
hence E[Y?] < 2°"!, For ease of notation let g, = Pr[X! = 1] for all v € V. We now have,

21 > E[Y] qu [min(S,,2") | X! = qu [min(S,,2")] = qu -si(v)  (7.12)
veV veV veV
Now consider the expected reward Opt(7). We can write:

2it1_o

Opt(l) = Z Z Z PI‘ v,dist=/,size= k] Rv,(+k

veV (Le[B] k=2t—1

Z Z PI' v,type=1,dist= @] R’(;,£+27~—1 (713)

veV (€[B]

IN

where 1, gis—r size—r 1S the indicator that Opt visits v with dist = £ and size = k, and 1, yype—; dgist—¢ 15 the
indicator that Opt visits v as type- zlwith dist = /. The inequality uses the facts that 1, ;. is non-increasing
in k, and Pr[lv,type:i,distzﬁ] Zih;L_Ql PI'[ v,dist={,size= k]

Now going back to the metric, let P denote the set of all possible rooted paths traced by Opt(7) in the
metric (V,d). Now for each path P € P, define the following quantities.

e [((P) is the probability that Opt(¢) traces P.

e For each vertex v € P, d,(P) is the travel time (i.e. dist) incurred in P prior to reaching v. Note that
the actual time at which v is visited is dist + size, which is in general larger than d, (P).

o WA(P) =3 ep [5 Ruay(pyraii = A-si(v)]. |
Moreover, for each v € P, let £,(P) =min{¢ € I' | £ > d,(P)}; recall the definition I/ using Claim 8, and
that the quantity ¢, (P) is always well-defined.

For any path P € P, consider P as a solution to the DeadlineOrient instance Z;(\) that visits the copies
{(v,€,(P)) : v € P} within their deadlines. It is feasible for the Z;(\) because for each vertex v € P, the
deadline of its chosen copy ¢,(P) > d,(P) the time when it is visited by P. Moreover, the objective value
of P is precisely

1
D (0, 0(P),A) = D [Ryppraios — A si0)] = ) [2-Rvydv(mm_l—xsi(v) = wy(P)

vEP vEP veEP
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where the inequality above uses the definition of £, (P) =min{¢ € I’ | ¢ > d,(P)} and Claim 8. Now,

ORtT.(N) = maxun(P) = S A(P)-wa(P) = 3 B(P) z{ Pyt — A 5i(0)

Pep PeP PeP veP
= 3 Z Z PI‘ u Jtype=1,dist= Z] Rv,ZJr?ifl - A Z PI‘[X;] : Si(v) (714)
1}6\/ (e[B veV
> OP;( i ). 9i+1 (7.15)

Above, (7.14) is by interchanging summations and splitting the two terms from the previous expression.
The first term in (7.15) comes from (7.13), and the second term comes from (7.12) and the fact that ¢, =
Pr[X!] = Pr[v visited as type-i]. ]

Now let AlgDO denote an a-approximation algorithm for the DeadlineOrient problem. We abuse notation
and use AlgDO(Z;(\)) to denote both the a-approximate solution on instance Z;() as well as its value. We
focus on the setting of X\ defined thus:

= max{)\ . AlgDO(Z;())) > QZ'A} (7.16)

’ a
LEMMA 8. Forany i € [log, B], we get X} > Opt(i) /23, and hence AlgDO(Z;(\})) > Opt(7)/8c.

Proof.Consider the setting A= Opt(i)/2"%; by Lemma 7, the optimal solution to the DeadlineOrient
instance Z; ()\) has value at least Opt(i)/4 > 2 - . Since AlgDO is an a-approximation algorithm for
DeadlineOrient, it follows that AlgDO(Z, ()\)) > Opt(Z, 7o) ) o > 2 )\/a SoAf > A>0pt(i)/23. =

7.1.2. Obtaining CorrOrient solution from AlgDO(\})

It just remains to show that the solution output by the approximation algorithm for DeadlineOrient on the
instance Z;(\}) yields a good non-adaptive solution to the original CorrOrient instance. Recall the notation
for the deadline orienteering instance from Definition 3. Let 0 = AlgDO(A}) be this solution—hence o is
a rooted path that visits some set P C N; of nodes within their respective deadlines. The algorithm below
gives a subset () C P of nodes that we will visit in the non-adaptive solution; this is similar to the algorithm
for KnapOrient in Section 3.

Algorithm 3 Algorithm A; for CorrOrient given a solution for Z;(\}) characterized by a path P.

lety= (3>, .psi(v) /2" 4

partition vertices of P into ¢ =max(1, |2y]) parts P, ..., P. with Z(v,@epj si(v)<2,vVl<j<e.
set Q <= P where k = argmaxj_, >, pycp, 7i(0,£).

for each v € V, define d, := min{¢: (v,() € Q}.

let Q) :={v €V :d, <oo} be the vertices with at least one copy in Q.

sample vertices in () independently w.p. 1/2, and visit these sampled vertices in the order given by P.

AN A e

At a high level, the algorithm partitions the vertices in P into groups, where each group obeys the size
budget of 2° in expectation. It then picks the most profitable group among these. The main issue with Q
chosen in Step 3 is that it may include multiple copies of the same job: recall that the DeadlineOrient
instance contains many co-located jobs for each job of the CorrOrient instance. But due to the way we
constructed the sets I? (based on Claim 8), we can simply pick the copy which corresponds to the earliest
deadline, and by discarding all the other copies, we only lose out on a constant fraction of the reward 7;(Q).
Below, Claim 9 bounds the total (potential) reward of the set () we select in Step 3. Next, Claim 10 shows
that we do not lose much of the total reward by retaining only one copy (with deadline d,,) of each v € @
in Step 4. Finally, Claim 11 shows that for any vertex v € (), with constant probability, Step 6 reaches v by
time d,, +2° — 1 (which corresponds to obtaining reward r;(v,d,)).
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CLAIM 9. The reward ri(Q) =3_, yeoTi(v, L) is at least Opt(i) / (8r).
Proof.By the choice of set () in Step 3, r;(Q) > Lcm and,

ri(P) o Ay A2 szi.<y+1/a

7.17
c = c c a2 2oy o (7.17)

) 11 1 A
> > )\:2’-min{y+ —|—} > Al

The first inequality in (7.17) is by the choice of A} (7.16), i.e.

21‘(.):\? < AlgDO(X}) = Z [ri(v,€) = Xf - 5;,(v)] = 7(P) = X - 5;(P) = r;(P) = \F -y 2.

i
(v,0)eP

The second inequality in (7.17) is by ¢ < max{1,2y}; and the last inequality uses o > 2. To conclude we
simply use Lemma 8 in the last expression of (7.17). [ |

CLAIM 10. > 5 R, 442121 > Opt(i) / 16a.
Proof.For each u € Q, let Q, = Q({(u,¢) : £ € [I}]} denote all copies of u in Q. Now by the definition of
d, we have ¢ > d,, for all (u,¢) € Q,,. So for any u € Q,

Z Ru,E+2i71 < Z Ru,€+2i71 < 2 Ru,du+2ifl

(u,0)€EQu LET]0>dy

Above, the last inequality uses the definition of I’ as given by Claim 8. Adding over all u € Q,

Obt(i
ZRu,du+2i—1 > %Z Z Ryjproiiy = %Z ri(v,f) > fg((j)

uEQ weQ () EQu (v,0)EQ

Here, the last inequality uses Claim 9. This completes the proof. [ |

CLAIM 11. For any vertex v € Q, it holds that Pr [A; reaches job v by time d,, + 2" — 1] > %
Proof.We know that because P is a feasible solution for the DeadlineOrient instance, the distance traveled
before reaching the copy (v, d, ) is at most d,,. Therefore in what remains, we show that with probability 1/2,
the total size of previous vertices is at most 2° — 1. To this end, let U denote the set of vertices sampled in
Step 6. We then say that the bad event occurs if 3, g\, min(S,,2’) > 2'. Indeed if 3 min(S,,2") <
27, then we would reach v by time d,, + 2 — 1.

We now bound the probability of the bad event. For this purpose, observe that

ueU\v

E Zmin(Su,Qi) < %ZE[min(Su,T)] = %Zsz(u) < 27h

ucU\v uEQ ueQ

The first inequality is by linearity of expectation and the fact that each u € Q is sampled into U with
probability 1/2. The last inequality uses the size bound on () by the partitioning in Step 2. Hence, the
probability of the bad event is at most 1/2 by Markov’s inequality. [ |

LEMMA 9. The expected reward of the algorithm A; is at least Opt(7)/64c.

Proof.We know from Claim 11 that for each vertex v € Q, algorithm A; reaches v by time d, + 2° — 1
with probability at least 1/2. Moreover, this event is determined by the outcomes at vertices Q \ {v}. So,
conditioned on this event, v is sampled with probability 1/2. Therefore, the expected reward collected from
vis atleast (1/4)R,, 4, 12i_1. The proof is complete by using linearity of expectation and then Claim 10. m
Since the final algorithm for CorrOrient takes the best solution over all types i € [log, B], Lemma 9 implies
an O(logn - log B)-approximation ratio. This proves the first part of Theorem 4.
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7.2. Evidence of hardness for CorrOrient

Our approximation algorithm for CorrOrient can be viewed as a reduction to DeadlineQOrient, at the loss
of an O(log B) factor. We now provide a reduction in the reverse direction: namely, a -approximation
algorithm for CorrOrient implies a (8 — o(1))-approximation algorithm for DeadlineOrient. In particular
this means that a sub-logarithmic approximation ratio for CorrOrient would also improve the best known
approximation ratio for DeadlineOrient.

Consider any instance Z of DeadlineOrient on metric (V,d) with root p € V' and deadlines {t, },cv; the
goal is to compute a path originating at p that visits the maximum number of vertices before their deadlines.
We now define an instance 7 of CorrOrient on the same metric (V, d) with root p. Let B := 1+ max,cy t,.
Fix parameter 0 < p < 7%2 The job at each v € V' has the following distribution: size B — t,, and reward
1/p with probability p; and size zero and reward 0 with probability 1 — p. To complete the reduction from
DeadlineOrient to CorrOrient we will show that:

(1—0(1))-0pt(Z) < Opt(J) < (140(1))-Opt(Z).

Let 7 be any solution to Z that visits subset S C V' of vertices within their deadline; so the objective value
of 7 is |:S|. This also corresponds to a (non-adaptive) solution to 7. For any vertex v € S, the probability
that zero processing time has been spent prior to v is at least (1 — p)™. In this case, the start time of job
v is at most £, (recall that 7 visits v € S by time £,) and hence the conditional expected reward from v is
D- % =1 (since v has size B — t, and reward 1/p with probability p). It follows that the expected reward
of 7 as a solution to J is at least ) (1 —p)" >|S]- (1 —np) = (1 —o0(1)) - |S|. Choosing 7 to be the
optimal solution to Z, we have (1 —o(1)) - Opt(Z) < Opt(J).

Consider now any adaptive policy o for 7, with expected reward R(c). Define path o, as one starting
from the root of o that always follows the branch corresponding to size zero instantiation. Consider o as
a feasible solution to the DeadlineOrient instance Z. Let Sy C V' denote the vertices on path o that are
visited prior to their respective deadlines. Clearly Opt(Z) > |Sy|. When policy o is run, every size zero
instantiation gives zero reward; so if positive reward is obtained then the sample path must diverge from oy.
Moreover, if there is positive reward, the sample path must have positive size instantiation at some vertex
in Sy: this is because a positive size instantiation at any (V' \ Sp)-vertex along o, would violate the bound
B (by definition of sizes and set Sj). Hence,

Pr[o gets positive reward] < p-|Sy| (7.18)

Moreover, since the reward is always an integral multiple of 1/p,

. Z Pr [0 gets reward at least i /p]

=1

R(o) =

[l= B

1 n
- Pr[o gets positive reward] + — - Z Pr[o gets reward at least i /p] (7.19)

=2
Furthermore, for any ¢ > 2, we have:

fl) -p' < (np)".

Pr [0 gets reward at least i /p] < Pr[at least i jobs instantiate to positive size] < (
i

It follows that the second term in (7.19) can be upper bounded by % Yoo (np)t < 2n?p since np < 3.
Combining this with (7.18) and (7.19), we obtain that R(c) < |Sy| + 2n?p = |So| + o(1) since n?p < 1.
Since this holds for any adaptive policy o for 7, we get Opt(Z) > (1 —o(1)) - Opt(T).

This proves the second part of Theorem 4.
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8. Stochastic Orienteering with Cancelations

Throughout the paper, we considered the non-preemptive model for processing jobs. In this section, we
observe that those results also extend to a different model where a policy can cancel/abort jobs during
processing. However once a job is aborted, it can not be attempted again. Even in the special case of
stochastic knapsack, there are instances that demonstrate an arbitrarily large gap in the expected reward for
policies which can cancel and those that can not [22]. Our algorithms for usual StocOrient extend easily
to StocOrient with cancelation, with the same guarantees: O(loglog B) for the uncorrelated version and
O(logn log B) for the correlated version.

The main idea is to modify the deterministic subproblems slightly, i.e. KnapQOrient for uncorrelated
StocOrient and DeadlineOrient for the correlated case. Specifically, we create up to B co-located copies of
each job v, each of which corresponds to canceling the job v after a certain time ¢ of processing it (the size
and reward of copy (v, t) are defined to reflect this). It is easy to see that any adaptive optimal solution, when
it visits a vertex in fact just plays some copy of it (which copy might depend on the history of the sample
path taken to reach this vertex). So exactly as before, we can find a good deterministic solution with suitably
large reward (this is the KnapOrient problem for the uncorrelated case and the DeadlineOrient problem for
the correlated case). Now the only issue is when we translate back from the deterministic instance to a non-
adaptive solution for the StocOrient instance: the deterministic solution might collect reward from multiple
copies of the same job. We can bound this gap by again using the geometric scaling idea (Claim 8), i.e., if
there are two copies of roughly the same reward, we only keep the one with the earlier cancelation time.
This way, we can ensure that for all copies of a particular job, the rewards are geometrically decreasing.
Now, even if the deterministic solution collects reward from multiple copies of a job, we can simply use the
one amongst them with highest reward.

9. Conclusion

In this paper we studied stochastic variants of the orienteering problem, where jobs with random process-
ing times are located at vertices in a metric space. We obtained an O(loglog B)-approximation algorithm
and adaptivity gap for the basic stochastic orienteering problem. Very recently, Bansal and Nagarajan [4]
showed an (+/log log B) lower bound on the adaptivity gap for this problem. Closing this gap remains the
main open question. For the correlated stochastic orienteering problem, where job rewards are also random
and correlated with processing times, we obtained an O(logn - log B)-approximation algorithm. We also
showed that this problem is at least as hard to approximate as the deadline orienteering problem, for which
the best approximation ratio known is O (logn). Improving the approximation ratio for correlated stochastic
orienteering is another interesting open question.

Acknowledgment: Anupam Gupta’s research was partly supported by NSF awards CCF-0964474 and
CCF-1016799. Ravishankar Krishnaswamy’s research was partly supported by NSF awards CCF-0964474
and CCF-1016799, and an IBM Graduate Fellowship. R. Ravi’s research was partly supported by NSF
awards CCF-1143998 and CCF-1218382. We thank an anonymous SODA 2012 referee for raising the
question of stochastic orienteering on directed metrics, that led to the results in Section 6.

References

[1] Micah Adler and Brent Heeringa, Approximating optimal binary decision trees, Algorithmica 62 (2012), no. 3-4, 1112-1121.

[2] Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson, Approximation algorithms for deadline-TSP and vehicle
routing with time-windows, ACM Symposium on Theory of Computing (STOC), 2004, pp. 166-174.

[3] Nikhil Bansal, Anupam Gupta, Jian Li, Julidn Mestre, Viswanath Nagarajan, and Atri Rudra, When LP is the cure for your
matching woes: Improved bounds for stochastic matchings, Algorithmica 63 (2012), no. 4, 733-762.

[4] Nikhil Bansal and Viswanath Nagaraan, On the adaptivity gap of stochastic orienteering, To appear in the Conference on
Integer Programming and Combinatorial Optimization (IPCO), 2014.

[5] Dimitris Bertsimas and Jose Nino-Mora, Conservation laws, extended polymatroids and multiarmed bandit problems; a poly-
hedral approach to indexable systems, Mathematics of Operations Research 21 (1996), no. 2, 257-306.

[6] Anand Bhalgat, A (2 + €)-approximation algorithm for the stochastic knapsack problem, At http://www.seas.upenn.
edu/~bhalgat/2-approx—-stochastic.pdf, 2011.

[7] Anand Bhalgat, Ashish Goel, and Sanjeev Khanna, Improved approximation results for stochastic knapsack problems, ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2011, pp. 1647-1665.


http://www.seas.upenn.edu/~bhalgat/2-approx-stochastic.pdf
http://www.seas.upenn.edu/~bhalgat/2-approx-stochastic.pdf
http://www.seas.upenn.edu/~bhalgat/2-approx-stochastic.pdf
http://www.seas.upenn.edu/~bhalgat/2-approx-stochastic.pdf

28

Author: Article Short Title
Mathematics of Operations Research 00(0), pp. 000-000, © 0000 INFORMS

(8]
(9]
(10]

(11]
(12]

[13]
[14]
(15]
(16]
(171
(18]

(19]
(20]

[21]
(22]
(23]

[24]
[25]

[26]
(27]

(28]
(29]

Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam Meyerson, and Maria Minkoff, Approximation algorithms
for orienteering and discounted-reward TSP, SIAM J. Comput. 37 (2007), no. 2, 653—-670.

Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrak, Maximizing a monotone submodular function subject to a
matroid constraint, SIAM J. Comput. 40 (2011), no. 6, 1740-1766.

Ann Melissa Campbell, Michel Gendreau, and Barrett W. Thomas, The orienteering problem with stochastic travel and service
times, Annals OR 186 (2011), no. 1, 61-81.

Chandra Chekuri and Sanjeev Khanna, On multidimensional packing problems, SIAM J. Comput. 33 (2004), no. 4, 837-851.

Chandra Chekuri, Nitish Korula, and Martin Pal, Improved algorithms for orienteering and related problems, ACM Transac-
tions on Algorithms 8 (2012), no. 3, 23.

Chandra Chekuri and Amit Kumar, Maximum coverage problem with group budget constraints and applications, Workshop
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2004, pp. 72-83.

Chandra Chekuri and Martin Pal, A recursive greedy algorithm for walks in directed graphs, IEEE Symposium on Foundations
of Computer Science (FOCS), 2005, pp. 245-253.

Chandra Chekuri, Jan Vondrék, and Rico Zenklusen, Dependent randomized rounding via exchange properties of combinato-
rial structures, IEEE Symposium on Foundations of Computer Science (FOCS), 2010, pp. 575-584.

Ke Chen and Sariel Har-Peled, The Euclidean orienteering problem revisited, SIAM J. Comput. 38 (2008), no. 1, 385-397.
MR 2399532 (2009:68195)

Ning Chen, Nicole Immorlica, Anna R. Karlin, Mohammad Mahdian, and Atri Rudra, Approximating matches made in
heaven, International Colloquium on Automata, Languages and Programming (ICALP), 2009, pp. 266-278.

Brian C. Dean, Michel X. Goemans, and Jan Vondrdk, Approximating the stochastic knapsack problem: The benefit of adap-
tivity, Math. Oper. Res. 33 (2008), no. 4, 945-964.

David A. Freedman, On tail probabilities for martingales, Annals of Probability 3 (1975), 100-118.

Sudipto Guha and Kamesh Munagala, Approximation algorithms for budgeted learning problems, ACM Symposium on The-
ory of Computing (STOC), 2007, pp. 104-113.

, Multi-armed bandits with metric switching costs, International Colloquium on Automata, Languages and Program-
ming (ICALP), 2009, pp. 496-507.

Anupam Gupta, Ravishankar Krishnaswamy, Marco Molinaro, and R. Ravi, Approximation algorithms for correlated knap-
sacks and non-martingale bandits, IEEE Symposium on Foundations of Computer Science (FOCS), 2011, pp. 827-836.

Anupam Gupta, Viswanath Nagarajan, and R. Ravi, Approximation algorithms for optimal decision trees and adaptive TSP
problems, International Colloquium on Automata, Languages and Programming (ICALP), 2010, pp. 690-701.

__, Robust and maxmin optimization under matroid and knapsack uncertainty sets, CoRR abs/1012.4962 (2010).

E.G. Coffman Jr. and I. Mitrani, A characterization of waiting time performance realizable by single-server queues, Operations
Research 28 (1980), no. 3, 810-821.

S. Rao Kosaraju, Teresa M. Przytycka, and Ryan S. Borgstrom, On an optimal split tree problem, Workshop on Algorithms
and Data Structures (WADS), 1999, pp. 157-168.

Rolf H. Méhring, Andreas S. Schulz, and Marc Uetz, Approximation in stochastic scheduling: the power of LP-based priority
policies, J. ACM 46 (1999), no. 6, 924-942.

Viswanath Nagarajan and R. Ravi, The directed orienteering problem, Algorithmica 60 (2011), no. 4, 1017-1030.

Tong Zhang, Data dependent concentration bounds for sequential prediction algorithms, Conference on Learning Theory
(COLT), 2005, pp. 173-187.



	Introduction
	Our Results and Techniques
	Related Work
	Outline

	Definitions and Notation
	The (Deterministic) Knapsack Orienteering Problem
	A Strawman Approach: Reduction to Deterministic Orienteering
	Our Approach: Reduction to Knapsack Orienteering

	Non-Adaptive Stochastic Orienteering
	Adaptive Stochastic Orienteering
	Stochastic Sequence Orienteering
	(Deterministic) Knapsack Sequence Orienteering
	Approximating Sequence Orienteering
	Approximating Knapsack Sequence Orienteering.

	Non-adaptive Sequence Orienteering
	Adaptive Sequence Orienteering

	Stochastic Orienteering with Correlated Rewards
	The Non-Adaptive Algorithm for CorrOrient
	Reducing CorrOrient to (deterministic) DeadlineOrient
	Obtaining CorrOrient solution from AlgDO (*i)

	Evidence of hardness for CorrOrient

	Stochastic Orienteering with Cancelations
	Conclusion

