
Minimum Congestion Mapping in a Cloud∗

Nikhil Bansal† Kang-Won Lee† Viswanath Nagarajan† Murtaza Zafer†

Abstract

We study a basic resource allocation problem that arises in cloud computing environments. The
physical network of the cloud is represented as a graph with vertices denoting servers and edges
corresponding to communication links. A workload is a set of processes with processing requirements
and mutual communication requirements. The workloads arrive and depart over time, and the
resource allocator must map each workload upon arrival to the physical network. We consider the
objective of minimizing the congestion.

We show that solving a subproblem (SingleMap) about mapping a single workload to the phys-
ical graph essentially suffices to solve the general problem. In particular, an α-approximation for
SingleMap gives an O(α log nD) competitive algorithm for the general problem, where n is the num-
ber of nodes in the physical network and D is the maximum to minimum workload duration ratio.

We then consider the SingleMap problem for two natural class of workloads, namely depth-d trees
and complete-graph workloads. For depth-d trees, we give an nO(d) time O(d2 log(nd))-approximation
based on a strong LP relaxation inspired by the Sherali-Adams hierarchy. For complete graphs, we
give a poly-logarithmic approximation algorithm using Räcke decompositions.

1 Introduction

In cloud computing, the underlying resource is a physical network (also called the substrate) consisting
of servers that are inter-connected via communication links. Each server has a processing capacity1 and
each communication link has a bandwidth capacity. Workloads are service demands made to the cloud,
modeled as a graph with a set of processes with communication requirements between them. Each
workload must be assigned/mapped to some physical resources. The goal of the cloud service provider
is to allocate resources to workloads in the best possible way.

The allocation of a workload to the substrate can be viewed as mapping one graph into another.
This consists of two aspects: (a) node-mapping, the assignment of processes to servers, and (b) path-
mapping, the assignment of each communication request (i.e. edge between two processes) to a path
in the substrate between the respective servers. The load on a substrate node (resp. edge) is the total
demand using that node (resp. edge). Ideally, one would like that the mapping should not cause the
load on any node or edge to exceed it capacity. However if this constraint is enforced strictly, the

∗A preliminary version of this paper appeared as [6]. Research was sponsored in part by the U.S. Army Research
Laboratory and the U.K. Ministry of Defense and was accomplished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the author(s) and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation hereon. The research is also supported through
participation in the Measurement Science for Cloud Computing sponsored by the National Institute of Standards and
Technology (NIST) under Agreement Number 60NANB10D003.

†IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA.
1Our results extend easily to settings with multiple resources such as CPU, memory, disk etc. See Section 6

1

problem can be shown hard to approximate to within any reasonable factor. This holds even for simple
workloads such as stars for trivial reasons (in particular, due to NP-hardness of the Partition problem).
So, we relax this requirement and consider the natural and well-studied objective of minimizing the
maximum node and edge congestion, where the congestion of node or edge is defined as the ratio of its
load to capacity.

We will refer to our problem as GraphMap and the objective as network congestion. There are two
natural variants of GraphMap: In the offline case, the workloads are all known in advance. In the
(harder) online case, the workloads arrive and depart over time, and the existence of a workload is
unknown until it arrives. Here we seek an online algorithm that assigns each workload (immediately
upon its arrival) to the substrate such that the worst case network congestion over time is minimized.
Many previous papers [27, 26, 13, 20] have proposed heuristics to solve such mapping problems, but
without any performance guarantees. In this paper we design algorithms with provable guarantees.

Interestingly, even the (seemingly simple) problem of mapping a single workload to the substrate is
quite hard in general. For example, several classic and well-studied problems are simple special cases of
mapping a single workload:

• Balanced Separator. The substrate is a single edge with each node having capacity n/2. This
reduces to partitioning the vertices of the workload H into near-balanced parts such that the
resulting cut is minimized. This is an extensively studied graph partitioning problem, and the
best known approximation ratio is O(

√
log n) [2].

• Cut-width: The substrate is a line on n vertices with equal capacity edges. This reduces to
finding an ordering v1, . . . , vn of the vertices in the workload H such that maxn

i=1 δH(v1, . . . , vi) is
minimized. The best known approximation ratio is O(log3/2 n) [18].

• Min-max k-partitioning: The substrate is a star with k leaves and equal capacity edges; the
node capacity of the center is zero and each leaf has capacity n/k. This reduces to partitioning
the vertices of the workload H into k nearly balanced parts V1, . . . , Vk such that maxk

i=1 δH(Vi)
is minimized, a basic problem in distributed computing. This problem has been studied only
recently [24, 5] and an O(

√
log n log k)-approximation algorithm is known [5].

One of our main results will be that the problem of mapping a single workload to the substrate
essentially captures the hardness of the online GraphMap problem. More precisely, a cost-aware variant
of the single workload mapping problem, that we call SingleMap, suffices to solve both the offline and
online GraphMap problem. In addition to this connection, clearly SingleMap is a natural assignment
problem on graphs, applicable in a wider context.

As the SingleMap problem (and hence GraphMap) appears very challenging in full generality, we
obtain results for the following natural subclasses of workloads that seem to arise most often in practice:

• Constant depth trees.

• Complete graphs with uniform demands.

Tree-shaped workloads arise commonly as they corresponding to processes arranged hierarchically.
The constant depth corresponds to having a small number of hierarchies. The complete graph work-
loads represent a clique of processes all of them communicating with each other. We require that the
processing requirements be identical and also the communication requirement be identical for every pair
of processes2.

2Such a restriction is necessary, as any arbitrary workload H can be modeled as a complete graph with zero requirement
for edges not in H.

2

1.1 Model

The General Mapping Problem: The substrate is a graph G = (V, E) with edge-capacities c : E → R+

and node-capacities u : V → R+. There is a set of workloads that need to be mapped into the substrate.
Each workload is a virtual graph H = (W,F) with processing demands g : W → R+ and traffic demands
b : F → R+. A mapping of H to the substrate G is specified by a tuple 〈π, σ〉, where:

• π : W → V assigns each process w ∈ W to some node π(w) ∈ V in the substrate G.

• σ : F → 2E maps each edge f = (w1, w2) ∈ F to a path σ(f) in G between nodes π(w1) and
π(w2); the b(f) units of traffic between processes w1 and w2 are routed along σ(f). This is an
unsplittable routing model. An alternate model is splittable routing, where σ(f) can be a flow of
b(f) units between π(w1) and π(w2).

For each edge e ∈ E in the physical network let Le denote the total traffic (from all workloads) routed
through edge e; then the congestion of edge e is Le/ce. Similarly, for a node v ∈ V let Nv denote the
total processing demands assigned to v; and congestion of v is Nv/uv. We define the network-congestion
to be the maximum of the edge and node congestions.

Given a set of workloads and the substrate graph, the objective in the GraphMap problem is to map
all workloads so as to minimize the network-congestion. We give algorithms for both offline and online
settings. In the offline setting, the algorithm knows all the workloads in advance before computing the
mapping. The more realistic online setting is when workloads arrive (and depart) over time, and the
algorithm has to make irrevocable assignments to the workloads upon their arrival. We consider the
model of known durations (see eg. [4]), i.e. each workload specifies upon arrival the time it will spend
in the cloud.

If we consider splittable routing in the GraphMap problem then one can assume (at the loss of a
poly-logarithmic approximation factor) that the substrate G is always a tree [22, 16]. However this
reduction to trees is not applicable in the unsplittable routing model that we consider. Nevertheless,
we make use of Räcke decomposition trees [22, 16] in our algorithm for complete-graph workloads.

Single Workload Mapping: This is an important subroutine that is useful in obtaining algorithms for
both the offline and online mapping problems. The input to SingleMap consists of the following:

• A workload represented by an undirected graph H = (W,F) with demands g : W → R+ and
b : F → R+.

• Substrate G = (V, E) with edge-capacities c : E → R+ and node-capacities u : V → R+.

• Cost functions α : E → R+ and β : V → R+.

A mapping of H into G assigns vertices W to V and each edge in F to a path in G between the
respective end-points (as in the definition of GraphMap). The mapping is called valid if it respects all
edge and node capacities, i.e. Le ≤ ce ∀e ∈ E and Nv ≤ uv ∀v ∈ V . The goal is to find a valid mapping
of H into G that minimizes the total cost

∑
e∈E αe · Le +

∑
v∈V βv ·Nv.

An algorithm for SingleMap is said to be a (ρ1, ρ2) bicriteria approximation algorithm if: (1) it
produces a solution of cost at most ρ1 times the optimum, and (2) such that all edge and node capacities
are satisfied within a ρ2 factor.

We note that the objective in SingleMap is not congestion (as in GraphMap), but the cost of the
mapping.

3

1.2 Our Results and Techniques

First, we describe the general frameworks for designing both offline and online algorithms of GraphMap,
assuming a (ρ1, ρ2) bicriteria approximation algorithm for SingleMap. In particular,

• For offline GraphMap (where all workloads are given upfront) we show an O ((ρ1 + ρ2) · (log n/ log log n))
approximation algorithm. To obtain this result, we formulate a configuration LP relaxation for
GraphMap, and solve it approximately using SingleMap as the dual separation routine. The final
solution is obtained by applying randomized rounding to the approximate LP solution.

• For online GraphMap we give an O ((ρ1 + ρ2) · log(nD))-competitive algorithm, where D is the
ratio of maximum to minimum durations. This result uses multiplicative updates and builds
upon the ideas developed previously in the context of online virtual circuit routing [3]. We discuss
the differences from [3] in the next Subsection 1.3.

These results appear in Section 2 and Section 3 respectively. An immediate consequence of this frame-
work is that there is a logarithmic approximation for GraphMap on constant-sized workloads. This
follows as the SingleMap problem can be (trivially) solved optimally by enumerating all possibilities for
such workloads.

Next, we consider SingleMap for arbitrary sized workloads for the cases of constant depth trees and
uniform complete graphs. The following theorem is proved in Section 4.

Theorem 1.1 There is a randomized
(
2, O(d2 · log nd)

)
bicriteria approximation algorithm for SingleMap

on d-depth tree workloads, that runs in time nO(d). Here n is the number of vertices in the substrate.

This implies a polynomial time O(log n)-approximation algorithm for SingleMap when d = O(1), and a
quasipolynomial, poly-logarithmic approximation when d is polylogarithmic in n. This result is based
on a strong LP relaxation, which is inspired by the Sherali-Adams lift-and-project procedure. It is easy
to show that direct LP relaxations [13, 20] with just assignment variables have very large integrality
gaps even when the workload is a single edge. The main idea in our LP is to use joint assignment
variables with d-tuples and ‘conditional congestion’ constraints. The rounding algorithm uses the tree
structure of the workload and proceeds in d iterations, each time assigning vertices of a new level via
randomized rounding.

For complete graph workloads, the idea is to solve the problem on a tree substrate and then use
Räcke decomposition [22, 16]. However some more care is required in this reduction since the Räcke
tree only provides a splittable routing, and we finally want an unsplittable routing.

Theorem 1.2 For GraphMap under uniform complete-graph workloads there is:
• An offline O(log3 n)-approximation algorithm.
• An O(log2 n log log n log(nR))-competitive randomized online algorithm.

Here n is the number of vertices in the substrate and R is the time horizon of the online algorithm.

1.3 Related Work

Even though the graph mapping problem (GraphMap) is very basic, we are not aware of any previous
work on it. This problem has two aspects. First, how the vertices of the workload H should be mapped.
Second, given a mapping of the vertices of H, how to map the edges. Both these issues have been
studied separately in previous works. In particular, the Quadratic Assignment problem [10] is related
to the first issue and the goal there is to find a mapping of nodes of one graph into another such that
a certain quadratic objective is minimized [17] or maximized [21, 19]. On the other hand, the virtual

4

circuit routing problem [3] deals with the second issue (although only for single edge workloads). Here,
the mapping of the endpoints of the workload edge are given, and the goal is to map the edge to a path
in the substrate graph to minimize edge congestion.

Another related problem is minimizing congestion for quorum placement on networks [15], for which
a poly-logarithmic approximation is known. This also involves mapping nodes and paths simultaneously
(here routing is splittable). However all paths are between one vertex that is fixed (called client) and
another (called quorum) that is mapped. In contrast, both end points of a path in SingleMap are
mapped vertices. Moreover, the demand between clients and quorums has a “product multicommodity”
structure, whereas demands in SingleMap are arbitrary.

The online framework we present for GraphMap uses ideas from the online virtual circuit routing
algorithm [3]. In [3] costs on edges are maintained using multiplicative updates and each request is
routed along a shortest-path from its source to destination. Our framework is a generalization of this
result, where requests have more complicated mappings (instead of just a path). Consequently, the
subproblem (SingleMap) that we need to solve is also harder, as opposed to shortest-path in [3].

A natural approach to mapping nodes in SingleMap is to consider an LP relaxation similar to
ones used for quadratic assignment [1, 19]. However, as we show in Section 4, such LPs have a large
integrality gap for SingleMap. Instead, our result for d-depth tree workloads uses substantially stronger
LPs based on the Sherali-Adams hierarchy [25]. We are not aware of a more direct approach that yields
a poly-logarithmic approximation for this problem. This adds to a small list of problems for which
lift-and-project LP hierarchies have proved useful in obtaining algorithms. Some other examples are
graph coloring [11], independent set in 3-uniform hypergraphs [12], dense-k-subgraph [8],and max-min
degree arborescence [7].

2 Offline Framework

We show the following result.

Theorem 2.1 For any ρ1, ρ2 ≥ 1, a (ρ1, ρ2) bicriteria approximation algorithm for the SingleMap
problem can be used to obtain an O((ρ1 +ρ2) · log n

log log n) approximation algorithm for the offline GraphMap
problem.

The main idea is to solve a configuration LP relaxation for GraphMap, and then apply randomized
rounding. The separation oracle for this LP will be the SingleMap problem.

Let H1, . . . ,Hk denote the workloads to be mapped into substrate G = (V, E) with edge capacities
ce and node capacities uv. Without loss of generality we assume that the optimum congestion is 1
(the algorithm can do a binary search on the value of the optimum congestion, and scale the capacities
accordingly). For each i ∈ [k] let Fi denote the set of all possible valid mappings of Hi into G, such
that the load on each edge e (resp. vertex v) is at most ce (resp. uv). We define a variable xi(τ) for
each possible map τ ∈ Fi for Hi. As the optimal solution must use some map from Fi for each Hi and
has overall congestion 1, the following LP is a valid relaxation of GraphMap and has a feasible solution.

minimize 0

subject to
∑

τ∈Fi

xi(τ) ≥ 1 ∀i ∈ [k]

k∑

i=1

∑

τ∈Fi

`(e, τ) · xi(τ) ≤ ce ∀e ∈ E

5

k∑

i=1

∑

τ∈Fi

`(v, τ) · xi(τ) ≤ uv ∀v ∈ V

xi(τ) ≥ 0 ∀τ ∈ Fi, ∀i ∈ [k].

Here, for any i ∈ [k] and τ ∈ Fi, `(e, τ) denotes the load on edge e ∈ E under mapping τ ; similarly
`(v, τ) denotes the load on vertex v ∈ V .

This LP has an exponential number of variables but only polynomially many constraints, so we
consider its dual:

maximize
k∑

i=1

zi −
∑

e∈E

ce · αe −
∑

v∈V

uv · βv

subject to
∑

e∈E

`(e, τ) · αe +
∑

v∈V

`(v, τ) · βv ≥ zi ∀τ ∈ Fi, i ∈ [k]

zi, αe, βv ≥ 0 ∀ i ∈ [k], e ∈ E, v ∈ V.

Observe that given values for (z, α, β) the dual separation problem is precisely SingleMap for each of
{Hi}k

i=1 with capacities c, u and costs α, β. Since we have a (ρ1, ρ2) bicriteria approximation algorithm
for SingleMap, we can solve the dual LP approximately using the Ellipsoid algorithm. By standard LP
duality arguments, this gives a primal solution {yi(τ) : i ∈ [k], τ ∈ F̃i} where:

• For each map in F̃i, the load on each edge e (resp. vertex v) is at most ρ2 · ce (resp. ρ2 · uv).

• For all e ∈ E,
∑k

i=1

∑
τ∈Fi

`(e, τ) · yi(τ) ≤ ρ1 · ce.

• For all v ∈ V ,
∑k

i=1

∑
τ∈Fi

`(v, τ) · yi(τ) ≤ ρ1 · uv.

• Each F̃i has polynomial size.

Given a primal solution with these properties, the algorithm now chooses a mapping for each work-
load Hi by picking τ ∈ F̃i independently with probability yi(τ). Using standard probabilistic tail bounds
(as in [23]), it follows that the total load on any edge or vertex is O((ρ1 + ρ2) · (log n/ log log n)) times
its capacity with high probability, which implies the result.

3 Online Framework

In this section we show the following result:

Theorem 3.1 Given a (ρ1, ρ2) bicriteria approximation algorithm for SingleMap, There is an O((ρ2 +
ρ1) log(nD))-competitive online algorithm for GraphMap with known durations. Here n is the number
of vertices in the substrate graph and D is the maximum duration of any workload.

Using standard arguments the term D above can be replaced with the ratio of maximum to minimum
durations.

The algorithm is similar to the online algorithm for virtual circuit routing [3, 4, 9]. The idea is that
at each time, the algorithm maintains a cost on the edges that is an exponentially increasing function
of their load. Upon the arrival of a workload, the solution of an SingleMap instance with these costs
determines where this workload will be placed. Since the highly loaded edges are severely penalized,
the SingleMap solution will prefer edges with low load.

6

Notation: Let H1,H2, . . . , Hk denote the workloads in the order in which they arrive; we use i to
index the workloads. Each Hi appears at time si with a specified duration ti, which means that Hi

stays in the cloud from time si to si + ti. We assume that the duration ti becomes known when Hi

arrives at time si. Note that the sis are non-decreasing. We assume that all times and durations are
integral and maxi ti ≤ D. Also, given SingleMap algorithm as a black-box, our algorithm for GraphMap
will treat edges and vertices identically, and hence we will use the term element to refer to either an
edge or a vertex of G. The set of elements will be denoted by U and ce will denote the capacity of
e ∈ U . For each workload Hi, let Fi denote the set of all possible mappings of Hi into G. Then for each
i ∈ [k], the algorithm finds a map τi ∈ Fi and workload Hi is assigned to G using this map during the
interval [si, si + ti]. The network congestion is the maximum congestion over all elements e ∈ U and
over all times h, i.e.

max
e∈U

max
h≥0

∑
i:si≤h≤si+ti

τi(e)
ce

where τi(e) is the load on e due to map τi for workload Hi.
The SingleMap problem can be restated in the above notation: given workload Hi, costs α : U → R+

and capacities c : U → R+, find a feasible map τ ∈ Fi minimizing
∑

e∈U αe · τ(e) such that τ(e) ≤ ce

for all e ∈ U . As previously, we assume a (ρ1, ρ2) bicriteria approximation algorithm for SingleMap.

3.1 Algorithm

In the description below we assume that the optimum offline solution has congestion at most 1. This
assumption can be removed by standard doubling techniques (see eg. Theorem 12.5 [9]), where the
online maintains an upper bound Λ on the optimal congestion thus far. We denote this optimal offline
solution by maps τ∗i ∈ Fi for each i ∈ [k].

Let γ ∈ (0, 1) be a constant to be fixed later. Also let B := ρ2. For any i ≥ 1, let `i(e, h) denote the
load of element e at time h, induced by requests H1, . . . , Hi−1. Formally,

`i(e, h) =
i−1∑

j=1

τj(e) · I(h ∈ [sj , sj + tj])

where I(h ∈ [sj , sj + tj]) is an indicator 0-1 variable representing whether sj ≤ h ≤ sj + tj .
Upon the arrival of workload Hi at time si, the algorithm does the following:

1. Set costs αe := γ
B ce

·∑si+ti
h=si

exp
(

γ`i(e,h)
B·ce

)
for all e ∈ U .

2. Run the (ρ1, ρ2) bicriteria approximation algorithm for SingleMap on instance 〈Hi, α, c〉 to obtain
τi ∈ Fi and assign workload Hi according to τi during the time interval [si, si + ti].

3. Update `i+1(e, h) ← `i(e, h) + τi(e) for all e ∈ U and si ≤ h ≤ si + ti.

Note that the above updates to the variables ` are consistent with their definition.

3.2 Analysis

We will show that this algorithm is O((ρ1 + ρ2) log(D|U |))-competitive. We begin with a simple claim.

Claim 3.1 For any τ ∈ Fi with τ(e) ≤ B · ce for all e ∈ U , we have:

∑

e∈U

αe · τ(e) ≤
∑

e∈U

si+ti∑

h=si

exp
(

γ · `i(e, h)
Bce

) [
exp

(
γ · τ(e)

Bce

)
− 1

]
≤ 2

∑

e∈U

αe · τ(e)

7

Proof: For all x ∈ [0, 1] and γ ∈ (0, 1) we have exp(γx) − 1 ∈ [γx, 2γx]. Consider any e ∈ U . As
τ(e) ∈ [0, B · ce], setting x = τ(e)/(Bce) above,

exp
(

γ · τ(e)
Bce

)
− 1 ∈

[
γ · τ(e)

Bce
, 2

γ · τ(e)
Bce

]
.

The claim now follows by the definition of costs αe = γ
B ce

·∑si+ti
h=si

exp(γ · `i(e, h)/B · ce), and summing
over e. ¥

For each e ∈ U and time h ≥ 0, let `(e, h) = maxi `i(e, h) denote the observed load on element e
at time h. Observe that for any index i with si > h, we have `i(e, h) = `(e, h). Clearly, the objective
value of the online algorithm is maxe∈U maxh≥0 `(e, h)/ce, that we wish to bound. To this end, for any
integer j ≥ 1 define:

Lj =
∑

e∈U

j·D∑

h=(j−1)·D
exp

(
γ · `(e, h)

B ce

)

We will show that,

Lemma 3.1 Setting γ := min{ ρ2

6ρ1
, 1}, for each j ≥ 1, we have Lj ≤ 6 ·D |U |.

Before we prove Lemma 3.1, we note that this already implies our main result, Theorem 3.1. In
particular, for all e ∈ U and h ≥ 0, taking logarithms,

`(e, h) ≤ 1
γ

ln(6D |U |) ·B ce ≤ ρ2 ln(6D |U |)
γ

· ce ≤ max{ρ2, 6ρ1} ln(6D|U |)ce

by the definition of γ.
Proof:(Lemma 3.1) The proof is by induction on j. Define L0 = 0 for the base case. Consider now
any j ≥ 1, assuming inductively that Lj−1 ≤ 6 ·D |U |. Let R = {r, r + 1, . . . , t} denote the indices of
workloads that are released in the interval [(j − 2)D, jD]. For any index i ∈ R

⋃{t + 1}, define

Ai =
∑

e∈U

(j+1)D∑

h=(j−2)D

exp
(

γ · `i(e, h)
B ce

)
.

Claim 3.2 Ar ≤ 2D |U |+ Lj−1.

Proof: By the choice of R, sr−1 < (j−2)D. As D is the maximum duration, sr−1+tr−1 < (j−1)D
and hence `r(e, h) = 0 for all e ∈ U and h ≥ (j − 1)D. Thus,

Ar =
∑

e∈U




(j−1)D∑

h=(j−2)D

exp
(

γ · `r(e, h)
B ce

)
+

(j+1)D∑

h=(j−1)D

exp(0)




≤
∑

e∈U




(j−1)D∑

h=(j−2)D

exp
(

γ · `(e, h)
B ce

)
+ 2D




= Lj−1 + 2D |U |
¥

For convenience, for any i ∈ [k], e ∈ U and h ≥ 0, let us define τ∗i (e, h) = τ∗i (e) if si ≤ h ≤ si + ti, and
0 otherwise. Also define τi(e, h) similarly. Note that `i(e, h) =

∑i−1
p=1 τp(e, h) for any i ∈ [k], e ∈ U and

h ≥ 0.

8

Claim 3.3 For any i ∈ R, we have

Ai+1 −Ai ≤ 2ρ1γ ·
∑

e∈U

(j+1)D∑

h=(j−2)D

exp
(

γ · `t+1(e, h)
B ce

)
· τ∗i (e, h)

B ce
.

Proof: By definition,

Ai+1 −Ai =
∑

e∈U

(j+1)D∑

h=(j−2)D

exp
(

γ · `i(e, h)
B ce

) [
exp

(
γ · τi(e, h)

B ce

)
− 1

]
.

Recall that τi is a (ρ1, ρ2) bicriteria approximation for an SingleMap instance with capacities c; so
τi(e, h) ≤ τi(e) ≤ B · ce. Now we can use (see Claim 3.1) exp

(
γ τi(e,h)

B ce

)
− 1 ≤ 2γ · τi(e,h)

B ce
, and hence

Ai+1 −Ai is at most:

∑

e∈U

(j+1)D∑

h=(j−2)D

exp
(

γ · `i(e, h)
B ce

)
· 2γ · τi(e, h)

B ce
=

∑

e∈U

si+ti∑

h=si

exp
(

γ · `i(e, h)
B ce

)
· 2γ · τi(e)

B ce

= 2
∑

e∈U

αe · τi(e) (1)

The first equality is by definition of τi(e, h) and the second is by the definition of αes. Now, recall
the algorithm for mapping workload Hi that solves SingleMap instance 〈Hi, α, c〉. As τ∗i is also
a candidate feasible solution to this instance (recall the assumption that optimal congestion is at
most one) and τi is a (ρ1, ρ2)-approximate solution to this SingleMap instance, we have:

∑

e∈U

αe · τi(e) ≤ ρ1 ·
∑

e∈U

αe · τ∗i (e). (2)

Moreover, since `i(e, h) ≤ `t+1(e, h) and (j − 2)D ≤ si ≤ si + ti ≤ (j + 1)D for any i ∈ R, we have:

αe ≤ γ

B ce
·

(j+1)D∑

h=(j−2)D

exp
(

γ · `t+1(e, h)
B ce

)
, ∀e ∈ U

Combined with (1) and (2), we obtain

Ai+1 −Ai ≤ 2ρ1γ ·
∑

e∈U

(j+1)D∑

h=(j−2)D

exp
(

γ · `t+1(e, h)
B ce

)
· τ∗i (e, h)

B ce
.

which proves the claim. ¥
Summing the inequality in Claim 3.3 over all i ∈ R, we can upper bound At+1 −Ar as:

≤ 2ρ1γ ·
∑

e∈U

(j+1)D∑

h=(j−2)D

exp
(

γ · `t+1(e, h)
B ce

)
·
(∑

i∈R

τ∗i (e, h)
B ce

)

≤ 2ρ1γ

ρ2
·
∑

e∈U

(j+1)D∑

h=(j−2)D

exp
(

γ · `t+1(e, h)
B ce

)
.

9

The second inequality uses B = ρ2 and our assumption that the optimum congestion is at most 1, i.e.∑
i τ
∗
i (e, h) ≤ ce.

As γ := min{ ρ2

6ρ1
, 1}, using the definition of At+1 we have:

At+1 −Ar ≤ 2ρ1γ

ρ2
·At+1 ≤ 1

3
At+1,

which implies that At+1 ≤ 1.5 ·Ar. Together with Claim 3.2, this implies that

At+1 ≤ 3D |U |+ 1.5Lj−1.

On the other hand, At+1 ≥ Lj−1 + Lj . This follows because, by definition of R, workload t + 1
arrives after time jD, i.e. st+1 > jD, and so for all e ∈ U and h ≤ jD, we have `t+1(e, h) = `(e, h).
Thus, Lj−1 + Lj ≤ At+1 ≤ 3D |U |+ 1.5 · Lj−1, and hence

Lj ≤ 3D |U |+ Lj−1

2
.

As Lj−1 ≤ 6D |U | by the inductive hypothesis, this proves Lemma 3.1. ¥

4 Single Workload Mapping on d-Depth Tree Workloads

In this section we prove Theorem 1.1. As mentioned previously, our result in based on an LP formulation
inspired by the Sherali-Adams Hierarchy. It is instructive to see why simpler approaches do not seem
to work. Clearly, an LP formulation based on assignment variables xp,v which indicate that node p in
mapped to vertex v, is very weak, as it cannot capture the pairwise traffic constraints. However, it
turns out that even a quadratic assignment type LP with variables xpi,vi,pj ,vj (representing whether pi

mapped to vi and pj mapped to vj) is also very weak, unless strengthened by additional Sherali-Adams
type constraints.

In particular, consider a star workload with center r and n leaves `1, . . . , `n with unit traffic and
processing demands. The substrate consists of n disjoint edges {(ai, bi)}n

i=1 each of capacity one; each
vertex also has capacity one. All costs are zero; so this is a feasibility question.

Clearly, any integral mapping must violate the capacity of some edge by a factor of n. However, it
turns out there is a feasible solution for Quadratic Assignment LPs [1], that satisfies all the capacities.
We set,

y(r, v) =
{

1
n if v ∈ {ai}n

i=1

0 otherwise

For each i, j ∈ [n] we have

y(r, ai, `j , v) =
{

1
n if v = bi

0 otherwise

Basically this solution is a convex combination of the n integral solutions, where for each i ∈ [n], r
maps to ai and all the leaves {`j}n

j=1 map to bi. This LP solution is feasible as the total usage of each
edge {(ai, bi)}n

i=1 is one; so edge capacities are satisfied. Similarly the total usage of each vertex is also
at most one.

The trouble with this LP is that it fails to capture the fact that when the center is mapped to
some vertex s, the traffic from all leaves must come to s. To get around this problem, we will add
additional constraints that we call conditional congestion constraints. Roughly speaking, they ensure

10

that conditional on the center being mapped to some vertex s, the total congestion induced by all edges
remains at most one. These are formally described later.

Before describing our LP based algorithm for d-level tree workloads, we describe a simpler com-
binatorial algorithm for star workloads with uniform demands. This is useful as such workloads are
likely to appear frequently in practice and combinatorial algorithms are simpler to implement that LP
based approaches. Also, this algorithm explicitly illustrates the problem with the LP described above,
and motivates the Sherali-Adams approach better. Interestingly, we do not know how to extend this
combinatorial algorithm to trees with depth two or more.

4.1 Uniform Star Workload

Let ` denote the number of edges in the star workload and b ∈ R+ the demand on each edge. All
vertices of the star have unit processing demands.
The Algorithm: For each vertex s ∈ V , we do the following: Define a flow network Ns on G with s as
source and a new sink vertex t that is connected to all vertices V . Set the capacity of each edge e ∈ E
to be bce/bc; the capacity of each edge (v, t) to be uv (for v ∈ V \ {s}) and capacity of (s, t) to us − 1.
There is a cost of αe on each edge e ∈ E, and cost of βv for each edge (v, t).

The network flow instance on Ns involves computing the minimum cost flow of ` units from s
to t, which can be done efficiently [14]. Observe that there is a one-to-one correspondence between
feasible solutions to this flow instance Ns and valid mappings of the star-workload where the center is
mapped to s. Note that having fixed the center at s, the flow instance Ns captures both node and path
mappings. Thus the minimum cost optimum amongst instances {Ns : s ∈ V } yields an optimal solution
to SingleMap on uniform star workloads.

The main idea in the above algorithm was to enumerate over the mapping of the center (s), which
enabled a reduction to single commodity flow. This approach can be extended to workloads with
a constant number of non-leaf vertices, since we can again enumerate over all non-leafs and reduce to
single commodity flow. However extending this idea to even a 2-level tree workload appears problematic
since we can no longer perform such an enumeration (there may be super-logarithmic number of non-leaf
vertices).

4.2 Depth d-tree Workload

Notation. We fix some notation relevant to this section. We use H = (W,F) to denote the workload
which is a tree of depth d rooted at some node r. The level of a vertex v ∈ W is the number of edges
on the path from v to root r, so the root has level zero. We use [d] := {0, 1, . . . , d}. For any i ∈ [d],
we use pi to refer to some node at level i (p0 is always the root r). An edge (pi, pi+1) has demand
b(pi, pi+1), and a node p has processing demand g(p). The substrate is a graph G(V,E) with edge and
vertex capacities ce and uv. The costs of the edges and vertices are {αe}e∈E and {βv}v∈V . For any
i ∈ [d], we use (p0, . . . , pi) to denote a path in H from the root p0 that contains exactly one vertex in
each level 0, 1, . . . , i.

The LP relaxation We describe here the LP relaxation. First, we describe the variables we use. There
will be two types of variables, that we call assignment variables, and flow variables.
Assignment Variables: For every index i ∈ [d], and path (p0, p1, . . . , pi) in H, and vertices v0, . . . , vi ∈ V ,
we introduce a variable y(p0, v0, . . . , pi, vi) ∈ {0, 1} which we relax to take values in the range [0, 1].
In the integral solution, this variable is intended to be 1, if each pj in the path is mapped to vj for
each j ∈ {0, . . . , i}, and is 0 otherwise. It is convenient to view this variable as the probability of the

11

event
∧i

j=0(pj is mapped to vj). Also, we only allow variables where each p is mapped to v such that
g(p) ≤ uv (we set the y variable to 0 otherwise).
Flow Variables: For every path (p0, p1, . . . , pi) in H with i ≥ 1 and collection of vertices v0, . . . , vi ∈ V ,
we will define a network flow instance. This instance will be denoted by F(p0, v0, . . . , pi−1, vi−1, pi, vi)
and is supposed to correspond to the mapping of edge (pi−1, pi) under the event that “pj is mapped to vj

for each j ∈ {0, . . . , i}. We will denote the variables in this flow instance by Fe(p0, v0, . . . , pi, vi)
The underlying network N(pi−1, vi−1, pi, vi) in this flow instance is the substrate graph G restricted

to edges of capacity at least b(pi−1, pi), the source-vertex is vi−1 and sink is vi. There are flow-variables
Fe(p0, v0, . . . , pi−1, vi−1, pi, vi) for each edge e ∈ G. The flow on edges G\N(pi−1, vi−1, pi, vi) are fixed to
zero; i.e. only edges N(pi−1, vi−1, pi, vi) participate in this flow. The variables satisfy flow-conservation
constraints and send

y(p0, v0, . . . , pi−1, vi−1, pi, vi) · b(pi−1, pi) (3)

units of flow from vi−1 to vi. One can view
{Fe(p0,v0,...,pi,vi)

y(p0,v0,...,pi,vi)

}
e

as defining b(pi−1, pi) units of flow condi-

tioned upon pj being mapped to vj for each j ∈ {0, . . . , i}. We note that the network N(pi−1, vi−1, pi, vi)
itself is independent of where p0, . . . , pi−2 are mapped.

We impose three types of constraints.
Consistency Constraints: Since we intend the y variables to model probabilities, we impose the following
natural consistency constraints.

1. For all paths (p0, p1, . . . , pi) in H and v0, . . . , vi−1 ∈ V ,
∑

vi∈V

y(p0, v0, . . . , pi, vi) = y(p0, v0, . . . , pi−1, vi−1). (4)

This can be viewed as saying that

y(p0, v0, . . . , pi−1, vi−1, pi, vi)
y(p0, v0, . . . , pi−1, vi−1)

defines valid probability distribution for mapping pi to vi conditional upon p0, . . . , pi−1 being
mapped to v0, . . . , vi−1.

2. As the root must be assigned somewhere, we have:
∑

v0∈V

y(p0, v0) = 1. (5)

Together (4) and (5) imply that every path (p0, p1, . . . , pi) in H is mapped somewhere, i.e.
∑

v0...vi∈V

y(p0, v0, . . . , pi, vi) = 1.

Global Congestion Constraints: These ensure that the load of any each edge or vertex in G is at
most its capacity.

For each edge e ∈ E, we have
∑

(pi−1,pi)∈F

∑
v0,...,vi

Fe(p0, v0, . . . , pi−1, vi−1, pi, vi) ≤ ce. (6)

12

Above, for any edge (pi−1, pi) ∈ F , vertices p0, . . . , pi denote its (unique) path in H from the root. Note
that the left hand side is precisely the total fractional load on edge e due to all edges (pi−1, pi) in the
workload.

Similarly, for each vertex v ∈ V , we have
∑

g(pi) · y(p0, v0, . . . , pi−1, vi−1, pi, v) ≤ uv, (7)

where the summation is over all indices i ≥ 0, and paths (p0, . . . , pi) ∈ H and vertices v0, . . . , vi−1 ∈ V .
Conditional Congestion Constraints: These final types of constraints are perhaps the least natural, but
these are critical to strengthening the LP.

For each index i ≥ 0, and each path (p0, . . . , pi) and each possible choice of vertices v0, . . . , vi ∈ V ,
and edge e ∈ E, we add the constraint:

∑

j≥i

∑
pi+1,vi+1,...,pj ,vj

Fe(p0, v0, . . . , pi, vi, . . . pj , vj) ≤ ce · y(p0, v0, . . . , pi, vi). (8)

This constraint is similar to the global edge congestion constraint, except that we condition on event
that p0, . . . , pi are mapped to v0, . . . , vi respectively. That is, conditional on p0, . . . , pi being mapped to
v0, . . . , vi, the total load on e due to mapping edges in subtree rooted at pi must be no more than ce.
Note that if y(p0, v0, . . . , pi, vi) ∈ {0, 1}, then this is a valid constraint, and hence the above relaxation
is valid.

Similarly, for each vertex v ∈ V , index i ≥ 0, each path (p0, . . . , pi) and vertices v0, . . . , vi ∈ V , we
add: ∑

j≥i

∑
pi+1,vi+1,...,pj

g(pj) · y(p0, v0, . . . , pi, vi, . . . pj , v) ≤ uv · y(p0, v0, . . . , pi, vi). (9)

That is, conditional on p0, . . . , pi being mapped to v0, . . . , vi, the load on v due to nodes in subtree
rooted at pi must be no more than uv.
Objective: The objective is to minimize:

∑

e∈E

αe ·
∑

Fe(p0, v0, . . . , pi−1, vi−1, pi, vi) +
∑

v∈V

βv ·
∑

g(pi) · y(p0, v0, . . . , pi−1, vi−1, pi, v). (10)

Here, the first summation (over edges) is over all indices i ≥ 1, all paths (p0, . . . , pi) in H and all vertices
v0, . . . , vi ∈ V , and the second summation (for vertices) is over all indices i ≥ 0, all paths (p0, . . . , pi)
and all vertices v0, . . . , vi−1 ∈ V .

This completes the description of the linear program. Observe that the total number of variables
and constraints is nO(d) which is polynomial for constant d. Hence this LP can be solved exactly in
nO(d) time. Moreover, as argued above, this LP is a valid relaxation of the SingleMap problem with
d-depth tree workloads.

4.3 The Rounding Algorithm

We round the optimal LP solution in d phases, where in the ith phase we fix the mapping of all level-i
vertices in H.
Vertex Mapping: The algorithm incrementally constructs a mapping τ : W → V as follows.

1. Set τ(p0) ← v with probability y(p0, v). This fixes the mapping of the root.

13

2. For each i ∈ {1, . . . , d} do:

For each vertex pi at level-i:

• Let (p0, . . . , pi−1, pi) denote the path from the root to pi.

• Set τ(pi) ← v independently with probability:

y(p0, τ(p0), . . . , pi−1, τ(pi−1), pi, v)
y(p0, τ(p0), . . . , pi−1, τ(pi−1))

(11)

Note that the algorithm is well-defined as at any iteration i, the map τ is already known for all vertices
at levels up to i−1. Also, (11) defines a valid (conditional) probability distribution for mapping pi, due
to LP constraint (4).
Edge Mapping: Having obtained the vertex mapping τ above, the map σ from edges of H to paths in
G is constructed by randomized rounding. For each edge (pi−1, pi) in H do:

• Obtain a flow-path decomposition of

F(p0, τ(p0), . . . , pi−1, τ(pi−1), pi, τ(pi))
b(pi−1, pi) · y(p0, τ(p0), . . . , pi−1, τ(pi−1), pi, τ(pi))

.

By (3) this gives a probability distribution on τ(pi−1) to τ(pi) paths.

• Assign edge (pi−1, pi) to a random τ(pi−1) to τ(pi) path chosen according to the above distribution;
call this path σ(pi−1, pi) and send b(pi−1, pi) units of flow along σ(pi−1, pi).

Two simple properties: This completes the description of the rounding procedure. We note here two
useful properties of this procedure.

1. For any path (p0, . . . , pi) ∈ H, vertices v0, . . . , vi ∈ V ,

Pr [τ(p0) = v0, . . . , τ(pi) = vi] = y(p0, v0, . . . , pi, vi).

2. Similarly, for any edge e ∈ E, edge (pi−1, pi) ∈ F with (p0, . . . , pi) being its path from r and
v0, . . . , vi ∈ V ,

Pr [e ∈ σ(pi−1, pi) | τ(p0) = v0, . . . , τ(pi) = vi] =
Fe(p0, v0, . . . , pi−1, vi−1, pi, vi)

b(pi−1, pi) · y(p0, v0, . . . , pi−1, vi−1, pi, vi)
(12)

4.4 The Analysis

We need to show two things. First, the cost of the mapping is close to optimum. Second, the edge and
node congestions are not too high.

Claim 4.1 The expected cost of the algorithm’s mapping 〈τ, σ〉 equals the optimal LP objective.

This claim along with Markov inequality implies that with probability at least half, the cost of 〈τ, σ〉
is at most twice the LP optimum.
Proof:(Claim 4.1) The cost of any mapping 〈τ, σ〉 is

∑

p∈W

βτ(p) · g(p) +
∑

(p,q)∈F

∑

e∈σ(p,q)

αe · b(p, q),

14

given by the total of node costs and edge costs.
For any level i node pi with (p0, . . . , pi−1, pi) as its path from the root, and vertices v0, . . . , vi ∈ V ,

recall that our rounding procedure satisfies Pr [τ(p0) = v0, . . . , τ(pi) = vi] = y(p0, v0, . . . , pi, vi). So,

Pr[τ(pi) = v] =
∑

v0,...,vi−1

y(p0, v0, . . . , pi−1, vi−1, pi, v)

and hence the expected node-cost of mapping 〈τ, σ〉:
∑

pi∈W

∑
v

βv · g(pi) · Pr[τ(pi) = v] =
∑

v

βv

∑

pi∈W

g(pi)
∑

v0,...,vi−1

y(p0, v0, . . . , pi−1, vi−1, pi, v).

which is exactly the second term in the LP objective (10).
We now compute the expected edge-cost. Consider any edge (pi−1, pi) ∈ F . By (12), and uncondi-

tioning over the events τ(p0) = v0, . . . , τ(pi−1) = vi−1, τ(pi) = vi,

Pr[σ(pi−1, pi) 3 e] =
∑

v0,...,vi

Fe(p0, v0, . . . , pi−1, vi−1, pi, vi)
b(pi−1, pi)

.

So the expected edge-cost is:
∑

(pi−1,pi)∈F

b(pi−1, pi)·
∑

e∈E

αe·Pr[σ(pi−1, pi) 3 e] =
∑

e∈E

αe

∑

(pi−1,pi)∈F

∑
v0,...,vi

Fe(p0, v0, . . . , pi−1, vi−1, pi, vi)

which is exactly the first term in the LP objective (10). This implies the claim. ¥
Bounding edge and node congestion: We now bound the edge and node congestion of the mapping
produced by our algorithm.

Theorem 4.1 With probability at least 1 − 1/n2, the maximum node or edge congestion is at most
O(d2 log(nd)).

We describe here the analysis for edge congestion, the analysis for node congestion is essentially identical.
Fix an edge e ∈ E in the substrate. For each level i edge (pi−1, pi) ∈ F in the workload, the load

assigned by the LP solution to e is
∑

v0,...,vi

Fe(p0, v0, . . . , pi−1, vi−1, pi, vi).

We will be interested in how this load evolves as the rounding proceeds on each level of nodes in W .
For ` ∈ [d], let τ (`) denote some mapping of the first `− 1 levels of nodes in W . So, τ (0) denotes the

empty mapping and τ (d+1) denote a mapping of all the vertices. Let us define, Le(τ (`), pi−1, pi) as the
load on e due to edge (pi−1, pi) based on the mapping τ (`) thus far. Formally, we define Le(τ (`), pi−1, pi)
as follows: if ` ≥ i + 1 then

Fe

(
p0, τ

(`)(p0), . . . , pi−1, τ
(`)(pi−1), pi, τ

(`)(pi)
)

y(p0, τ (`)(p0), . . . , pi, τ (`)(pi))
,

and otherwise (i.e. ` ≤ i),

∑
v`,...,vi

Fe

(
p0, τ

(`)(p0), . . . , p`−1, τ
(`)(p`−1), p`, v`, . . . , pi, vi

)

y(p0, τ (`)(p0), . . . , p`−1, τ (`)(p`−1))
.

We note that by conditional congestion constraints (8), Le(τ (`), pi−1, pi) is well-defined and always
bounded by ce.

A crucial observation is the following.

15

Lemma 4.1 Let τ (`) be any arbitrary mapping of vertices in the first `−1 levels. Let τ (`+1) be obtained
from τ (`) by applying our rounding procedure to level ` vertices. Then, for any substrate edge e ∈ E and
workload edge (pi−1, pi) ∈ F ,

E[Le(τ (`+1), pi−1, pi)] = Le(τ (`), pi−1, pi)

where expectation is taken over the randomness in the rounding procedure applied to level ` vertices.

Proof: Firstly, if ` > i, then the mapping of pi−1 and pi are already fixed in τ (`) and the lemma is
trivially true, so we assume that ` ≤ i.

Let p` denote the level-` node on the path from p0 to pi. By the rounding procedure, the probability
that p` is mapped to v conditioned on the mapping τ (`) until level `− 1,

Pr
[
τ (`+1)(p`) = v | τ (`)

]
=

y(p0, τ
(`)(0), . . . , p`−1, τ

(`)(p`−1), p`, v)
y(p0, τ (`)(0), . . . , p`−1, τ (`)(p`−1))

(13)

Thus,

E
[
Le(τ (`+1), pi−1, pi)

]
=

∑
v`

Pr
[
τ (`+1)(p`) = v` | τ (`)

]
· Le

(
τ (`+1), pi−1, pi

)
= Le

(
τ (`), pi−1, pi

)

where the equality in the last step follows by (13) and the definition of Le (in the regime ` ≤ i). ¥
Given a partial mapping τ (`) (of nodes on first `−1 levels), let Le(τ (`)) =

∑
(pi−1,pi)∈F Le(τ (`), pi−1, pi)

denote total load on edge e ∈ E due to all edges in F . Call τ (`) good if Le ≤ 16d(`+1)ce log nd. Clearly,
the empty mapping τ (0) is good, since

Le(τ (0)) =
∑

(pi−1,pi)∈F

∑
v0,...,vi

Fe(p0, v0, . . . , pi, vi)

which by the global congestion constraint in the LP (6) is at most ce.

Lemma 4.2 For any ` ∈ [d],

Pr
[
τ (`+1) is good | τ (`) is good

]
≥ 1− 1/(dn)4.

Proof: Let E′′ denote the edges of H induced on the vertices of the first ` − 1 levels. For any vertex
p` in level ` (with p0, . . . , p`−1, p` being its path from the root), let E′(p`) denote the set of edges
in the subtree rooted at p` plus the edge (p`−1, p`). For any subset S of edges, define Le(τ (`), S) =∑

(pi−1,pi)∈S Le(τ (`), pi−1, pi); and Le(τ (`+1), S) is defined similarly. Since E′′ and {E′(p`)} partition
edges of H,

Le

(
τ (`)

)
= Le

(
τ (`), E′′

)
+

∑
p`

Le

(
τ (`+1), E′(p`)

)

and a similar equality holds for Le(τ (`+1)). Recall that τ (`) is a fixed mapping for levels until ` − 1.
The randomness is in the choice of mapping for level-` vertices, which gives τ (`+1). So Le(τ (`+1), E′′) =
Le(τ (`), E′′) is a deterministic quantity. Note also that each Le(τ (`+1), E′(p`)) depends only on the
choice τ (`+1)(p`), i.e. for different vertices p`, the Le(τ (`+1), E′(p`))s are independent random variables.
Moreover, by Lemma 4.1, the expectation E[Le(τ (`+1), E′(p`))] = Le(τ (`+1), E′(p`)) over the random
choice of τ (`+1)(p`) as in (13). Finally, by the conditional congestion LP constraints (8), it holds that
for any choice of τ (`+1)(p`), Le(τ (`+1), E′(p`)) ≤ ce.

16

Thus Le(τ (`+1))− Le(τ (`+1), E′′) is the sum of independent [0, ce] random variables having mean:

Le

(
τ (`)

)
− Le

(
τ (`), E′′

)
≤ 16d(` + 1) log nd · ce − Le

(
τ (`), E′′

)

The inequality uses the fact that τ (`) is good. By a Chernoff Bound (recall that Le(τ (`+1), E′′) is fixed),

Pr
[
Le(τ (`+1)) > 16d(` + 2) log nd · ce

]
≤ 1

(dn)4

this uses the fact that ` ≤ d. ¥
Applying lemma 4.2 inductively, it follows that:

Pr
[
τ (d+1) is good for edge e

]
≥ 1− (d + 1)/(nd)4 > 1− 1/n4 (14)

i.e. Le

(
τ (d+1)

) ≤ 32d2 log(nd) · ce with probability at least 1− 1
n4 . This completes the analysis of the

vertex mapping. We now analyze the edge mapping step.
Observe that the actual load on edge e after the edge mapping is the sum of independent [0, ce]

random variables3 with mean Le

(
τ (d+1)

)
which is at most 32d2 log(nd) · ce when conditioned on “τ (d+1)

being good for e”. It follows that Pr[Load of e ≥ 64d2 log(nd) · ce] is at most:

Pr
[
Load of e ≥ 64d2 log(nd) · ce | τ (d+1) good for e

]
+ Pr

[
τ (d+1) not good for e

]
≤ 2

n4
.

The first term is upper bounded using Chernoff bound for the edge mapping, and the second term is
from (14). Taking union bound over the possible n2 edges implies that the maximum edge congestion
is O(d2 · log(nd)) with probability at least 1− 1

n2 . An identical analysis works for the node congestion
and we obtain Theorem 4.1 and hence Theorem 1.1.

5 Complete Graph Workloads

In this section we consider the GraphMap problem when the workloads are complete graphs with uniform
processing and traffic demands, and the substrate is a general graph. We first present an algorithm
for SingleMap where the substrate is a tree and the workload is a uniform complete graph. Later we
show that the Räcke decomposition tree can be used to obtain results on general substrates. If only
splittable routing is needed, the Räcke decomposition can be used directly; however we show that we
can also obtain unsplittable routings with some more care. Using our general framework, this gives
poly-logarithmic ratio offline and online algorithms for GraphMap. However, as Räcke decomposition is
an intermediate step, we need some more care in the reduction to SingleMap.

5.1 SingleMap on trees

By scaling edge capacities in the substrate graph, we can assume that the workload H is a complete
graph Kr with unit demand between every pair of vertices. The substrate graph is a tree T = (V ′, E)
with leaves V ⊆ V ′, where processes can be mapped only to leaves. There are capacities c : E → R+

on edges and u : V → R+ on leaves. In addition there are cost functions α : E → R+ and β : V → R+.
Since the substrate is a tree, a mapping is already determined by an assignment of H-vertices to V .

3This is the main reason that flow variables were restricted to “high capacity” edges.

17

The goal is to find such an assignment satisfying node and edge capacities with minimum cost. We
show now how this problem can be solved exactly by dynamic programming.

Since the workload is a complete graph with unit demands, the load on any edge e ∈ T is determined
by the number of H-vertices assigned to either side of e in the tree: if the two components in T \ {e}
contain ` and r − ` vertices from H then the load on e equals ` · (r − `).

Root the tree T at an arbitrary non-leaf vertex s ∈ V ′ \ V . By splitting high-degree vertices
(introducing dummy vertices connected by edges of infinite capacity and zero cost), we can assume that
each non-leaf vertex in T has at most two children (this makes the dynamic program simpler). For any
v ∈ V ′ let Tv denote the subtree of T rooted at vertex v. Define the following recurrence. For all leaves
v ∈ V and 0 ≤ ` ≤ r, set

M [v, `] =
{

βv · ` if ` ≤ uv

∞ otherwise

For any non-leaf vertex v ∈ V ′ with children v1 and v2, and 0 ≤ ` ≤ r, set

M [v, `] = min
`1,`2

{
M [v1, `1] + M [v2, `2] + α(v,v1) · `1(r − `1) + α(v,v2) · `2(r − `2)

}

where the minimum is over all 0 ≤ `1, `2 ≤ r such that `1 + `2 = ` and `1(r − `1) ≤ c(v,v1) and
`2(r − `2) ≤ c(v,v2). Here `1, `2 are the numbers of H-vertices in the subtrees Tv1 and Tv2 . M [v, `] is
obtained by enumerating over all possibilities (at most r many) for `1 and `2. The constraints on `1 and
`2 ensure that the loads on edges (v, v1) and (v, v2) do not exceed their capacity. If there is no feasible
solution {`1, `2} then set M [v, `] = ∞. It is clear that using this recurrence, the value M [s, r] at the
root s equals the optimum of the SingleMap instance.

5.2 Offline Algorithm

Here the substrate G is general, and each workload is a complete graphs with unit demands.
The algorithm guesses value Λ ∈ [Opt, 2Opt] where Opt is the optimal value– we can try all possibil-

ities. Then we apply the procedure of [16] to substrate G restricted to edges of capacity at least 1/Λ, to
obtain a Räcke decomposition tree T (Λ). Note that the optimal solution uses only edges of capacity at
least 1/Λ in G since Opt ≤ Λ. The idea behind restricting edges is to ensure that the mapping obtained
from the tree only uses high capacity edges of G. Now we consider the offline GraphMap instance on
substrate T (Λ), for which there is an O(log n

log log n)-approximation algorithm using the SingleMap algorithm
above within the offline framework (Section 2). By the property of Räcke tree T (Λ) 4 and guess Λ, the
optimal value of this tree instance is at most Λ. So we obtain a mapping on T (Λ) having congestion
O(log n

log log n)·Λ. Using the flow template given by Räcke tree T (Λ), this yields a splittable-routing solution
in G, where:

• The node congestion is O(log n
log log n) · Λ.

• The edge congestion is O(log2 n log log n) ·O(log n
log log n) · Λ = O(log3 n) · Λ.

• Every edge used in this solution has capacity ≥ 1
Λ , by definition of T (Λ).

Note that in this solution, each demand edge e is mapped to a unit flow Fe between its end-points.
The total usage of each edge e′ ∈ G is at most O(log3 n) Λ · ce′ . Finally each demand edge e sends unit
flow along one path between its end-points chosen independently according to a flow-path decomposition

4Every cut in T (Λ) has capacity larger than the corresponding cut in G.

18

of Fe. The total load on any edge e′ ∈ G is the sum of independent [0,Λ ce′] random variables5 with
mean O(log3 n) Λ · ce′ . By a Chernoff bound, it follows that the final congestion is O(log3 n) · Λ with
high probability. This proves the first part of Theorem 1.2.

5.3 Online Algorithm

Recall that the substrate is a general graph G, and each workload is a complete graph with unit
demands. Here workloads arrive (with known durations) and depart over time. We assume that all
times are integral and let R denote the time horizon. We present a poly-logarithmic competitive
randomized online algorithm. Note that an online algorithm for splittable routing is immediate via
Räcke decomposition, given the SingleMap algorithm above and the framework in Section 3. To obtain
the algorithm for unsplittable routing, we first give a stronger online algorithm for splittable routing that
has (roughly) this additional support property: all flow-paths of a workload use edges of capacity at least

1
Opt where Opt is optimal offline value of the current input sequence. Then we obtain the unsplittable
routing by simple randomized rounding of the splittable routing (as in the offline algorithm); this is
why the final online algorithm is randomized.

Stronger online algorithm for splittable routing. We first describe an algorithm that also assumes
an upper bound Λ on the optimal (offline) value of the input sequence. Again let T (Λ) denote the Räcke
decomposition tree from the procedure of [16] applied to substrate G restricted to edges of capacity
at least 1/Λ. As in the offline algorithm, it follows that the optimal value of the input sequence on
substrate T (Λ) is at most Λ. Using the SingleMap algorithm within the framework in Section 3 gives an
online algorithm A(Λ) on T (Λ) that, assuming the optimal offline value on T (Λ) is at most Λ produces
a solution of congestion ≤ γ ·Λ where γ = O(log(nD)). Again, using the flow template given by Räcke
tree T (Λ), the online mapping on T (Λ) yields an online splittable-routing solution in G, where:

• The node congestion (at any time) is O(log(nD)) · Λ.

• The edge congestion (at any time) is O(log(nR) log2 n log log n) · Λ, since D ≤ R.

• Support property: Every edge used in this solution has capacity ≥ 1
Λ , by definition of T (Λ).

Removing assumption of knowing Λ. We use the standard doubling approach [9] with one extra
step (to handle the support property above). We partition the execution of the algorithm into phases
determined by the value of Λ. Initially Λ is set to some lower bound λ0 > 0 on the optimal value of
the first workload. The value of Λ will always be of the form λi := 2i · λ0 for some integer i ≥ 0. When
Λ = λi we say that the algorithm is in phase i. For each i ≥ 0, construct Räcke tree T (λi); all of which
are disjoint.

Suppose the algorithm is in phase i and receives a new workload H. We attempt to map H into
tree T (λi) using algorithm A(λi) from above. If the new congestion on T (λi) remains at most γ · λi

then we accept this mapping for H and continue in phase i. Else (i.e. new congestion is > γ · λi), we
reject this map for H, double Λ and enter phase i + 1 with H as new workload.

Let ` denote the last phase. Let σi denote the input sequence received in any phase i ∈ [`]. Observe
that the optimal value of σ`−1 on G is at least λ`−1; otherwise the algorithm would not have progressed
to phase `. So the offline optimal value of the entire input is at least λ`/2. We now bound the algorithm’s
congestion induced over all phases. Note that the congestion induced by σi on T (λi) is at most γ · λi,
for all i ∈ [`]. By the property [16] of the Räcke tree, the congestion induced by σi on G is at most

5This is because we restricted the splittable-routing solution to high capacity edges, i.e. ce′ ≥ 1/Λ.

19

γ ·O(log2 n log log n) ·λi. Thus the total congestion on G is γ ·O(log2 n log log n) ·λ`; i.e. the competitive
ratio is O(log2 n log log n log(nR)).

Randomized rounding. Finally we obtain an online algorithm for unsplittable routing by randomly
rounding the above splittable routing (which has the support property). Note that we perform the
rounding for all edges of a workload immediately upon its arrival. If ` denotes the last phase of the
online algorithm, every edge used in the splittable routing has capacity at least 1/λ` by the sup-
port property. Also for any edge e′ ∈ G at any time, its total usage in the splittable routing is
O(log2 n log log n log(nR))λ` · ce′ . So the total load on e′ ∈ G at any point of time is the sum of
independent [0, λ` ce′] random variables with mean as above. By Chernoff bound it follows that for any
e′ ∈ G and time t,

Pr
[
congestion of e′ at time t greater than O(log2 n log log n log(nR)) · λ`

] ≤ 1
(n + R)4

Taking a union bound over all these events (at most n2 · R in number), the congestion of the online
mapping is O(log2 n log log n log(nR)) ·Opt w.h.p., where Opt is the optimal value. This completes the
proof of Theorem 1.2.

6 Concluding Remarks

We gave a general framework for solving a natural graph mapping problem arising in cloud computing.
We then applied this framework to obtain offline and online approximation algorithms for workloads
given by depth-d trees and complete graphs. In the paper, for notational simplicity we focussed on the
case that each server has a single resource. We note here that most of our algorithms easily extend to
the setting of r > 1 resources (eg. CPU, memory, disk, etc.), i.e. there is an r-dimensional capacity
constraint at each vertex. The modifications are as follows:

• The definition of SingleMap now has demand, capacity and cost for each 〈vertex, resource〉 pair.

• In the algorithm for offline GraphMap (Section 2) the configuration LP has also capacity constraints
for each 〈vertex, resource〉 pair; the approximation ratio becomes O

(
(ρ1 + ρ2) · log(nr)

log log(nr)

)
since

we use Chernoff bound for O(nr + n2) events.

• In the online algorithm (Section 3), we work with groundset U consisting of all edges and
〈vertex, resource〉 pairs; so |U | = O(nr + n2). Consequently the competitive ratio becomes
O ((ρ1 + ρ2) · log(nr)).

• For SingleMap on depth d-tree workloads (Section 4), the LP congestion constraints also han-
dle 〈vertex, resource〉 pairs. Again the guarantee becomes O

(
d2 · log(ndr)

)
due to randomized

rounding.

• For complete-graph workloads (Section 5), our algorithm for SingleMap on trees does not extend
directly to r > 1 resources. However when r = O(1), using standard scaling techniques and a
more elaborate dynamic program, we can obtain a quasi-polynomial time algorithm.

20

References

[1] W. P. Adams and T. A. Johnson. Improved linear programming-based lower bounds for the
quadratic assignment problem. In DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, volume 16, pages 43–77, 1994.

[2] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings and
graph partitioning. J. ACM, 56(2), 2009.

[3] James Aspnes, Yossi Azar, Amos Fiat, Serge A. Plotkin, and Orli Waarts. On-line routing of virtual
circuits with applications to load balancing and machine scheduling. J. ACM, 44(3):486–504, 1997.

[4] Yossi Azar, Bala Kalyanasundaram, Serge A. Plotkin, Kirk Pruhs, and Orli Waarts. Online load
balancing of temporary tasks. In WADS, pages 119–130, 1993.

[5] N. Bansal, U. Feige, R. Krauthgamer, K. Makarychev, V. Nagarajan, J. Naor, and R. Schwartz.
Min-max graph partitioning and small set expansion. In FOCS (To Appear), 2011.

[6] Nikhil Bansal, Kang-Won Lee, Viswanath Nagarajan, and Murtaza Zafer. Minimum congestion
mapping in a cloud. In PODC, pages 267–276, 2011.

[7] MohammadHossein Bateni, Moses Charikar, and Venkatesan Guruswami. Maxmin allocation via
degree lower-bounded arborescences. In STOC, pages 543–552, 2009.

[8] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan.
Detecting high log-densities: an n1/4 approximation for densest k-subgraph. In STOC, pages
201–210, 2010.

[9] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University
Press, 1998.

[10] Eranda Cela. The Quadratic Assignment Problem: Theory and Algorithms. Springer, 1998.

[11] Eden Chlamtac. Approximation algorithms using hierarchies of semidefinite programming relax-
ations. In FOCS, pages 691–701, 2007.

[12] Eden Chlamtac and Gyanit Singh. Improved approximation guarantees through higher levels of
sdp hierarchies. In APPROX-RANDOM, 2008.

[13] N. Chowdhury, M. Rahman, and R. Boutaba. Virtual network embedding with coordianted node
and link mapping. In INFOCOM, 2009.

[14] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver. Combinatorial Optimization.
John Wiley and Sons, 1998.

[15] Daniel Golovin, Anupam Gupta, Bruce M. Maggs, Florian Oprea, and Michael K. Reiter. Quorum
placement in networks: minimizing network congestion. In PODC, pages 16–25, 2006.

[16] Chris Harrelson, Kirsten Hildrum, and Satish Rao. A polynomial-time tree decomposition to
minimize congestion. In SPAA, pages 34–43, 2003.

[17] Refael Hassin, Asaf Levin, and Maxim Sviridenko. Approximating the minimum quadratic assign-
ment problems. ACM TALG, 6(1), 2009.

21

[18] Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.

[19] Konstantin Makarychev, Rajsekar Manokaran, and Maxim Sviridenko. Maximum quadratic as-
signment problem: Reduction from maximum label cover and lp-based approximation algorithm.
In ICALP (1), pages 594–604, 2010.

[20] X. Meng, V. Pappas, and L. Zhang. Impact of Data Center Network Architecture on Virtual
Machine Placement. In INFOCOM, 2010.

[21] Viswanath Nagarajan and Maxim Sviridenko. On the maximum quadratic assignment problem.
Math. Oper. Res., 34(4):859–868, 2009.

[22] Harald Räcke. Minimizing congestion in general networks. In FOCS, pages 43–52, 2002.

[23] Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

[24] Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture. In
STOC, pages 755–764, 2010.

[25] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM J. Discrete Math., 3(3):411–
430, 1990.

[26] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network embedding: substrate
support for path splitting and migration. ACM SIGCOMM CCR, 38(2):17–29, 2008.

[27] Y. Zhu and M. Ammar. Algorithms for assigning substrate network resources to virtual network
components. In INFOCOM, 2006.

22

