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In the classical k-median problem, we are given a metric space and want to open k centers so as to minimize the sum (over
all the vertices) of the distance of each vertex to its nearest open center. In this paper we present the first constant-factor
approximation algorithms for two natural generalizations of this problem, that handle matroid or knapsack constraints.

In the matroid median problem, there is an underlying matroid on the vertices and the set of open centers is constrained
to be independent in this matroid. When the matroid is uniform, we recover the k-median problem. Another previously
studied special case is the red-blue median problem where we have a partition matroid with two parts. Our algorithm for
matroid median is based on rounding a natural linear programming relaxation in two stages, and relies on a connection to
matroid intersection.

In the knapsack median problem, centers have weights and the total weight of open centers is constrained to be at
most a given capacity. When all weights are uniform, this reduces to the k-median problem. The algorithm for knapsack
median is based on a novel LP relaxation that constrains the set of centers that each vertex can get connected to. The
rounding procedure uses a two stage approach similar to that for matroid median.
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1. Introduction
The k-median problem is an extensively studied facility location problem. Given an n-vertex metric space

(V,d) and a bound k, the goal is to locate/open k centers C ⊆ V so as to minimize the sum of distances
of each vertex to its nearest open center. The distance of a vertex to its closest open center is called its
connection cost. Various constant-factor approximation algorithms are known for k-median [8, 16, 15, 7, 2],
using different techniques such as LP rounding, primal-dual methods and local search. Currently, the best
approximation ratio for k-median is

√
3 + 1 + ε (for any fixed ε > 0) due to Li and Svensson [19].

Variants and generalizations of the k-median problem occur in several applications, and hence it is of
interest to obtain good algorithms for them. In this paper, we study two natural generalizations of k-median,
namely under a matroid or knapsack constraint, and obtain the first constant-factor approximation algo-
rithms for both.

We first study the matroid median problem, where the set of open centers has to form an independent
set in a given matroid, with the objective of minimizing sum of connection costs. This formulation can
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capture several intricate constraints on the open centers, and contains as special cases: the classical k-median
(uniform matroid of rank k), and an application in Content Distribution Networks described below.

Next, we consider the generalization of the k-median problem where each vertex has a weight associated
with it and the total weight of open centers is required to be at most a bound B, i.e., the set of open centers
should form a feasible packing in a knapsack of size B – this is the knapsack median problem. Clearly, the
k-median problem is a special case where all weights are one and the knapsack capacity B = k.

As a consequence of our results, we also obtain the first constant-factor approximation algorithm for a
problem arising in Content Distribution Networks (CDN), which was introduced by Hajiaghayi et al. [12].
Here, there are T different types of vertices and separate bounds {ki}Ti=1; the goal is to open at most ki
centers of each type-i so as to minimize the sum of connection costs. The vertex-types denote different types
of servers in the Content Distribution Networks application. A constant-factor approximation algorithm for
the T = 2 special case (called the red-blue median problem) was given in [12]. The algorithm for the case
of general T follows immediately from our result on matroid median, by using a partition matroid with T
parts.

1.1. Our Results and Techniques
Our first result is a 16-approximation algorithm for the matroid median problem. As noted above, this

also implies the first constant factor approximation for the k-median problem with multiple (more than
two) vertex-types [12]. Our algorithm for MatroidMedian is based on the natural LP-relaxation and is
surprisingly simple. The main insight is in establishing a connection to matroid intersection. The algorithm
computes an optimal LP solution and rounds it in two phases, the key points of which are described below.
• The first phase sparsifies the LP solution while increasing the objective value by a constant factor. This

is somewhat similar to the LP-rounding algorithm for k-median in Charikar et al. [8]. However we cannot
consolidate fractionally open centers as in [8]; this is because the open centers must additionally satisfy the
matroid rank constraints. In spite of this, we show that the vertices and the centers can be clustered into
disjoint ‘star-like’ structures.
• This structure ensured by the first phase of rounding allows us to define (in the second phase) another

linear program, for which the sparsified LP solution is feasible, and has objective value at most O(1) times
the original LP optimum. Then we show that the second phase LP is in fact integral, via a relation to the
matroid-intersection polytope. Finally, we re-solve the second phase LP to obtain an extreme point solution,
which is guaranteed to be integral. This corresponds to a feasible solution to MatroidMedian of objective
value O(1) times the LP optimum.

Our second result concerns the knapsack median problem (also called weighted W -median in [12]),
where vertices have weights and the open centers are required to satisfy a knapsack constraint. The objective
is, as before, to minimize the total connection cost of all the vertices. We give a constant factor approxima-
tion algorithm for this problem as well. The main difficulty here lies in formulating a good LP relaxation
since natural LPs for KnapsackMedian have unbounded integrality gaps.

Consider the LP relaxation (LP1) in Section 3.1 (replacing the matroid rank constraint by a knapsack
constraint) where x(i, j) is 1 if vertex j is assigned to vertex i, and yi is 1 if we locate a center at i. The
following integrality gap example was given by Charikar and Guha [7] : there are two vertices of weight 1
andB respectively. The distance between them isD. Clearly, any integral solution can open only one center,
and so costs D. Whereas the optimal fractional solution can open the weight 1 vertex integrally and the
expensive vertex to an extent of 1− 1

B
, so the total cost will be D

B
. In fact, we show that the integrality gap

remains unbounded even if we strengthen the LP relaxation by adding “knapsack-cover” inequalities [6],
that have been useful in reducing integrality gaps in problems involving knapsack constraints [4, 3].

One idea of getting around this problem would be to augment the LP relaxation with more information.
Suppose we “guess” the maximum distance between a vertex and the center to which it gets assigned in an
optimal solution – call this value L. We obtain a new LP relaxation LP1(L) by setting x(i, j) to 0 if d(i, j)>
L. Then, minL≥0 max{LP1(L),L} is a valid lower bound on the optimal KnapsackMedian value. This idea
takes care of the above integrality gap example – if we set L to be a value less than D, LP1(L) becomes



Author: Article Short Title
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 3

infeasible (i.e. has optimal value ∞); and if L > D, we have D as a lower bound. But now, consider the
same example as above where we have D vertices co-located at each of the two locations, and D�B� 1.
Here, any integral solution will have cost at least D2. However, minL≥0 max{LP1(L),L} = D2

B
obtained

by setting L=D. So this lower bound is also not adequate.
We use a different LP relaxation that relies on a lower bound which looks at groups of vertices rather than

a single vertex. We show (in Section 4) that, based on a guess T of the optimal value, one can come up with
a bound Uj for each vertex j, and write a new LP relaxation LP4(T ) that sets x(i, j) to 0 if d(i, j) > Uj .
These bounds Ujs are non-uniform across vertices, and better than what can be obtained by just looking at a
single vertex. Thus the lower bound for KnapsackMedian that we work with is minT≥0 max{LP4(T ), T}.
Our rounding algorithm, which goes along the same lines as that for the MatroidMedian problem, shows
that the LP relaxation LP4(T ) has a constant integrality gap, except for one group of vertices. Our algorithm
then assigns this residual group of vertices to a single open center and upper bounds the connection cost
by O(T ). Altogether, the KnapsackMedian solution cost is bounded by a constant factor times the lower
bound minT≥0 max{LP4(T ), T}. We note that the actual constant in the approximation ratio turns out to
be large, and we have not made an attempt to get the best value of this constant.
Remark: In a conference version of this paper [17], we also discussed the prize-collecting (or penalty)
matroid median problem, and obtained a constant factor approximation algorithm for it by extending the
algorithm for matroid median. However, we chose not to include that result here in order to focus only on
our main techniques.

1.2. Related Work
The first approximation algorithm for the metric k-median problem was due to Lin and Vitter [20] who

gave an algorithm that for any ε > 0, produced a solution of objective at most 2(1 + 1
ε
) while opening at

most (1 + ε)k centers; this was based on the filtering technique for rounding the natural LP relaxation.
The first approximation algorithm that opened only k centers was due to Bartal [5], via randomized tree
embedding and achieved an O(logn · log logn)-approximation ratio. Charikar et al. [8] obtained the first
O(1)-approximation algorithm for k-median, by rounding the LP relaxation; they obtained an approxima-
tion ratio of 6 2

3
. The approximation ratio was improved to 6 by Jain and Vazirani [16], using the primal dual

technique. Charikar and Guha [7] further improved the primal-dual approach to obtain a 4-approximation
algorithm. Later, Arya et al. [2] analyzed a natural local search algorithm that exchanges up to p centers
in each local move, and proved a 3 + 2

p
approximation ratio (for any constant p≥ 1). Recently, Gupta and

Tangwongsan [11] gave a considerably simplified proof of the Arya et al. [2] result. It is known that the
k-median problem on general metrics is hard to approximate to a factor better than 1 + 2

e
. On Euclidean

metrics, the k-median problem has been shown to admit a PTAS by Arora et al. [1]. The most relevant paper
to ours with regard to the rounding technique is Charikar et al. [8]: our algorithm builds on ideas used in
their work.

Hajiaghayi et al. [12] introduced the red-blue median problem — where the vertices are divided into two
categories and there are different bounds on the number of open centers of each type — and obtained a
constant factor approximation algorithm. Their algorithm uses a local search using single-swaps for each
vertex type. The motivation in [12] came from locating servers in Content Distribution Networks, where
there are T server-types and strict bounds on the number of servers of each type. The red-blue median prob-
lem captured the case T = 2. It is unclear whether their approach can be extended to multiple server types,
since the local search with single swap for each server-type has neighborhood size nΩ(T ). Furthermore, even
a (T −1)-exchange local search has large locality-gap– see Appendix A. Hence it is not clear if local search
can be applied to MatroidMedian, even in the case of a partition matroid. [12] also discussed the difficulty
in applying the Lagrangian relaxation approach (see [16]) to the red-blue median problem; this is further
compounded in the MatroidMedian problem since there are exponentially many constraints on the centers.

The KnapsackMedian problem admits a “bicriteria approximation” ratio via the filtering technique [20].
The currently best known tradeoff [7] implies for any ε > 0, a

(
1 + 2

ε

)
-approximation in the connection

costs while violating the knapsack constraint by a multiplicative (1 + ε) factor. Charikar and Guha [7] also
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showed that for each ε > 0, it is not possible to obtain a trade-off better than
(
1 + 1

ε
, 1 + ε

)
relative to the

natural LP relaxation. As mentioned in [12], anO(logn)-approximation is achievable for KnapsackMedian
(without violation of the knapsack constraint) via a reduction to tree-metrics, since the problem on trees
admits a Polynomial Time Approximation Scheme.

Subsequent to the conference versions of this paper [17, 18], Charikar and Li [9] improved the constants
in the approximation factor for both matroid and knapsack median (to 9 and 34 respectively), using an
approach similar to ours, but with a more careful rounding. Very recently, Li and Svensson [19] obtained an
improved (1 +

√
3 + ε)-approximation algorithm for k-median (for any constant ε > 0).

2. Preliminaries
The input to the MatroidMedian problem consists of a finite set of vertices V and a distance function

d : V × V →R≥0 which is symmetric and satisfies the triangle inequality, i.e. d(u, v) + d(v,w)≥ d(u,w)
for all u, v,w ∈ V . Such a tuple (V,d) is called a finite metric space. We are also given a matroidM, with
ground set V and set of independent sets I(M)⊆ 2V . The goal is to open an independent set S ∈ I(M)
of centers such that the sum

∑
u∈V d(u,S) is minimized; here d(u,S) = minv∈S d(u, v) is the connection

cost of vertex u. We assume some familiarity with matroids, for more details see eg. [21].
The KnapsackMedian problem is similarly defined. We are given a finite metric space (V,d), non-

negative weights {fi}i∈V (representing facility costs) and a bound B. The goal is to open centers S ⊆ V
such that

∑
j∈S fj ≤B and the objective

∑
u∈V d(u,S) is minimized.

3. Approximation Algorithm for Matroid Median
In this section, we describe a constant factor approximation algorithm for MatroidMedian. We first give

a natural LP relaxation for this problem, and then show how to round a fractional solution.
3.1. An LP Relaxation for MatroidMedian
In the following linear program, yv is the indicator variable for whether vertex v ∈ V is opened as a

center, and xuv is the indicator variable for whether vertex u is served by center v. Then, the following LP
is a valid relaxation for the MatroidMedian problem.

minimize
∑
u∈V

∑
v∈V

d(u, v)xuv (LP1)

subject to
∑
v∈V

xuv = 1 ∀u∈ V (3.1)

xuv ≤ yv ∀u∈ V, v ∈ V (3.2)∑
v∈S

yv ≤ rM(S) ∀S ⊆ V (3.3)

xuv, yv ≥ 0 ∀u, v ∈ V (3.4)

If xuv and yv are restricted to only take values 0 or 1, then LP1 can be seen to be an exact formulation for
MatroidMedian. The first constraint models the requirement that each vertex u must be connected to some
center v, and the second one requires that it can do so only if the center v is opened, i.e. xuv = 1 only if
yv is also set to 1. The constraints (3.3) are the matroid rank-constraint on the centers: they model the fact
that the open centers form an independent set with respect to the matroidM. Here rM : 2V → Z≥0 is the
rank-function of the matroid, which is monotone and submodular. The objective value exactly measures the
sum of the connection costs of each vertex. It is clear that given integrally open centers y ∈ {0,1}V , each
vertex u ∈ V sets xuv = 1 for its closest center v with yv = 1. Let Opt denote an optimal solution of the
given MatroidMedian instance, and let LP∗1 denote the LP optimum value. From the above discussion,

LEMMA 1. The LP cost LP∗1 is at most the cost of an optimal solution Opt.

3.2. Solving the LP: The Separation Oracle
Even though the LP relaxation has an exponential number of constraints, it can be solved in polynomial

time (using the Ellipsoid method) assuming we can, in polynomial time, verify if a candidate solution (x, y)
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satisfies all the constraints. Indeed, consider any fractional solution (x, y). Constraints (3.1), and (3.2) can
easily be verified in O(n2) time, one by one.

Constraint (3.3) corresponds to checking if the fractional solution {yv : v ∈ V } lies in the matroid poly-
tope forM. Checking (3.3) is equivalent to seeing whether:

min
S⊆V

(
rM(S)−

∑
v∈S

yv

)
≥ 0.

Since the rank-function rM is submodular, so is the function f(S) := rM(S) −∑v∈S yv. So the above
condition (and hence (3.3)) can be checked using submodular function minimization, eg. [21, 13]. There
are also more efficient methods for separating over the matroid polytope – refer to [21, 10] for more details
on efficiently testing membership in matroid polyhedra. Thus we can obtain an optimal LP solution in
polynomial time.

3.3. The Rounding Algorithm for MatroidMedian
Let (x∗, y∗) denote the optimal LP solution. Our rounding algorithm consists of two stages. In the first

stage, we only alter the x∗uv variables such that the modified solution, while still being feasible to the LP,
is also very sparse in its structure. In the second stage, we write another LP which exploits the sparse
structure, for which the modified fractional solution is feasible with objective function at most a constant
factor times LP∗1 . We then proceed to show that this new LP in fact corresponds to an integral polytope.
Thus, by finding an optimal extreme point solution, we obtain an integral solution where the open centers
form an independent set ofM, and the cost is O(1)LP∗1 .

3.3.1. Stage I: Sparsifying the LP Solution
In the first stage, we follow the outline of the algorithm of Charikar et al. [8], but we cannot directly

employ their procedure because in the matroid constrained setting we are not allowed to alter/consolidate
the y∗v variables in an arbitrary fashion. Specifically, step (i) below is identical to the first step (consolidating
locations) in [8]. The subsequent steps in [8] do not apply since they consolidate centers; however using
some ideas from [8] and with some additional work, we obtain the desired sparsification in steps (ii)-(iii)
without altering the y∗-variables.

Step (i): Consolidating Clients. We begin with some notation, which will be useful throughout the paper.
For each vertex u, let LPu =

∑
v∈V d(u, v)x∗uv denote the contribution of vertex u to the optimal LP value

LP∗1 . Also, let B(u, r) = {v ∈ V |d(u, v)≤ r} denote the ball of radius r centered at vertex u. For any vertex
u, we say that B(u,2LPu) is the local ball centered at u.

Algorithm 1 Consolidating Clients for MatroidMedian

1: initialize wu← 1 for all vertices u∈ V , and W ←∅.
2: order the vertices u1, u2, . . . , un according to non-decreasing LPu values.
3: for i← 1, · · · , n do
4: if there exists vertex uj ∈W such that d(ui, uj)≤ 4 · LPui then
5: set wuj ←wuj + 1 and wui← 0.
6: else
7: set W ←W ∪{ui}.
8: end if
9: end for

10: return clients V ′←W and weights {wu : u∈ V ′}.

In step 5, we can think of moving ui to uj for the rest of the algorithm (which is why we increase the
weight of uj and set the weight of ui to be zero). Since LPui ≥ LPuj , this movement may only reduce the
fractional value

∑
uwu · LPu. After the above process, V ′ denotes the set of vertices with positive weight,
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i.e. V ′ = {v |wv > 0}. For the rest of the paper, we will refer to vertices in V ′ as clients. By the way we
defined this set, it is clear that the following two observations hold.

CLAIM 1. For u, v ∈ V ′, we have d(u, v)> 4 ·max(LPu,LPv).

This is true because, otherwise, if (without loss of generality) LPv ≥ LPu and d(u, v) ≤ 4LPv, then we
would have moved v to u when we were considering v. Claim 1 implies that the local balls B(u,2LPu)
centered at clients u∈ V ′ are disjoint.

CLAIM 2. ∑
u∈V ′

wu
∑
v∈V

d(u, v)x∗uv ≤
∑
u∈V

∑
v∈V

d(u, v)x∗uv

This is because, in the above reassignment process, the expression
∑

u∈V wu
∑

v∈V d(u, v)x∗uv initially
equals

∑
u∈V

∑
v∈V d(u, v)x∗uv and does not increase: when we move vertex ui to uj , a term corresponding

to LPui is replaced by an additional copy of LPuj , and LPui ≥ LPuj (by the vertex ordering).
The following claim is a direct consequence of Markov’s inequality.

CLAIM 3. For any client u ∈ V ′, ∑v∈B(u,2LPu) xuv ≥ 1/2. In words, each client is fractionally con-
nected to centers in its local ball to at least an extent of 1/2.

Finally, we observe that any solution to the new (weighted) instance is also a solution to the original
instance, at a small increase in cost.

CLAIM 4. For any S ⊆ V ,
∑

v∈V d(v,S)≤∑u∈V ′ wu · d(u,S) + 4 · LP∗1 .

Proof.Define map τ : V → V ′ as follows. If v ∈ V ′ (i.e. step 7 occurs when ui = v in Algorithm 1) then
τ(v) = v. And if v ∈ V \ V ′ (i.e. step 5 occurs when ui = v in Algorithm 1) then τ(v) = uj is the vertex
uj ∈ V ′ such that d(v,uj)≤ 4 ·LPv for which wuj is increased by one. By definition, we have d(v, τ(v))≤
4 · LPv. Notice also that |τ−1(u)|=wu for all u∈ V ′. Thus∑
v∈V

d(v,S)≤
∑
v∈V

(d(v, τ(v)) + d(τ(v), S))≤ 4 ·
∑
v∈V

LPv+
∑
u∈V ′
|τ−1(u)|·d(u,S) = 4 ·LP∗1 +

∑
u∈V ′

wu ·d(u,S).

The first inequality is by triangle inequality, the second inequality is by d(v, τ(v))≤ 4 · LPv and the defini-
tion of map τ , and the last equality uses |τ−1(u)|=wu.

We now assume that we have the weighted instance (with clients V ′), and are interested in finding a set
S ⊆ V of centers to minimize

∑
u∈V ′ wud(u,S). Note that centers may be chosen from the entire vertex-set

V , and are not restricted to V ′. Consider an LP-solution (xA, y∗) to this weighted instance, where xAuv = x∗uv
for all u ∈ V ′, v ∈ V . Note that (xA, y∗) satisfies constraints (3.1)-(3.2) with u ranging over V ′, and also
constraint (3.3); so it is indeed a feasible fractional solution to the weighted instance. Also, by Claim 2, the
objective value of (xA, y∗) is

∑
u∈V ′ wu

∑
v∈V d(u, v)xAuv ≤ LP∗1 , i.e. at most the original LP optimum.

After this step, even though we have made sure that the clients are well-separated, a client u∈ V ′ may be
fractionally dependent on several partially open centers, as governed by the xuv variables. More specifically,
it may be served by the following types of centers: (i) contained in its local ball B(u,2LPu), (ii) contained
in another local ball B(u′,2LPu′), and (iii) not contained in any of the local balls around clients. The
subsequent steps further simplify the structure of these connections.

Remark: To illustrate the high-level idea behind our algorithm, suppose it is the case that for all u ∈
V ′, client u is completely served by centers inside B(u,2LPu). Then, we can infer that it is sufficient to
open a center inside each of these balls, while respecting the matroid polytope constraints. Since we are
guaranteed that for u, v ∈ V ′, B(u,2LPu) ∩ B(v,2LPv) = ∅ (from Claim 1), this problem reduces to that
of finding an independent set in the intersection of matroid M and the partition matroid defined by the
balls {B(u,2LPu) |u ∈ V ′} ! Furthermore, the fractional solution (x∗, y∗) is feasible for the natural LP-
relaxation of the matroid intersection problem. Now, because the matroid intersection polytope is integral,
we can obtain an integer solution of low cost (relative to LP∗1).
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However, the vertices may not in general be fully served by centers inside their corresponding local balls,
as mentioned earlier. Nevertheless, we establish some additional structure (in the next three steps) which
enables us to reduce to a problem (in Stage II) of intersecting matroidM with certain laminar constraints
(instead of just partition constraints as in the above example).

Step (ii): Making the objective function uniform and centers private. We now simplify connections that
any vertex participates outsides its local ball. We start with the LP-solution (xA, y∗) and modify it to another
solution (xB, y∗). Initially set xB← xA.

(A). For any client u that depends on a center v which is contained in another client u′’s local ball,
we change the coefficient of xuv in the objective function from d(u, v) to d(u,u′). Because the clients are
well-separated, this changes the total cost only by a small factor. Formally,

d(u, v) ≥ d(u,u′)− 2LPu′ since v ∈B(u′,2LPu′)
≥ d(u,u′)− d(u,u′)/2 from Claim 1

≥ 1

2
· d(u,u′) (3.5)

(B). We now simplify centers that are not contained in any local ball, and ensure that each such center
has only one client dependent on it.

Consider any vertex v ∈ V which does not lie in any local ball, and has at least two clients dependent on
it. Let these clients be u0, u1, . . . , uk ordered such that d(u0, v)≤ d(u1, v)≤ . . .≤ d(uk, v). The following
claim will be useful in this re-assignment.

CLAIM 5. For all i∈ {1, . . . , k}, d(ui, u0)≤ 2d(ui, v).

Proof.From the way we have ordered the clients, we know that d(ui, v)≥ d(u0, v); so d(ui, u0)≤ d(ui, v)+
d(u0, v)≤ 2d(ui, v) for all i∈ {1, · · · , k}.

Now, for each 1 ≤ i ≤ k, we remove the connection (ui, v) (ie. xBuiv ← 0) and arbitrarily increase con-
nections (for a total extent xAuiv) to edges (ui, v

′) for v′ ∈ B(u0,2LPu0) while maintaining feasibility, i.e.
xBuiv′ ≤ y

∗
v′). But we are ensured that a feasible re-assignment exists because for every client ui, the extent

to which it is connected outside its ball is at most 1/2, and we are guaranteed that the total extent to which
centers are opened in B(u0,2LPu0) is at least 1/2 (Claim 3). Therefore, we can completely remove any con-
nection ui might have to v and re-assign it to centers in B(u0,2LPu0) and for each of these reassignments,
we use d(ui, u0) as the distance coefficient in the objective. Recall from Claim 5 that d(ui, u0)≤ 2d(ui, v).

After this step, only one client, u0, depends on center v; all other clients {ui}ki=1 which were originally
connected to v, now have that connection reassigned among centers in B(u0,2LPu0). Now we say that v is
a private center to client u0.

We perform the above modification for all centers v that do not lie in any local ball. For any client u, let
P(u) denote the set of all vertices that are either contained in B(u,2LPu), or that are private to u. Notice
that P(u)∩P(u′) = ∅ for any two clients u,u′ ∈ V ′. Also denote Pc(u) := V \P(u) for any u∈ V ′.

Notice that the edges modified in steps (A) and (B) above are disjoint. So the new objective function is:

∑
u∈V ′

wu

 ∑
v∈P(u)

d(u, v) ·xBuv +
∑

u′∈V ′\u

d(u,u′)
∑

v∈B(u′,2LPu′ )

xBuv

 (3.6)

=
∑
u∈V ′

wu

 ∑
v∈P(u)

d(u, v) ·xAuv +
∑

u′∈V ′\u

d(u,u′)
∑

v∈B(u′,2LPu′ )

xBuv

 (3.7)

≤
∑
u∈V ′

wu

 ∑
v∈P(u)

d(u, v) ·xAuv +
∑

v∈V \P(u)

2 · d(u, v) ·xAuv

 ≤ 2 · LP∗1 . (3.8)
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Equality (3.7) is because we do not modify connections between any client u and centers in P(u). The first
inequality in (3.8) is by (3.5) and Claim 5.

(C). We further change the LP-solution from (xB, y∗) to (xC , y∗) as follows. In xC we ensure that any
client which depends on centers in other clients’ local balls, will in fact depend only on centers in the local
ball of its nearest other client. For any client u, we reassign all connections (in xB) to Pc(u) to centers of
B(u′,2LPu′) (in xC) where u′ is the closest other client to u. This is possible because the total reassignment
for each client is at most half and every local-ball has at least half unit of centers (Claim 3). Clearly, the
value of (xC , y∗) under the new objective (3.6) is at most that of (xB, y∗), since for any u,u′ ∈ V ′, all
connections between client u and centers in B(u′,2LPu′) have objective coefficient d(u,u′).

Now, for each u∈ V ′, if we let η(u)∈ V ′ \ {u} denote the closest other client to u, then u depends only
on centers in P(u) and B

(
η(u),2LPη(u)

)
. Thus, the new objective value of (xC , y∗) is exactly:

∑
u∈V ′

wu

 ∑
v∈P(u)

d(u, v)xCuv + d(u,η(u)) · (1−
∑

v∈P(u)

xCuv)

 ≤ 2 · LP∗1 . (3.9)

Observe that we retained for each u ∈ V ′ only the xuv-variables with v ∈ P(u); this suffices because all
other xuw-variables (with w ∈ Pc(u)) have the same coefficient d(u,η(u)) in the objective, due to the
changes made in steps (A), (B) and (C).

Furthermore, for any client u which depends on a private center v ∈ P(u) \ B(u,2LPu), it must be that
d(u, v)≤ d(u,η(u)); otherwise, we can re-assign this (uv) connection to a center v′ ∈B(η(u),2LPη(u)) and
improve in the (altered) objective function; again we use the fact that u might depend on P(u)\B(u,2LPu)
to total extent at most half and B(η(u),2LPη(u)) has at least half unit of open centers.

To summarize, the above modifications ensure that fractional solution (xC , y∗) satisfies the following:
(i) For any two clients u,u′ ∈ V ′, we have d(u,u′) > 4max(LPu,LPu′). In words, this means that all

clients are well-separated.
(ii) For each center v that does not belong to any ball {B(u,2LPu) : u∈ V ′}, only one client depends on it.

That is, P(u)∩P(u′) = ∅ for all clients u 6= u′.
(iii) Each client u depends only on centers in its local ball, its private centers, and centers in the ball of its

nearest other client. The extent to which it depends on centers of the latter two kinds is at most 1/2.
(iv) If client u depends on a private center v, then d(u, v)≤ d(u,u′) for any other client u′ ∈ V ′.
(v) The total cost under the modified objective is at most 2 · LP∗1 .

Step (iii): Building Small Stars. Let us modify the mapping η slightly:
• Index the clients in V ′ arbitrarily, and for each u ∈ V ′ let η(u) ∈ V ′ \ {u} denote the closest other

client where ties are broken in favor of the client with smallest index.
• For each u ∈ V ′, if it only depends (under LP solution xC) on centers in P(u) (ie. centers in its local

ball or its private centers) then reset η(u)← u.
Consider a directed dependency graph with vertices V ′, having arc-set {(u,η(u))|u ∈ V ′}. It is easy to

see (by the tie-breaking property above) that this directed graph only has cycles of length at most two (see
Figure 3.1). We define all directed cycles in this dependency graph to be pseudo-roots. There are two types
of pseudo-roots, consisting of (i) a single client u where η(u) = u, or (ii) a pair {u1, u2} of clients where
η(u1) = u2 and η(u2) = u1. Observe that the local balls of every pseudo-root contain at least a unit of open
centers (according to fractional solution y∗), and each client has a directed path to some pseudo-root. So
each component in the dependency graph is a directed tree along with a pseudo-root.

The procedure we describe next is similar to the reduction to “3-level trees” in [8]. We break up the
directed trees into a collection of stars, by traversing the trees in a bottom-up fashion, going from the leaves
to the root. This step of creating stars further simplifies the connections that each client u can have outside
of P(u). For any arc (u,u′), we say that u′ is the parent of u, and u is a child of u′. Any client u∈ V ′ with
no in-arc is called a leaf.
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Repeat the following as long as there is a non-leaf client which is not part of any pseudo-root. Let u∈ V ′
be a deepest such client1 and uout denote the parent of u.
1. Suppose there exists a child u0 of u such that d(u0, u) ≤ 2d(u,uout) = 2 · d(u,η(u)), then we make

the following modification: let u1 denote the child of u that is closest to u; we replace the directed
arc (u,uout) with (u,u1), and declare the collection {u,u1} (which is now a 2-cycle), a pseudo-root.
Observe that d(u0, u)≥ d(u,uout) because u chose to direct its arc towards uout instead of u0.

2. If there is no such child u0 of u, then for every child uin of u, replace arc (uin, u) with a new arc (uin, uout).
In this process, u has its in-degree changed to zero, thereby becoming a leaf.

pseudo-root {u1, u2}

pseudo-root {u}
u1

u2

u

FIGURE 3.1. Solid arcs denote the dependency graph, circles are local balls around clients, dashed edges represent private centers.

Notice that we have maintained the invariant that there are no out-arcs from a pseudo-root to other clients,
and every node has exactly one out-arc. Define mapping σ : V ′→ V ′ as follows: for each u ∈ V ′, set σ(u)
to u’s parent in the final dependency graph. Note that the final dependency graph is a collection of “stars”
with centers as pseudo-roots, i.e. each client in V ′ has a path of length at most one to some pseudo-root.

CLAIM 6. For each w ∈ V ′, we have d(w,σ(w))≤ 2 · d(w,η(w)).

Proof.The out-arc (w,η(w)) from w can change only in the following two cases.
(I) w is considered as client u in some iteration of the above procedure and step 1 applies. Then it follows

that the out-arc ofw is never changed after this step, and by definition of step 1, d(w,σ(w))≤ 2 ·d(w,η(w)).
(II) η(w) is considered as client u in some iteration of the above procedure and step 2 applies. In this step,

the out-arc of w changes to (w,η(η(w))), and it may change further if step 2 applies to η(η(w)) later. At the
end of the above procedure, if σ(w) =w′ then we obtain that there is a directed path 〈w=w0,w1, · · · ,wt =
w′〉 in the initial dependency graph, i.e. η(wi−1) =wi for all i∈ {1,2, · · · , t}.

Let d(w,η(w)) = d(w0,w1) = a. We now show by induction on i∈ {1, · · · , t} that d(wi,wi−1)≤ a/2i−1.
The base case of i = 1 is obvious. For any i < t, assuming d(wi,wi−1) ≤ a/2i−1, we will show that
d(wi+1,wi)≤ a/2i. Consider the point when w’s out-arc is changed from (w,wi) to (w,wi+1); this must be
so, since w’s out-arc changes from (w,w1) to (w,wt) through the procedure. At this point, step 2 must have
occurred at node wi, and wi−1 must have been a child of wi; hence d(wi+1,wi)≤ 1

2
· d(wi,wi−1)≤ a/2i.

1 That is, u is not part of any pseudo-root and all children of u are leaves.
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Thus we have d(w,σ(w))≤∑t

i=1 d(wi,wi−1)≤ a∑t

i=1
1

2i−1 < 2a= 2 · d(w,η(w)).
At this point, we have a fractional solution (xC , y∗) that satisfies constraints (3.1)-(3.4) and:

∑
u∈V ′

wu

 ∑
v∈P(u)

d(u, v)xCuv + d(u,σ(u)) · (1−
∑

v∈P(u)

xCuv)

 ≤ 4 · LP∗1 (3.10)

The inequality follows from (3.9) and Claim 6.
3.3.2. Stage II: Reformulating the LP
Based on the star-like structure derived in the previous subsection, we propose another linear program for

which the fractional solution (xC , y∗) is shown to be feasible with objective value as in (3.10). Crucially, we
will show that this new LP is integral. Hence we can obtain an integral solution to it of cost at most 4 ·LP∗1 .
Finally, we show that any integral solution to our reformulated LP also corresponds to an integral solution
to the original MatroidMedian instance, at the loss of another constant factor. Consider the LP:

minimize
∑
u∈V ′

wu

 ∑
v∈P(u)

d(u, v)zv + d(u,σ(u))

1−
∑

v∈P(u)

zv

 (LP2)

subject to
∑

v∈P(u)

zv ≤ 1 ∀u∈ V ′ (3.11)∑
v∈P(u1)∪P(u2)

zv ≥ 1 ∀pseudo-roots {u1, u2} (3.12)∑
v∈S

zv ≤ rM(S) ∀S ⊆ V (3.13)

zv ≥ 0 ∀v ∈ V (3.14)

In constraint (3.12), we allow u1 = u2, which corresponds to a pseudo-root with a single client. The
reason we have added the constraint (3.12) is the following. In the objective function, each client incurs
only a cost of d(u,σ(u)) to the extent to which a private facility from P(u) is not assigned to it. This means
that in our integral solution, we definitely want a facility to be chosen from the local balls of the pseudo-root
to which u is connected if we do not open a private facility from P(u); this fact becomes clearer later. Also,
this constraint does not increase the optimal value of the LP, as shown below.

CLAIM 7. The linear program LP2 has optimal value at most 4 · LP∗1 .

Proof.Consider the solution z defined as: zv = min{y∗v , xCuv}= xCuv for all v ∈ P(u) and u ∈ V ′; all other
vertices have z-value zero. It is easy to see that constraints (3.11) and (3.13) are satisfied.

Constraint (3.12) is also trivially true for pseudo-roots {u} consisting of only one client, since client u
is fully served (in solution (xC , y∗)) by centers in P(u). Now, let {u1, u2} be any pseudo-root consisting
of two clients. Recall that each u ∈ {u1, u2} is connected to centers in ball B(u,2LPu) ⊆ P(u) to extent
at least half; and as P(u1) ∩ P(u2) = ∅ the total z-value inside P(u1) ∪ P(u2) is at least one. Thus z is
feasible for LP2, and by (3.10) its objective value is at most 4 · LP∗1 .

We show next that LP2 is in fact, an integral polytope.

LEMMA 2. Any basic feasible solution to LP2 is integral.

Proof.Consider any basic feasible solution z. Firstly, notice that the characteristic vectors defined by con-
straints (3.11) and (3.12) define a laminar family, since all the sets P(u) are disjoint.

Therefore, the subset of these constraints that are tightly satisfied by z define a laminar family. Also,
by standard uncrossing arguments (see eg. [21]), we can choose the linearly-independent set of tight rank-
constraints (3.13) to form a laminar family (in fact even a chain).

But then the vector z is defined by a constraint matrix which consists of two laminar families on the
ground set of vertices. Such matrices are well-known to be totally unimodular [21]; eg. this fact is used in
proving the integrality of the matroid-intersection polytope. This finishes the integrality proof.
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It is clear that any integral solution feasible for LP2 is also feasible for MatroidMedian, due to (3.13). We
now relate the objective in LP2 to the original MatroidMedian objective:

LEMMA 3. For any integral solution C ⊆ V to LP2, the MatroidMedian objective value under solution
C is at most 3 times its LP2 objective value.

Proof.We show that the connection cost of each client u ∈ V ′ in MatroidMedian is at most 3 times that
in LP2. Suppose that C ∩ P(u) 6= ∅. Then u’s connection cost is identical to its contribution to the LP2

solution’s objective. Therefore, we assume C ∩P(u) = ∅.
Suppose that u is not part of a pseudo-root; let {u1, u2} denote the pseudo-root that u is connected to. By

constraint (3.12), there is some v ∈ C⋂ (P(u1)∪P(u2)). The contribution of u is d(u,σ(u)) in LP2 and
d(u, v) in the actual objective function for MatroidMedian. We will now show that d(u, v)≤ 3 ·d(u,σ(u)).

Without loss of generality let σ(u) = u1 and suppose that v ∈P(u2); the other case of v ∈P(u1) is easier.
From the property of private centers, we know d(u2, v)≤ d(u2, η(u2))≤ d(u2, u1). Now if (u1, u2) is cre-
ated as a new pseudo-root in step (iii).1, then we have the property that d(u1, u2)≤ d(u1, u), since we choose
the closest leaf to pair up with its parent to form the pseudo-root. Else (u1, u2) is an original pseudo-root,
even before the modifications of step (iii). In that case, by definition d(u1, u2) = d(u1, η(u1)) ≤ d(u1, u).
So, d(u, v)≤ d(u,u1) + d(u1, u2) + d(u2, v)≤ d(u,u1) + 2 · d(u1, u2)≤ 3 · d(u,u1) = 3 · d(u,σ(u)).

If u is itself a pseudo-root then it must be that C ∩P(u) 6= ∅ by (3.12), contrary to the above assumption.
If u is part of a pseudo-root {u,u′}. Then it must be that there is some v ∈C ∩P(u′), by (3.12). The con-
tribution of u in LP2 is d(u,σ(u)), and in MatroidMedian it is d(u, v)≤ d(u,u′) + d(u′, v)≤ 2 · d(u,u′) =
d(u,σ(u)) (the second inequality uses the property of private centers).

To make this result algorithmic, we need to obtain in polynomial-time an extreme point solution to LP2.
Using the Ellipsoid method (as mentioned in Section 3.2) we can indeed obtain some fractional optimal solu-
tion to LP2, which may not be an extreme point. However, such a solution can be converted to an extreme
point of LP2, using the method in Jain [14]. Due to the presence of both “≤” and “≥” type constraints
in (3.11)-(3.12) it is not clear whether LP2 can be cast directly as an instance of matroid intersection.

Altogether, we obtain an integral solution to the weighted instance from step (i) of cost ≤ 12 · LP∗1 .
Combined with Claim 4 from step (i), we obtain:

THEOREM 1. There is a 16-approximation algorithm for the matroid median problem.

We have not tried to optimize the constant via this approach. However, getting the approximation ratio to
match that for usual k-median would require additional ideas.

4. Approximation Algorithm for Knapsack Median
In this section we consider the KnapsackMedian problem. We are given a finite metric space (V,d), non-

negative weights {fi}i∈V and a bound B. The goal is to open centers S ⊆ V such that
∑

j∈S fj ≤B and the
objective

∑
u∈V d(u,S) is minimized.

The natural LP relaxation (LP3) of this problem is similar to (LP1) in Section 3.1, where we replace the
constraint (3.3) with the knapsack constraint

∑
v∈V fvyv ≤ B. In addition, we can “guess” the maximum

weight facility fmax used in an optimum solution, and if fv > fmax we set yv = 0 (and hence xuv = 0 as
well, for all u ∈ V ). This is clearly possible since there are only n different choices for fmax, and we can
enumerate over them. Unfortunately, this LP3 has an unbounded integrality gap. In Subsection 4.1, we show
that a similar integrality gap persists even if we add knapsack-cover (KC) inequalities [6] to strengthen LP3.

However, we show that there is a different LP relaxation which leads to a constant-factor approxima-
tion algorithm. This LP relaxation is based on a more careful pruning of which centers a vertex can get
assigned to. Let opt denote the optimal value of the KnapsackMedian instance; we can enumerate over
(polynomially many) values for T so that one of them satisfies opt≤ T ≤ (1 + ε)opt, for any fixed con-
stant ε > 0. For each value of T , we will define an LP relaxation LP4(T ) and show that it can be rounded
to produce a KnapsackMedian solution of cost at most O(1) · LP∗4(T ) +O(1) · T , where LP∗4(T ) denotes
the optimal value of LP4(T ). Moreover, for T ≈ opt we show that LP∗4(T ) ≤ opt; so selecting the best
KnapsackMedian solution over all choices of T would give us an O(1)-approximation algorithm.
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The Linear Program LP4(T ). Given value T , this LP attempts to find a solution to KnapsackMedian of
cost at most T . We may assume that in any KnapsackMedian solution, each vertex is assigned to its closest
open center. So, if a vertex j is assigned to a center i, then any other vertex j′ must be assigned to a center i′

such that d(i′, j′)≥ d(i, j)− d(j, j′). Indeed, otherwise we might as well assign j to i′ and reduce the total
connection cost. So, the cost of the solution must be at least

∑
j′∈V max(0, d(i, j)− d(j, j′)). If this value

turns out to be greater than T , we know that j cannot be assigned to i in any KnapsackMedian solution of
cost at most T . Thus, for each vertex j ∈ V , we define a bound Uj as the maximum value for which∑

j′∈V

max(0,Uj − d(j, j′)) ≤ T. (4.15)

For a vertex j, we define the set of admissible centers, A(j), as the set of those vertices i ∈ V such that
d(i, j)≤Uj . We now define the linear program:

minimize
∑
u∈V

∑
v∈V

d(u, v)xuv (LP4(T ))

subject to
∑
v∈V

xuv = 1 ∀u∈ V (4.16)

xuv ≤ yv ∀u∈ V, v ∈ V (4.17)∑
v∈V

fv · yv ≤B (4.18)

xuv, yv ≥ 0 ∀u, v ∈ V (4.19)
xuv = 0 ∀u∈ V, v 6∈ A(u) (4.20)

From the above discussion, it follows that every KnapsackMedian solution of cost at most T remains
feasible for LP4(T ). Hence for all T ≥ opt, we have LP∗4(T )≤ opt.

We emphasize that even for LP4(T ), the integrality gap could be unbounded. However, the cost of our
algorithm can be bounded by a constant factor times the optimal LP value LP∗4(T ), except for one group
of vertices. For this group of vertices, we show that their connection cost is at most a constant times∑

j′∈V max(0,Uj − d(j, j′)) for some special vertex j, and hence, is at most O(T ).
The Rounding Algorithm for KnapsackMedian. Let (x∗, y∗) be an optimal solution of LP4(T ). The round-
ing algorithm follows similar steps as in the MatroidMedian problem. The first stage is identical to Stage I
of Section 3.3: modifying xuv variables until we have a collection of disjoint stars centered at pseudo-roots.
The total connection cost of the modified LP solution is O(1) ·LP∗4(T ). The sparsified solution satisfies the
knapsack constraint since yu variables are not modified in this stage. In the next stage II, we start with a
new linear program LP5(T ) on variables {zv : v ∈ V } which is just LP2 where constraint (3.13) is replaced
by the knapsack constraint.

minimize
∑
u∈V ′

wu

 ∑
v∈P(u)

d(u, v)zv + d(u,σ(u))

1−
∑

v∈P(u)

zv

 (LP5(T ))

subject to
∑

v∈P(u)

zv ≤ 1 ∀u∈ V ′ (4.21)∑
v∈P(u1)∪P(u2)

zv ≥ 1 ∀pseudo-roots {u1, u2} (4.22)∑
v∈V

fv · zv ≤B (4.23)

zv ≥ 0 ∀v ∈ V (4.24)

However LP5(T ) is not integral as opposed to LP2: it contains the knapsack problem as a special case.
Instead, we give an iterative relaxation procedure (Algorithm 2) for rounding LP5(T ) to obtain the set of
open centers C ⊆ V .
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Algorithm 2 Rounding Algorithm for KnapsackMedian LP5(T )

1: initialize C ← ∅.
2: while V 6= ∅ do
3: find an extreme point optimum solution ẑ to LP5(T ).
4: if there is a variable ẑv = 0, then remove variable ẑv, set V ← V \ {v}.
5: if there is a variable ẑv = 1, then C ← C ∪{v}, V ← V \ {v} and B←B− fv.
6: if none of steps 4 and 5 holds, and |V | ≤ 2 then
7: if |V |= 1, break.
8: if |V |= 2, open the center in V which has lesser weight; break.
9: end if

10: end while
11: return C.

Before we argue about the correctness and approximation ratio of Algorithm 2, we note some useful
properties of the solution produced by the Stage I rounding of Section 3.3. Recall that for a vertex u,
A(u) denotes the set of admissible centers for u. Hence, if x∗uv > 0 then v ∈ A(u). Recall that LPu =∑

v d(u, v) ·x∗uv; so LP∗4(T ) =
∑

u∈V LPu. Also, V ′ is the set of vertices with positive weight after Step (i)
of the Stage I rounding, and vertices in V ′ are referred to as clients.

LEMMA 4. For any client u ∈ V ′, d(u,σ(u)) ≤ 4 ·maxc∈A(u) d(u, c). Here σ : V ′ → V ′ is the map
constructed in step (iii) of Stage I.

Proof.The lemma is trivial if σ(u) = u. So, assume σ(u) 6= u. Consider step (ii) of the Stage I rounding
– if we fractionally assign client u to centers in P(u′′) for some u′′ ∈ V ′ (in the fractional solution xB),
then equation (3.5) and Claim 5 imply that d(u,u′′)≤ 2 · d(u, c) for some c ∈ A(u). Hence, d(u,η(u))≤
2d(u, c). Moreover, Claim 6 implies that d(u,σ(u))≤ 4 · d(u, c).

For a client u∈ V ′, let Vu ⊆ V be the set of vertices which got consolidated with u during Step (i) of the
Stage I rounding; hence |Vu|=wu. Note that for any vertex s∈ Vu, d(s,u)≤ 4 · LPs.

LEMMA 5. For any client u∈ V ′:

wu · d(u,σ(u)) ≤ 64
∑
s∈Vu

LPs + 8 ·T.

Proof.Lemma 4 implies that there is an admissible center c ∈A(u) such that d(u,σ(u))≤ 4 · d(u, c). So it
suffices to upper bound wu · d(u, c) =

∑
s∈Vu d(u, c) by 16

∑
s∈Vu LPs + 2 ·T .

We divide the vertices in Vu into two sets: (i) V ′u containing those vertices s for which d(s, c)≤ 3d(s,u),
and (ii) V ′′u containing those vertices s where d(s, c)> 3d(s,u).

We deal with V ′u first. If s∈ V ′u, then d(u, c)≤ d(u, s) + d(s, c)≤ 4d(s,u)≤ 16 · LPs. Thus,∑
s∈V ′u

d(u, c) ≤ 16
∑
s∈V ′u

LPs.

Now, for any s∈ V ′′u , we have d(u, c)≥ d(s, c)−d(s,u)≥ 2d(s,u). So d(u, c)≤ 2(d(u, c)−d(s,u)). Thus,∑
s∈V ′′u

d(u, c) ≤ 2
∑
s∈V ′′u

(d(u, c)− d(s,u)) ≤ 2
∑
u′∈V

max{d(u, c)− d(u′, u),0} ≤ 2 ·T.

The last inequality uses the fact that c∈A(u) and (4.15). Thus
∑

s∈Vu d(u, c)≤ 16
∑

s∈Vu LPs + 2 ·T .
The following lemma guarantees that the cost incurred by Algorithm 2 can be bounded in terms of the

optimal values of the two LP relaxations LP4(T ) and LP5(T ).
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LEMMA 6. Algorithm 2 finds a feasible integral solution to KnapsackMedian having cost at most 192 ·
LP∗4(T ) + 24 ·T + 3 · LP∗5(T ).

Proof.We first show that if the algorithm reaches step 11 then the solution C satisfies the knapsack constraint.
In step 5, we always reduce the remaining budget by fv whenever we add a center v to C. The only other
step that adds centers is step 8; we will show below that

In step 8, ẑv1 + ẑv2 = 1, where V = {v1, v2}. (4.25)

This would imply that we do not violate the knapsack constraint, as the smaller weight center is opened.
Now we show that the algorithm indeed reaches step 11. Steps 4 and 5 make progress in the sense that

they reduce the number of variables: so there are at most |V | iterations involving these two steps. Next,
we show that for any extreme point solution ẑ for which neither step 4 nor step 5 applies (i.e. there is
no zv ∈ {0,1}), step 6 applies and hence the algorithm reaches step 11. Let the linearly independent tight
constraints defining ẑ be indexed by S ⊆ V ′ from (4.21), and R (pseudo-roots) from (4.22). From the
laminar structure of the constraints and all right-hand-sides being 1, it follows that the sets corresponding
to constraints in S

⋃
R are all disjoint.2 Furthermore, each set in S

⋃
R contains at least two fractional

variables. Hence, the number of positive variables in ẑ is at least 2|S|+ 2|R|. Now, count the number of
tight linearly independent constraints: there are at most |S|+ |R| tight constraints from (4.21)-(4.22), and
one knapsack constraint (4.23). For an extreme point solution, the number of positive variables must equal
the number of tight linearly independent constraints; so we obtain |S|+ |R| ≤ 1 and that each set in S ∪R
contains exactly two vertices/variables. This is possible only when |V | ≤ 2; so step 6 applies. Thus the
algorithm always reaches step 11, and it terminates.

Now we upper bound the connection cost of solution C and prove (4.25). There are three cases to consider:
(i) S = R = ∅ and V = {v} with v ∈ P(u) for some u ∈ V ′. In this case, step 8 does not occur. The

LP5(T ) objective increases by at most wu · d(u,σ(u)) ≤ 64 · LP∗4(T ) + 8 · T ; the last inequality is by
Lemma 5.

(ii) S = {u}, R= ∅ and V = {v1, v2} ⊆ P(u). Since the constraint corresponding to u ∈ S is tight, we
have ẑv1 + ẑv2 = 1. So (4.25) is satisfied. Say v1 is the center opened in step 11. The increase in LP5(T )
objective is at most wu · d(u, v1) ≤ wu · d(u,σ(u)) ≤ 64 · LP∗4(T ) + 8 · T ; the first inequality is because
v1 ∈P(u) and the second is by Lemma 5.

(iii) S = ∅, R= {〈u1, u2〉} and V = {v1, v2} ⊆ P(u1)∪P(u2). Again, by the tight constraint in R, we
have ẑv1 + ẑv2 = 1, and (4.25) is satisfied. The increase in LP5(T ) objective (due to clients u1 and u2) is at
most max{wu1 · d(u1, σ(u1)), wu2 · d(u2, σ(u2))} ≤ 64 · LP∗4(T ) + 8 ·T by Lemma 5.
The increase in the LP5(T ) objective due to all other iterations is zero since they do not change any variables.
Thus the final objective value of integral solution C is at most LP∗5(T )+64 ·LP∗4(T )+8 ·T . Using Lemma 3
it follows that the connection cost in KnapsackMedian under this solution C is at most thrice its LP5(T )
objective. The lemma now follows.

Finally, by Claim 7, the Stage I rounding ensures that LP∗5(T )≤ 4 · LP∗4(T ). Combined with Lemma 6,
Algorithm 2’s solution to KnapsackMedian has cost at most 204 · LP∗4(T ) + 24 · T . Setting T = opt, this
implies a 228-approximation algorithm. Thus, we obtain:

THEOREM 2. There is a constant factor approximation algorithm for the knapsack median problem.

4.1. LP Integrality Gap for KnapsackMedian with Knapsack Cover Inequalities
In this section, we show that there is a large integrality gap for LP3 even when strengthened with “Knap-

sack Cover” inequalities [6]. These inequalities have been useful in reducing integrality gaps in many
settings involving knapsack constraints, eg. [4, 3].

First, we recall an integrality gap example for the basic LP3.

2 Recall that sets corresponding to constraints in S are of the form P(u) for some u ∈ V ′, and sets of constraints in R are of the
form P(u1)∪P(u2) for some pseudo-root {u1, u2}.
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EXAMPLE 1 ([7]). Consider |V | = 2 with facility costs f1 = N , f2 = 1, distance d(1,2) = D and
bound B =N , for any large positive reals N and D. An integral solution that does not violate the knapsack
constraint can open either center 1 or 2, but not both and hence has a connection cost of D. However, LP3

can assign y1 = 1− 1
N

and y2 = 1 and thus has only D/N connection cost.
This bad example can be overcome by adding knapsack covering (KC) inequalities [6]. We now illustrate

the use of KC inequalities in the KnapsackMedian problem. KC-inequalities are used for covering knapsack
problems. Although KnapsackMedian has a packing constraint (at most B weight of open centers), it can
be rephrased as a covering knapsack by requiring “at least

∑
v∈V fv−B weight of closed centers”. Viewed

this way, we can strengthen the basic LP3 as follows.
Define for any subset of centers S ⊆ V , f(S) :=

∑
v∈S f(v). Then, to satisfy the knapsack constraint we

need to close centers of weight at least B′ := f(V )−B. For any subset S ⊆ V of centers with f(S)<B′

we write the KC inequality:∑
v/∈S

min{f(v),B′− f(S)} · (1− yv) ≥ B′− f(S).

This inequality is valid for all integral solutions y ∈ {0,1}V since, among centers in V \ S at least
B′ − f(S) weight must be closed. There are exponential number of such KC-inequalities; however using
methods in [6] an FPTAS for the strengthened LP can be obtained. The addition of KC inequalities avoids
the integrality gap in Example 1; there B′ = 1 and setting S = ∅ yields:

min{1,1} · (1− y1) + min{1,N} · (1− y2)≥ 1,

ie. y1 + y2 ≤ 1. Thus the LP optimum also has value D.
However the following example shows that the integrality gap remains high even with KC inequalities.
EXAMPLE 2. V = {ai}Ri=1

⋃{bi}Ri=1

⋃{p, q,u, v} with metric distances d as follows: vertices {ai}Ri=1

(resp. {bi}Ri=1) are at zero distance from each other, d(a1, b1) = d(p, q) = d(u, v) = D and d(a1, p) =
d(p,u) = d(u,a1) =∞. The facility costs are f(ai) = 1 and f(bi) =N for all i ∈ [R], and f(p) = f(q) =
f(u) = f(v) =N . The knapsack bound is B = 3N . Moreover, N >R� 1.

Without loss of generality, an optimum integral solution opens exactly one center from each of
{ai}Ri=1

⋃{bi}Ri=1, {p, q} and {u, v} and hence has connection cost of (R+ 2)D.
On the other hand, we show that the KnapsackMedian LP3 with KC inequalities has a feasible solution

z∈ [0,1]V with much smaller cost. Define z(ai) = 1/R and z(bi) = N−1
RN

for all i∈ [R], and z(p) = z(q) =
z(u) = z(v) = 1

2
. Observe that the connection cost is

(
R
N

+ 2
)
D < 3D. Below we show that z is feasible;

hence the integrality gap is Ω(R). The solution z clearly satisfies the constraint
∑

w∈V fw · zw ≤B.
We now show that z satisfies all KC-inequalities. Note that B′ = f(V ) − B = (R + 1)N + R for

this instance. Recall that KC-inequalities are written only for subsets S with B′ − f(S) > 0. Also, KC-
inequalities corresponding to subsets S with B′ − f(S)≥N = maxw∈V fw reduce to

∑
w 6∈S fw · yw ≤B,

which is clearly satisfied by z. Thus the only remaining KC-inequalities are from subsets S with 0 <
B′−f(S)<N , i.e. f(S)∈ [B′−N +1,B′−1] = [RN +R+1, (R+1)N +R−1]. Since R<N , subset
S must have at most R+1 cost N facilities. Thus there are at least three cost-N facilities H in V \S. Since
zw ≤ 1

2
for all w ∈ V , we have

∑
w∈H(1− zw)≥ 3

2
. The KC-inequality from S is hence:∑

w 6∈S

min{f(w),B′− f(S)}(1− zw) ≥
∑
w∈H

min{f(w),B′− f(S)}(1− zw)

= (B′− f(S)) ·
∑
w∈H

(1− zw) > B′− f(S).

The equality uses B′ − f(S) < N and that each facility-cost in H is N , and the last inequality is by∑
w∈H(1− zw)≥ 3

2
which was shown above.



Author: Article Short Title
16 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

5. Conclusion
In this paper, we studied two natural extensions of the k-median problem, when there is a matroid or

knapsack constraint on the open centers. We obtained LP-based constant-factor approximation algorithms
for both versions. It remains an interesting open question to obtain approximation ratios that match the best
bound known for k-median.
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Appendix A: Bad Example for Local Search with Multiple Swaps Here we give an example show-
ing that any local search algorithm for MatroidMedian under a partition matroid of T parts that uses at most
T − 1 swaps cannot give an approximation factor better than Ω( n

T
); here n is the number of vertices.

The metric is uniform on T + 1 locations. There are two servers of each type: each location {2,3, . . . , T}
contains two servers; locations 1 and T + 1 contain a single server each. For each i ∈ {1, · · · , T}, the two
copies of server i are located at locations i (first copy) and i+ 1 (second copy). There are m� 1 clients at
each location i∈ {1, · · · , T} and just one client at location T + 1; hence n= 2T +mT + 1. The bounds on
server-types are ki = 1 for all i. The optimum solution is to pick the first copy of each server type and thus
pay a connection cost of 1 (the client at location T + 1). However, it can be seen that the solution consisting
of the second copy of each server type is locally optimal, and its connection cost is m (clients at location
1). Thus the locality gap is m= Ω(n/T ).
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