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Abstract. In the Binary Paintshop problem, there are m cars appear-
ing in a sequence of length 2m, with each car occurring twice. Each car
needs to be colored with two colors. The goal is to choose for each car,
which of its occurrences receives either color, so as to minimize the to-
tal number of color changes in the sequence. We show that the Binary
Paintshop problem is equivalent (up to constant factors) to the Mini-
mum Uncut problem, under randomized reductions. By derandomizing
this reduction for hard instances of the Min Uncut problem arising from
the Unique Games Conjecture, we show that the Binary Paintshop prob-
lem is ω(1)-hard to approximate (assuming the UGC). This answers an
open question from [4,9,3].

1 Introduction

The paintshop problem is defined as follows: we are given a 2m length sequence
containing m cars, where each car appears twice. Each car need to be colored red
in one occurrence, and blue in the other. We need to choose which occurrence
for each car to color with which color — the goal is to minimize the number of
times we need to change the current color. E.g., for m = 3, we may represent the
3 cars by x, y, z. If the sequence is x1x2y1z1y2z2, where the subscripts denote
the first and second occurrence of each car, we could use the colors BRRRBB, to
get two color changes, which is the minimum possible. This problem (along with
generalizations) was introduced by Epping, Hottstättler and Oertel [6]; their
motivation was a natural application in the automotive industry.

Let us formalize the definition: in the basic Binary Paintshop problem, the
input is a sequence of length n (which is usually associated with the set [n] :=
{1, 2, . . . , n}), along with a matching H on the points in [n]. A feasible coloring
f : [n]→ {B,R} of the vertices must ensure that the endpoints of each matching
edge (i, j) ∈ H are bi-colored—i.e., feasibility means f(i) 6= f(j) for all (i, j) ∈
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H. The cost of a coloring, also called the number of color changes is the number
of pairs (i, i+ 1) for i ∈ [n− 1] that are bichromatic; i.e.,

cost(f) :=

n−1∑
i=1

1(f(i) 6= f(i+ 1)) .

For an instance of the Binary Paintshop problem Γ , we denote by Opt(Γ ) the
cost of the minimum cost coloring. The goal is to find a feasible coloring f that
(approximately) minimizes the cost. We refer to the edges of H as the constraints
in the instance.

Epping et al. [6], along with defining the problem, gave an exponential-time
dynamic programming algorithm to solve the problem exactly, and showed NP-
hardness for it as well. Subsequently, Bonsma et al. [4] and Meunier and Sebö [9]
showed the problem to be APX-hard. They posed the question of whether the
problem admitted a constant-factor approximation algorithm. We resolve this
question negatively assuming the Unique Games Conjecture (UGC) of Khot [7]:

Theorem 1. Assuming the UGC, the (basic) Binary Paintshop problem is NP-
hard to approximate within any constant factor.

The above theorem follows via reduction from Min Uncut and is proved in Section
4. The Min Uncut problem is the complement of Maximum Cut, and is defined
formally in Section 1.2. We present an approximation preserving (up to constant
factors) reduction from Min Uncut to Binary Paintshop in Section 3.1. Assuming
the Unique Games Conjecture, Khot et al. [8] showed that Min Uncut is NP-
hard to approximate within any constant factor. Using their result and a specific
instantiation of the reduction in Section 3.1 yields the proof of Theorem 1. A
connection between the Binary Paintshop and Min Uncut problems was also
noted by Meunier and Sebö [9], but they could only show an APX-hardness
using this connection.

We also consider a generalization of this problem: in the generalized Binary
Paintshop problem instead of being given a sequence of n points (which is nat-
urally associated with a path graph on n nodes), we are given a general graph
G = (V,E). Moreover, instead of the constraints H forming a matching on
V , we have a bipartite graph H = (V,EH) on V . The feasibility of a coloring
f : V → {B,R} still requires that all constraint edges in H are bi-colored—i.e.,
f(i) 6= f(j) for all (i, j) ∈ EH . Note that the bipartiteness of H is essential to en-
sure feasibility, if H is not bipartite there is no feasible coloring. The interesting
cases of this problem are when the constraint graph H has many components—
e.g., when H is a matching and hence potentially has n/2 components.3 The
cost of f is defined naturally as

cost(f) :=
∑

(i,j)∈E(G)

1(f(i) 6= f(j)) .

3 This is because the problem can be solved in time exponential in the number of
connected components of H (and polynomial in n = |V (G)|) by enumerating over
the 2-colorings of each component of H.



Our second result, proved in Section 3.2, is that the generalized Binary
Paintshop problem is no harder than the Min Uncut problem:

Theorem 2. A ρ-approximation algorithm for Min Uncut can be used to give a
ρ-approximation for the (generalized) Binary Paintshop problem.

Using the algorithm of Agarwal et al. [1], we now get anO(
√

log n)-approximation
for Binary Paintshop. Note that the hardness result is shown for the most re-
strictive (basic) Binary Paintshop problem, whereas the algorithm is for the
generalized Binary Paintshop problem.

1.1 Related Work

Other than considering the complexity of the problem as mentioned above, pre-
vious work analyzed the performance of greedy algorithms for the paintshop
problem, since this type of algorithms are actually used in real life instances of
the problem. Meunier and Sebö [9] showed a class of instances for which the
greedy algorithm is optimal. Amini et al. [2] showed that the greedy algorithm
is optimal for even a larger class of instances and also proved that the expected
number of color changes given by the greedy coloring on a random sequence is
at most 2n/3. Andres and Hottstättler [3] improved this upper bound to n/2.
They also considered a hybrid greedy algorithm whose expected number of color
changes is 2n/5.

1.2 Notation and Definitions

In the Min Uncut problem, the input is an undirected, unweighted graph G =
(V,E) on n := |V | vertices, with every vertex having degree at most poly(n)
(thus we allow parallel edges). The goal is to find a cut (U,U) for U ⊆ V to
minimize the number of uncut edges—i.e., the edges in E[U ]∪E[U ], where E[S]
is the set of edges both of whose edges lie within the set S. With some abuse
of notation, for an instance of the Min Uncut problem G, we denote by Opt(G)
the optimal value. The current best algorithm for Min Uncut is an O(

√
log n)-

approximation due to Agarwal et al. [1].

2 Dispersive Permutations

For our hardness proofs, we will need that random permutations satisfy a certain
property, which we call dispersion. In this section, we record this proof.

Definition 1. Given a coloring f : [m] → {B,R}, the complement coloring f
is obtained by switching the assignments of f from B to R and vice versa. The
coloring f is called M -non-monochromatic for M = min

{
|f−1(B)|, |f−1(R)|

}
.

Definition 2. Given a coloring f : [m]→ {B,R} that isM -non-monochromatic,
a permutation σ : [m]→ [m] is called dispersive for f if either f or (f ◦σ) has at
least M/16 color changes. If a permutation is dispersive for all colorings, then
it is simply called dispersive.



Lemma 1. For any m ≥ 108, a uniformly random permutation σ : [m] → [m]
is dispersive with probability at least 1− 1

512m .

Proof. Fix any M ∈ [m/2] and let f be an M -non-monochromatic coloring.
Observe that when M < 16, the coloring f trivially has at least M/16 color
changes; so we assume M ≥ 16 below.

We first count the number of colorings with at most M/16 color changes.
For any number r ≤ M/16, to estimate the number of colorings with exactly r
color changes, we note that any such coloring f gives rise to a subset of r indices
{i1, i2, . . . , ir} ⊆ [m − 1] where the coloring changes color, i.e. for each such ik,
we have f(ik) 6= f(ik + 1). The number of such subsets is

(
m−1
r

)
, and each such

subset can give rise to two colorings with r-color changes. Hence, the number of
colorings with at most M/16 color changes is bounded by

N :=

M/16∑
r=0

2

(
m− 1

r

)
≤ M

8

(
m− 1

M/16

)
.

Since for a uniformly random permutation σ, (f ◦ σ) is a uniformly random
M -non-monochromatic coloring with the opposite minority color of f , of which
there are

(
m
M

)
, the probability that (f ◦ σ) has at most M/16 color changes is

bounded by

p :=

M/16∑
r=0

[
2
(
m−1
r

)(
m
M

) ]
≤

M
(
m−1
M/16

)
8
(
m
M

) . (1)

Thus, for any fixed M -non-monochromatic coloring f , at most p fraction of
permutations σ yield a “bad” coloring (f ◦ σ), i.e. (f ◦ σ) has at most M/16
color changes. However, we are only concerned with colorings f which are “bad”
to begin with, i.e. f has at most M/16 color changes. As above, the number of
such colorings is bounded by N . Thus, by the union bound, the probability that
a random permutation σ is not dispersive for some coloring f that is M -non-
monochromatic is at most

Np ≤
M2
(
m−1
M/16

)2
64
(
m
M

) ≤ (m/2)2

64m4
≤ 1

256m2
, (2)

where the second inequality uses Claim 3 below. Summing this probability bound
for all m/2 integer values for M , we complete the proof of the lemma.

Claim 3 Suppose m ≥ 108. For any integers 16 ≤M ≤ m
2 , we have

(
m−1
M/16

)2 ≤
1
m4 ·

(
m
M

)
.

Proof. The proof is by the following two calculations.

Suppose M ≥ 32 lnm. We have
(
m−1
M/16

)2 ≤ ( 16emM )M/8
and

(
m
M

)
≥
(
m
M

)M
. So

the ratio of these is at most:(
16em

M

)M/8

·
(
M

m

)M
=
(
16e(M/m)7

)M/8 ≤
(
16e(1/2)7

)M/8 ≤ e−M/8 ≤ 1

m4
,



where the first inequality follows because M ≤ m/2, and the last because M ≥
32 lnm.

Now suppose M ≤ 32 lnm. We have
(
m−1
M/16

)2 ≤ mM/8 and
(
m
M

)
≥
(
m
M

)M
.

Thus the ratio is at most

mM/8 · M
M

mM
≤ mM/2

mM
≤ 1

m4
,

where the first inequality follows because for m ≥ 108, we have M ≤ 32 ln(m) ≤
m3/8, and the second because M ≥ 8.

3 Relationship to Min Uncut

In this section we show formal connections between the Min Uncut problem and
the Binary Paintshop problem. Recall the Min Uncut problem from Section 1.2,
in which we want to find a cut that minimizes the number of uncut edges. We
show that the two problems have the same asymptotic approximability under
randomized reductions.

3.1 Reducing Min Uncut to Binary Paintshop

Theorem 4. A ρ-approximation algorithm for Binary Paintshop implies a ran-
domized algorithm for Min Uncut that returns an O(ρ)-approximation with prob-
ability at least 0.99.

The success probability can be boosted to arbitrarily close to 1 by repeating the
algorithm with different random seeds and returning the best solution found.

The proof works as follows. Given an instance of the Min Uncut problem, we
give a gadget transformation to an instance of the Binary Paintshop problem.
This gadget has a block of nodes for each node in the Min Uncut instance, and
matchings between different blocks represent edges in the Min Uncut instance.
Since a solution to the Binary Paintshop instance is forced to color the end-
points of each matching edge differently, within every block we can interpret
the different colors assigned as “votes” for the side of the cut that the node in
the Min Uncut instance should lie on. One can then round this solution to the
Binary Paintshop instance to a solution for the Min Uncut instance by taking
the majority vote within each block. To ensure that the cost of the obtained
solution to the Min Uncut can be bounded in terms of the cost of the solution
to the Binary Paintshop instance, we need to relate the minority vote in each
block to the number of color changes. To do this, we add an additional block for
each node together with a matching provided by a dispersive permutation into
the original block which serves to “mix up” the coloring of the original block.
This ensures that the total number of the color changes within the two blocks
for each node is at least a constant fraction of the minority vote. The details
follow.



The Binary Paintshop Instance ΓG. We are given a graph G(V,E) as input
to the Min Uncut problem. Let n = |V | where vertices are indexed {1, 2, . . . , n}.
Let d(i) denote the degree of vertex i ∈ [n]. We choose an integer parameter
T ≤ poly(n) to be specified later, and consider the multigraph G′ obtained by
making T copies of each edge in G, so each vertex i has degree Td(i) in G′,
and we order the corresponding edges arbitrarily. For each i ∈ [n], we choose a
random permutation σi on Td(i) elements. Our instance ΓG of Binary Paintshop
contains for each vertex i ∈ [n], two sequences of points Ri and Si. (See Figure 1.)

Sequence Ri: This contains 2Td(i) points and is given by

〈xi,1, yi,1, xi,2, yi,2, · · · , xi,Td(i), yi,Td(i)〉.

There are Td(i) x-points corresponding to edges incident to vertex i in G′, and
the remaining are y-points which will be used to enforce a feasible coloring.

Sequence Si: This contains Td(i) points

〈zi,1, zi,2, · · · , zi,Td(i)〉.

Final sequence W : The final sequence W of the instance ΓG is just a con-
catenation of the sequences constructed above.

W := R1 ◦R2 ◦ · · · ◦Rn ◦ S1 ◦ S2 ◦ · · · ◦ Sn. (3)

The instance ΓG of Binary Paintshop now consists of the path whose vertices
correspond to the points in W , in that order. Note the length of this path
is 3T

∑n
i=1 d(i) = 6T |E|, which is polynomial in the size of G. Now for the

constraints in ΓG—recall these must form a matching H on the points in W .
There are two kinds of matching pairs: edge pairs and permutation pairs, which
are defined below.

Edge pairs: For each edge e in G′, if e is the rth edge incident to vertex i and
the sth edge incident to vertex j, then we define {xi,r, xj,s} to be an edge pair.

Permutation pairs: For each vertex i ∈ [n] and each ` ∈ {1, 2, · · · , Td(i)}, we
have a permutation pair

{
yi,`, zi,σi(`)

}
, where σis are the random permutations

chosen above.

Relating Opt(ΓG) and Opt(G). We now relate the optimal solutions on any
Min Uncut instance G, and the Binary Paintshop instance ΓG created by the
above process.

Lemma 2. Given any feasible solution to the Min Uncut problem on G with
M uncut edges, we can construct a feasible solution to the Binary Paintshop
instance ΓG of cost at most 2MT + 2n. Thus Opt(ΓG) ≤ 2T · Opt(G) + 2n.

Proof. Let (U,U) be a cut in G with M uncut edges. We now construct a feasible
solution to the Paintshop instance ΓG of cost at most 2MT + 2n. We first
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Fig. 1. High level view of the construction. The rectangles represent the sequences Ri and
Si, and the dotted line represents their concatenation in the final sequence W . The edge
pairs are represented by the dashed lines, whereas the permutation pairs are solid lines.

construct an initial coloring Finitial of the points in ΓG as follows. (This initial
coloring will be infeasible, but we shall see that incurring a small extra cost
will make it feasible.) For each 1 ≤ i ≤ n, the points in the sequence Ri are
colored R if i ∈ U and B otherwise. Similarly, all points in the sequence Si are
colored B if i ∈ U and R otherwise, for 1 ≤ i ≤ n. (In Figure 1, all points within
each rectangle have the same color, and any pair of vertically aligned rectangles
has opposite colors.) Note that every permutation pair is bichromatic and hence
satisfied. Before we fix the monochromatic edge pairs, let us first count the
number of color changes in Finitial. Clearly, since each of the sequences Si and
Ri are monochromatic, the only color changes are between adjacent sequences
of the form Ri and Ri+1, Si and Si+1, or Rn and S1. So the total number of
color changes in Finitial is at most 2n.

However, as mentioned above, some of the edge pairs may be monochromatic.
If an edge e = {i, j} is not separated by the cut (U,U), then all T pairs, corre-
sponding to the copies of this edge in G′, are monochromatic. To fix this, we flip
the color of one of the endpoints in every such pair. Call this new coloring F ∗,
which is feasible by construction. Observe that this process incurs an additional
cost of at most 2T for each uncut edge in G, since flipping the color of a point
may make both its neighboring edges in W two-colored. Since the total number
of uncut edges in the Min Uncut instance is M , and handling each one incurs
an extra cost of at most 2T , the number of color changes in F ∗ is at most 2MT
greater than that in Finitial, and hence at most 2MT + 2n.

Lemma 3. Suppose all the permutations σi chosen in the reduction are disper-
sive. Then given a feasible coloring for ΓG with C color changes, we can construct
a feasible solution to minimum uncut on G with cost at most 33 (C/T ). Thus we
have Opt(G) ≤ 33

T · Opt(ΓG).

Proof. Consider some feasible coloring F for ΓG, with cost (a.k.a. number of
color changes) C. We will construct a feasible solution to minimum uncut on G
where the number of uncut edges is at most O(C/T ).



For each i ∈ [n], define the majority color of i (under the feasible coloring
F for ΓG) to be the one that is represented at least |Ri|/2 times among the
points in Ri; the minority color of i is defined to be the opposite color. Also,
for i ∈ [n], let qi ≤ |Ri|/2 denote the number of points in Ri colored with the
minority color. Let U ⊆ [n] denote the vertices i having majority color B, and
hence U is the set of vertices having majority color R. In the rest of the proof,
we show that the cost of the solution (U,U) to Min Uncut is D ≤ 33 · CT .

Consider any uncut edge (u, v) in this solution (U,U). There are T edge-pairs
between points of Ru and Rv. By the feasibility of F , these must be colored with
opposite colors. Since u and v are either both in U or both in U , they have the
same majority color: so the 2T points in Ru ∪ Rv corresponding to edge (u, v)
contribute at least T minority colors at u and v. Thus the total number of points
colored with the minority color is

∑n
i=1 qi ≥ T ·D. Rearranging,

D ≤ 1

T

n∑
i=1

qi. (4)

Fix any i ∈ [n]. Since qi equals the number of minority colors in Ri, by
Definition 1, the coloring F [Ri] is qi-non-monochromatic. Now we can use the
dispersive property of the permutation σi to prove the following claim.

Claim 5 For any i ∈ [n], let the total number of color changes in Ri and Si be
Ci. Then qi ≤ 33Ci.

Proof. Let Ri := Xi ∪ Yi where Xi and Yi consist of the x-points and y-points,
respectively. Let F [Yi] be the coloring F restricted to the subsequence of the
y-points. Say the minority color in F [Yi] is B, and let By denote the number of
B-colored points in Yi. This implies that F [Yi] is By-non-monochromatic.

We first claim that By ≤ 16Ci. Suppose (for a contradiction) that By > 16Ci.
Then since σi is dispersive, either F [Yi] or F [Yi◦σi] has at least By/16 > Ci color
changes. Note that F [Yi ◦ σi] is precisely the coloring F [Si] since the points in
Yi and Si are paired (under permutation σi) and so have opposite colors by the
feasibility of F . Note also that the number of color changes in F [Ri] is at least
that number in F [Yi] since Yi is a subsequence of Ri. It follows that the number
of color changes in F [Ri] and F [Si] is greater than Ci, giving us a contradiction.
Thus we must have By ≤ 16Ci.

Finally, the sequence Ri is obtained by alternating between Xi and Yi. Since
the number of color changes in F [Ri] is at most Ci, the number of B-colored
points in F [Xi] and F [Yi] must differ by at most Ci. The latter quantity is at
most 16Ci by the previous argument, so the number of B-colored points in F [Xi]
is at most 17Ci. It follows that the total number of B-colored points in Ri is at
most 33Ci, and hence qi ≤ 33Ci.

Using the bound from Claim 5 for each i ∈ [n], along with (4),

D ≤ 1

T

n∑
i=1

qi ≤ 33

T

n∑
i=1

Ci ≤ 33
C

T
.

This completes the proof of Lemma 3.



Completing the proof of Theorem 4. Having related the optima for the
Min Uncut instance G and the Binary Paintshop instance ΓG, we can now prove
Theorem 4.

Proof. We may assume that Opt(G) ≥ 1: the case Opt(G) = 0 corresponds
exactly to checking that G is bipartite and this can be easily done in polynomial
time. By the assumption of the theorem, there is a ρ-approximation algorithm
for Binary Paintshop, where ρ ≥ 1. Choosing T = max{108, n} means that the
probability of some fixed permutation chosen in the gadget not being dispersive
is at most 1

512n ; by a union bound, the probability that all permutations chosen
are dispersive is at least 1−1/512 > 0.99. If we run the claimed ρ-approximation
algorithm for the Binary Paintshop instance ΓG, we get a feasible coloring for
ΓG with C ≤ ρOpt(ΓG) color changes. By Lemma 2 we know that Opt(ΓG) ≤
2T Opt(G) + 2n. Using the “decoding” algorithm from Lemma 3, we can now
construct a feasible solution to the Min Uncut instance G with cost at most

33
C

T
≤ 33ρ

Opt(ΓG)

T
≤ 33ρ

(
2T Opt(G) + 2n

T

)
≤ 132 ρOpt(G),

since Opt(G) ≥ 1 and T ≥ n. This completes the proof of Theorem 4.

3.2 Reducing Binary Paintshop to Minimum Uncut

We now give a reduction in the opposite direction, showing that the Binary
Paintshop problem is essentially a special case of Min Uncut. In fact, we show
that even the generalized Binary Paintshop problem can be solved using an
algorithm for Min Uncut.

Theorem 6. Given a ρ-approximation algorithm for the Min Uncut problem,
we get a ρ-approximation algorithm for generalized Binary Paintshop.

Proof. Consider an instance of generalized Binary Paintshop: recall that this
consists of a graph G = (V,EG), and the constraint graph H = (V,EH), and
we want to find a coloring that bi-colors each of the edges in EH while cutting
the fewest edges in EG. Let C denote the cost of the optimal solution to this
instance; let |VG| = n and hence C ≤ |EG| ≤

(
n
2

)
.

Let H1, H2, . . . ,Hk be the k connected components of H = (V,EH). Since H
is bipartite, it is easy to see that each Hi is bipartite with a unique bipartition
of vertices we denote by (V 0

i , V
1
i ), i = 1, . . . , k. The instance I = (U,EI) of

Min Uncut is constructed as follows. The vertex set U := ∪ki=1{u0i , u1i }. For each
i = 1, . . . , k, add t := ρn2 edges between u0i and u1i in graph I.

Consider an edge e ∈ EG whose end points lie in V ai and V bj for some i ≤ j

and a, b ∈ {0, 1}. Add a corresponding edge in graph I between ua
′

i and ubj ,
where a′ = 1 − a. Note that this may lead to self-loops in I. The number of
edges in I is |EG|+ tk.

Consider a feasible solution to the Binary Paintshop instance. This solution
colors all the nodes in V 0

i the same color, and the opposite color for all the nodes



in V 1
i , for i = 1, . . . , k. To construct a solution for the Min Uncut instance I,

add each uai to one side of the cut according to the color of V ai for i = 1, . . . , k
and a ∈ {0, 1}. This separates all the edges between u0i and u1i . The only edges
that may remain uncut are those corresponding to edges in EG. An edge e ∈ EG
with end points in V ai and V bj for some i ≤ j and a, b ∈ {0, 1} corresponds to an

edge e′ ∈ EI between ua
′

i and ubj , where a′ = 1− a. Thus, e′ is cut in the uncut
solution if and only if e was monochromatic in the Binary Paintshop solution.
That is, the number of edges in EI that are not separated (the uncut objective
value) is exactly equal to the number of non-monochromatic edges in EG (the
paintshop objective value).

Conversely, any solution to the Min Uncut instance I that separates each
pair {u0i , u1i } (i = 1, . . . , k) can be turned into a feasible solution for the Binary
Paintshop instance of the same cost by coloring each V ai according to the side
of the cut containing uai for a ∈ {0, 1}. Now, the output of the ρ-approximation
algorithm for Min Uncut on I must separate each pair {u0i , u1i }: else, its cost
is at least t = ρn2 > ρC, contradicting the fact that the output cut is a ρ-
approximation.

Combining Theorems 4 and 6, we get that the approximability of these two
problems is the same (up to constant factors) under randomized reductions.

Remark. It is easy to extend our results to weighted versions of the Binary
Paintshop problem where each adjacent pair in the sequence comes with some
cost.

4 UGC Hardness of Approximation

In this section we shall prove the desired Unique Games Conjecture based hard-
ness of approximation for the Binary Paintshop problem via the above connection
to the Min Uncut problem. We begin by stating the current best UGC based
inapproximability result for Min Uncut. The following theorem is based on UGC
for regular Unique Games – where the degree is a constant depending on the
completeness and soundness of the instance4.

Theorem 7 ([8]). Assuming the Unique Games Conjecture [7] the following
holds. For every constant ε > 0, there is a positive integer d := d(ε) such that
given a d-regular n-vertex graph G as an instance of Min Uncut, it is NP-hard
to decide between the following two cases:

1. YES Case: Opt(G) ≤ 1
2εnd.

2. NO Case: Opt(G) ≥ 1
4

√
εnd.

The formal statement of the reduction is given below and, along with Theorem
7, implies Theorem 1.

4 Applying a pre-processing step of Dinur (Lemma 4.1 of [5]) using constant degree
expanders followed by Parallel Repetition [10], a general instance of Unique Games
can be deterministically converted to a regular instance and thus, one can assume
UGC holds for regular instances of Unique Games.



Theorem 8. There is a polynomial-time (deterministic) reduction from instances
G of Min Uncut given by Theorem 7 with parameter ε > 0, to instances Γ of the
Binary Paintshop problem on a sequence of length N = poly(n) such that,

1. YES Case: If G is a YES instance of Min Uncut then OPT(Γ ) ≤ εN
2. NO Case: If G is a NO instance of Min Uncut then OPT(Γ ) ≥ 1

400

√
εN .

Proof. We instantiate the reduction of Section 3.1 with T = max{108, 1/ε}. Since
all nodes have the same degree d, we only require a single dispersive permutation
σ : [dT ] → [dT ]. Since dT is a constant (depending on ε), such a permutation
can be found using a brute-force search. Note that the length of the Binary
Paintshop instance generated is N = 3ndT .

Now if G is a YES instance of Min Uncut then Lemma 2 implies that

Opt(Γ ) ≤ 2TOpt(G) + 2n ≤ εndT + 2n ≤ εN.

If G is a NO instance of Min Uncut then Lemma 3 implies that

Opt(Γ ) ≥ T

33
Opt(G) ≥ 1

132

√
εndT ≥ 1

400

√
εN.

5 A Ternary Paintshop Problem

A natural extension of the (generalized) Binary Paintshop problem is to the
case where there are three or more colors. The goal is again to ensure that
the constraint edges are not monochromatic, and to minimize the number of
bichromatic edges in G. One natural hurdle in this case is that checking whether
there exists a feasible solution becomes NP-hard, since we would have to check
whether the given constraint graph H is k-colorable for k ≥ 3. However, even
when the constraints are trivially k-colorable, and the graph G is very simple,
we show that the problem remains very hard to approximate.

Specifically, consider the ternary case with k = 3 colors, where the under-
lying graph G is a collection of disjoint paths, and the constraint graph H is a
matching. We show it is NP-hard to identify whether the optimal cost is zero
or not, and hence NP-hard to approximate to any factor. Indeed, take a graph
Gc = (Vc, Ec) that is an instance of 3-coloring, and construct an instance (G,H)
of ternary paintshop as follows: for each vertex v ∈ Vc, construct δ(v) vertices
in V (G), with one copy corresponding to each edge e ∈ Ec incident to v, and
connect all these δ(v) copies by a path Pv. These

∑
v∈Vc

δ(v) = 2|Ec| vertices
and

∑
v∈Vc

(δ(v)− 1) = 2|Ec| − |Vc| edges form the graph G. Now for each edge
e = (u, v) ∈ Ec, add a constraint edge in H between the corresponding copies
of u and v in V (G) — hence the constraint edges H form a matching. Now Gc
has a valid 3-coloring if and only if the ternary paintshop instance (G,H) has
a solution that monochromatically colors each of the |Vc| paths and cuts zero
edges.

In the above reduction we crucially used the fact that G was a forest, and
had disconnected components. This can be remedied to show a slightly weaker



hardness result. Define the (basic) ternary paintshop problem as follows: given a
sequence of length n (again associated with the integers [n] = {1, 2, . . . , n}), and
a matching H on the points [n], find a coloring f that ensures that each edge in
H is bichromatic, and minimizes the number of bichromatic pairs (i, i+ 1).

Theorem 9. For any constant ε > 0, the basic ternary paintshop problem is
NP-hard to approximate to within n1−ε in polynomial time.

Proof. Consider the same reduction from a 3-coloring instance Gc = (Vc, Ec) to
the ternary paintshop instance (G,H) on disconnected paths, but now take T
copies of the graphs (G,H). Obtain a sequence of length N := T · |V (G)| by
considering the vertices of Vc in some order, and laying down all the paths Pv
for the same vertex in each of these T copies consecutively; the constraints are
inherited from the original instances (G,H). This gives the instance Γ for the
basic ternary paintshop problem with sequence length N . Note that a 3-coloring
for Gc naturally gives a ternary coloring of [N ] with at most |Vc|− 1 many color
changes. On the other hand, if Gc is not 3-colorable, each of the T instances of
(G,H) must incur at least one color change, and the number of color changes
in Γ is at least T . If n := |Vc|, then setting T = n2/ε means it is NP-hard to
distinguish the case when the optimum is at most n ≈ Nε and when it is at least
T ≈ N1−ε, giving us the claimed hardness.

A different version of the ternary paintshop problem (e.g., from [9]) is where
the constraints are hyperedges of size 3, and also form a matching — i.e., none
of the hyperedges share vertices from [n]. A constraint {i, j, k} now means the
three vertices i, j, k must be given distinct colors. The reduction from Theorem 9
easily extends to show hardness for this variant too: for each constraint e = {i, j}
in that reduction, add a new dummy vertex ve and use the constraint {i, j, ve}.
Other extensions considered in previous papers, with constraints of the form
“the set S ⊆ [n] must contain exactly tiS nodes of color i for each color i ∈ [k],
where

∑
i∈[k] tiS = |S|”, are thus at least as hard.
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