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Quadratic Assignment is a basic problem in combinatorial optimization, which generalizes several other problems
such as Traveling Salesman, Linear Arrangement, Dense k Subgraph, and Clustering with given sizes. The
input to the Quadratic Assignment Problem consists of two n × n symmetric non-negative matrices W = (wi,j)
and D = (di,j). Given matrices W , D, and a permutation π : [n] → [n], the objective function is Q(π) :=∑

i,j∈[n],i 6=j wi,j · dπ(i),π(j). In this paper, we study the Maximum Quadratic Assignment Problem, where the goal

is to find a permutation π that maximizes Q(π). We give an Õ(
√

n) approximation algorithm, which is the first
non-trivial approximation guarantee for this problem. The above guarantee also holds when the matrices W, D
are asymmetric. An indication of the hardness of Maximum Quadratic Assignment is that it contains as a special
case, the Dense k Subgraph problem, for which the best known approximation ratio ≈ n1/3 (Feige et al. [9]).

When one of the matrices W, D satisfies triangle inequality, we obtain a 2e
e−1

≈ 3.16 approximation algorithm.

This improves over the previously best-known approximation guarantee of 4 (Arkin et al. [4]) for this special case
of Maximum Quadratic Assignment.

The performance guarantee for Maximum Quadratic Assignment with triangle inequality can be proved relative to
an optimal solution of a natural linear programming relaxation, that has been used earlier in Branch-and-Bound
approaches (see eg. Adams and Johnson [1]). It can also be shown that this LP has an integrality gap of Ω̃(

√
n)

for general Maximum Quadratic Assignment.
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1. Introduction Quadratic assignment is a basic problem in combinatorial optimization, which
generalizes several other problems. The input to quadratic assignment consists of two n × n symmetric
non-negative matrices W = (wi,j) and D = (di,j). Given matrices W , D, and a permutation π : [n] → [n],
the quadratic assignment objective is Q(π) :=

∑
i,j∈[n],i6=j wi,j · dπ(i),π(j).

There are two variants of the Quadratic Assignment Problem. In the Minimum Quadratic Assignment
problem, the objective is to find a permutation π that minimizes Q(π). In this paper we study the
Maximum Quadratic Assignment (Max-QAP) problem, where the objective is to find a permutation π
that maximizes Q(π).

We present approximation algorithms for the maximum quadratic assignment problem. All problems
considered in this paper have maximization objectives. Given a maximization problem Π, a polynomial
time algorithm is an α-approximation algorithm (for some α ≥ 1) if on every input instance to Π, the
algorithm outputs a feasible solution having objective value at least 1/α times the optimal [24].

1.1 Our Results We give an O(
√

n log2 n) approximation algorithm for Max-QAP, which is the
first non-trivial approximation guarantee for this problem. In fact, this bound also holds when the
matrices W and D are asymmetric. Using standard scaling arguments, our algorithm reduces Max-
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QAP to a special case (called 0-1 Max-QAP) where the matrices have only 0-1 entries; in this case
matrices W,D naturally correspond to a pair of undirected graphs. Our main contribution here is an
O(
√

n) approximation algorithm for 0-1 Max-QAP. We note that 0-1 Max-QAP itself contains the dense
k subgraph problem as a special case. The algorithm for 0-1 Max-QAP involves taking the better of
the following two approaches: (1) The first algorithm outputs a random permutation on appropriately
chosen (equal-sized) dense subgraphs (or submatrices) of W and D. To find these subgraphs, we use a
2-approximation algorithm for Vertex Cover in one graph, and an n

k -approximation algorithm for Dense
k Subgraph in the other graph. (2) The second algorithm uses local search to obtain a constant factor
approximation for a new problem, Common Star Packing, which also defines a feasible solution to Max-
QAP. These results appear in Section 2

We also consider a special case of the general Max-QAP with triangle inequality, where one of the
matrices W,D satisfies triangle inequality. For this case, we give a 2e

e−1 ≈ 3.16 approximation algorithm,
that improves the previously best known ratio of 4 due to Arkin et al. [4]. Our approach here is as follows.
We first define an auxiliary problem and show that it is equivalent (up to a factor 2) to Max-QAP with
triangle inequality. This auxiliary problem is another special case of Max-QAP, and it also generalizes the
Maximum Vertex Cover problem [2, 10]. We obtain an e

e−1 approximation algorithm for the auxiliary
problem, by rounding a natural LP-relaxation for it. These results appear in Section 3.

In Section 4 we note that a natural LP relaxation (c.f. Adams and Johnson [1]) for Max-QAP can be
shown to have an Ω̃(

√
n) integrality gap. In fact, in the special case of dense k subgraph, this LP has

integrality gap Θ̃(
√

n). Furthermore, when restricted to Max-QAP with triangle inequality, this LP has
integrality gap at most 2e

e−1 .

An indication of the difficulty in approximating Max-QAP is that it contains the well-studied dense k
subgraph problem as a special case. The best known approximation guarantee for dense k subgraph is
≈ n1/3 (Feige et al. [9]). This problem is considered to be fairly hard, however the best known hardness
of approximation [8, 18] only rules out the existence of a PTAS (under certain complexity theoretic
assumptions).

1.2 Related Work Quadratic assignment is an extensively studied combinatorial optimization
problem. The book by Cela [7] surveys several bounding techniques, exact algorithms, and polynomially
solvable special cases. Surveys on the quadratic assignment problem include Pardalos and Wolkowitz [20],
Loilola et al. [19], and Burkard et al. [6].

Approximation algorithms for maximum quadratic assignment have been obtained in many special
cases. One that is most relevant to this paper is a 4-approximation algorithm for Max-QAP when either
W or D satisfies the triangle inequality, due to Arkin et al. [4]. Another closely related special case is
the dense k subgraph problem, where W represents an undirected graph and D corresponds to a k-clique.
The best known approximation ratio for general dense k subgraph problem is nc, where c < 1

3 is some
universal constant, due to Feige et al. [9] while the problem where the edge weights satisfy the triangle
inequality admits a 2-approximation algorithm due to Hassin et al. [17].

We now list some other special cases of Max-QAP for which approximation algorithms have been
considered. In capacitated star packing [15, 3], D consists of a set of vertex disjoint stars, and a 3-
approximation algorithm is given in Arkin et al. [3]. In obtaining our algorithm for 0-1 Max-QAP, we use
a variant (called Common Star Packing) of the capacitated star packing problem, for which we provide a
constant approximation algorithm. Maximum clustering with given sizes is the special case of Max-QAP
when D is the union of vertex disjoint cliques: assuming that W satisfies triangle inequality, Hassin and
Rubinstein [16] gave a (0.5 − 3/k)−1-approximation algorithm where k is the smallest cluster size. For
maximum clustering under a general W matrix, Feo and Khellaf [11] gave an s-approximation when each
clique has size s.

For dense instances of the 0-1 Max-QAP problem, there is a PTAS known due to Arora et al. [5].
Dense instances are those where both underlying graphs have Ω(n2) edges. In our algorithm for Max-
QAP with triangle inequality, we encounter a generalization of a previously studied problem ‘Maximum
Vertex Cover’. The Max-Vertex-Cover problem is APX-hard, and the best known approximation ratio
is 4

3 − ε for some universal constant ε > 0, due to Feige and Langberg [10]. Approximation algorithms
for maximum bisection problems such as Max-Cut, Dense k subgraph, Max Vertex Cover etc. has been



Nagarajan and Sviridenko: On the Maximum Quadratic Assignment Problem
Mathematics of Operations Research 00(0), pp. xxx–xxx, c©20xx INFORMS 3

a very active area of research.

Unlike Max-QAP, the Minimum Quadratic Assignment problem remains hard to approximate even
when one of the matrices satisfies triangle inequality. Sahni and Gonzales [23] showed that the general
case of this problem is hard to approximate to any factor. Queranne [22] showed that it is NP-hard to
approximate this problem to any polynomial factor, even when D corresponds to a line metric. Special
cases of minimum quadratic assignment, where D is a metric and W corresponds to certain classes of
graphs have been studied in [12, 13, 14].

2. General Maximum Quadratic Assignment The maximum quadratic assignment (Max-QAP)
problem is the following: given two n × n symmetric non-negative matrices W = (wi,j) and D = (di,j),
find a permutation π of [n] that maximizes:

∑

i,j∈[n],i 6=j

wi,j · dπ(i),π(j)

We obtain an O(
√

n log2 n) approximation algorithm for this problem. A special case of Max-QAP
arises when the matrices W and D have only 0-1 entries, we refer to this problem as 0-1 Max-QAP.
At the loss of an O(log2 n) factor, we first reduce the general Max-QAP to 0-1 Max-QAP: this step uses
standard scaling arguments (Lemma 2.1). Then we obtain an O(

√
n) approximation algorithm for 0-1

Max-QAP (Section 2.1).

Lemma 2.1 (Reduction to 0-1 Max-QAP) An α approximation algorithm for 0-1 Max-QAP implies
an O(α · log2 n) approximation algorithm for general Max-QAP.

Proof. We assume that neither matrix consists of all zeroes in non-diagonal entries, otherwise the
problem is trivial. By scaling matrices W and D, we assume that the maximum entry in both matrices
is exactly 1; note that the approximation guarantee is invariant under scaling the input matrices. Let
Opt denote the optimal value of this Max-QAP instance and π the permutation that achieves this; note
that 1 ≤ Opt ≤ n2. We now modify the matrices W and D, by setting to 0 all entries of value smaller
than or equal to 1

2n2 . This reduces the optimal value by at most 1
2 ≤ Opt

2 , so the optimal value of the
modified instance is at least Opt

2 .

Now partition the entries of matrix W into g = dlog2(2n2)e groups so that all entries in the k-th group
lie in the interval ( 1

2k , 1
2k−1 ]. Let Ak denote the n×n 0-1 matrix that has 1s at all positions corresponding

to group k entries and 0s everywhere else. Then we have 1
2W ≤ ∑g

k=1
1
2k Ak ≤ W . By performing an

identical operation on D, we can obtain 0-1 matrices {Bk}g
k=1 such that 1

2D ≤ ∑g
k=1

1
2k Bk ≤ D. For the

optimal permutation π, we can express the objective value corresponding to π as:

∑

i,j∈[n],i 6=j

wi,j · dπ(i),π(j) ≤ 4 ·
∑

i,j∈[n],i6=j

(
g∑

k=1

1
2k

Ak(i, j)

)
·
(

g∑

l=1

1
2l

Bl(π(i), π(j))

)

= 4
g∑

k=1

g∑

l=1


 1

2k+l

∑

i,j∈[n],i6=j

Ak(i, j) ·Bl(π(i), π(j))




The left-hand-side above is at least Opt
2 , which implies that there exists some pair of values k, l ∈

{1, · · · , g} such that:
1

2k+l

∑

i,j∈[n],i6=j

Ak(i, j) ·Bl(π(i), π(j)) ≥ Opt

8g2

Thus if we could approximate 0-1 Max-QAP within an α factor, applying this algorithm to the pair
〈Ak, Bl〉 gives a permutation σ where,

Opt

8g2α
≤ 1

2k+l

∑

i,j∈[n],i6=j

Ak(i, j) ·Bl(σ(i), σ(j)) ≤
∑

i,j∈[n],i6=j

w(i, j) · d(σ(i), σ(j)).

The last inequality above uses the facts w(i, j) ≥ 1
2k ·Ak(i, j) and d(i, j) ≥ 1

2l ·Bl(i, j) for all i, j ∈ [n].
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The algorithm for Max-QAP runs the α-approximation algorithm for 0-1 Max-QAP on all pairs 〈Ak, Bl〉
(for 1 ≤ k, l ≤ g) and returns the best permutation found. From the above, it follows that this is an
O(α log2 n) approximation algorithm for general Max-QAP. ¤

2.1 Algorithm for 0-1 Max-QAP In this section, we focus on 0-1 Max-QAP and obtain an O(
√

n)
approximation algorithm. In this case, the problem can be stated in terms of two n-vertex undirected
simple graphs G and H, where the goal is to find a one-to-one mapping of vertices of G to those of H
such that the number of common edges is maximized. For an undirected graph G′, we let E(G′) denote
its set of edges. For graph G′ on vertex-set [n] and permutation π : [n] → [n], let π(G′) denote the
graph on vertices [n] with edge-set E(π(G′)) = {(i, j) | i, j ∈ [n], (π−1(i), π−1(j)) ∈ E(G′)}. For two
undirected graphs G1 and G2 both defined on vertex set [n], G1 ∩ G2 denotes the graph on vertices [n]
with E(G1 ∩ G2) = E(G1) ∩ E(G2). In graph terms, the 0-1 Max-QAP problem is defined as follows:
given undirected graphs G and H each defined on vertex-set [n], find a permutation π : [n] → [n] that
maximizes |E(π(G) ∩H)|.

For the sake of analysis, let π∗ denote the optimal permutation and O = π∗(G) ∩ H the optimal
graph, with Opt = |E(O)| edges. It is clear that Opt ≤ min{|E(G)|, |E(H)|}. Also let k denote the
number of non-isolated vertices in the optimal graph O; vertex u ∈ O is non-isolated iff it has degree at
least one in O. The final algorithm for 0-1 Max-QAP is the better of two algorithms that we describe next.

Algorithm 1 (Star packing). Before we present the algorithm, we need some definitions. A star
in graph G′ is a subset of edges S ⊆ E(G′) that are all incident to some common vertex (called the
center). The size of a star is the number of edges in it. A star packing in an undirected graph is a
collection of vertex-disjoint (non-empty) stars. The size vector of a star packing is a tuple 〈c1, · · · , cp〉
where p denotes the number of stars and c1, · · · , cp denote the sizes of all stars in this packing. Given two
undirected graphs G and H, a common star packing consists of star packings S in G and T in H such
that S and T have identical size-vectors. The value of a common star packing given by a pair (S, T ) of
star packings is

∑p
i=1 ci where 〈c1, · · · , cp〉 denotes the common size vector of S and T . In Section 2.2,

we give a 5-approximation algorithm for computing a maximum value common star packing.

The first algorithm for 0-1 Max-QAP involves computing an approximately maximum value common
star packing in G and H, using the algorithm in Section 2.2. Observe that any common star packing in
graphs G and H of value v naturally corresponds to a solution to 0-1 Max-QAP on G,H with v edges:
map corresponding stars in the common star packing to each other.

Proposition 2.1 The solution computed by Algorithm 1 has Ω(k) edges.

Proof. Consider the optimal graph O and let F denote any spanning forest in O. Since there are k
non-isolated vertices in O, forest F has at least k/2 edges. For each tree T in forest F , pick an arbitrary
root vertex r and assign a level to each edge e ∈ T , which equals the number of edges on the path from
e to r in tree T . Observe that we have two star packings: Se consisting of all edges in even levels of
trees in F , and So consisting of all edges in odd levels. It is easy to verify that Se and So are indeed
star packings, and that one of them has at least half the edges in F . Thus we have a star packing in O
with at least k

4 edges. Finally note that any star packing in O corresponds to a common star packing in
G and H. Thus running a 5-approximation algorithm for maximum value common star packing gives a
solution with at least k

20 edges. ¤
Algorithm 2 (Modified random). The second algorithm involves computing a random mapping

between appropriate dense subgraphs of G and H. Recall that the optimal graph O has n − k isolated
vertices (i.e. vertices of zero degree). Let V1, V2 ⊆ [n] respectively denote the set of G-vertices and
H-vertices that are mapped to the isolated vertices in O. For an undirected graph G′ on vertex-set [n]
and subset U ⊆ [n], G′[U ] denotes the subgraph of G′ induced on U . Observe that either E(G[V1]) = ∅
or E(H[V2]) = ∅: otherwise, modifying permutation π∗ on vertices V1 would give a solution with more
than Opt edges. Suppose that E(G[V1]) = ∅ (the case E(H[V2]) = ∅ is identical), then graph G has a
vertex cover of size k (namely [n]\V1). In this case, we run a 2-approximation algorithm for vertex-cover
on G that computes a set C ′ ⊆ [n] of 2k vertices that covers all edges (c.f. Vazirani [24]). Augment the
set C ′ by adding to it k highest degree vertices from [n] \ C ′ to obtain a set C having 3k vertices.
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′
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Graph H and its subgraph BGraph G and its subgraph C

B

Figure 1: The subgraphs used in random mapping.

Proposition 2.2 |E(G[C])| ≥ Opt.

Proof. Since C ′ is a vertex cover for G, edges of O can be partitioned into: (1) E1 ⊆ E(O)
edges induced on C ′, and (2) E2 ⊆ E(O) edges between C ′ and [n] \C ′. By definition, E1 ⊆ E(G[C ′]) ⊆
E(G[C]). Since all edges of O are induced on k vertices, |E2| is at most the number of edges incident to the
k highest degree vertices in [n]\C ′ (each of which has its other end-point in C ′). Thus the number of edges
between C ′ and C \C ′ is at least |E2| and |E(G[C ′])| ≥ |E1|, which implies |E(G[C])| ≥ |E1|+|E2| = Opt.
¤

Next we apply an O(n
k )-approximation algorithm (c.f. Feige et al. [9]) to compute a 3k-vertex subgraph

in H having the maximum number of edges. Let this solution be induced on vertex set B. Note that H
contains a k-vertex subgraph with at least Opt edges (corresponding to O), so H[B] contains Ω( k

n ) ·Opt
edges. Figure 1 depicts the dense subgraphs in G and H. Algorithm 2 finally returns a uniformly random
mapping from C to B (other vertices are mapped arbitrarily). Observe that the expected number of
common edges in such a random mapping is at least:

1
(3k)2

· |E(G[C])| · |E(H[B])| = 1
(3k)2

· Ω
(

k

n

)
· Opt2 = Ω

(
1
nk

)
· Opt2

since G[C] has Ω(Opt) edges and H[B] has Ω( k
n ) · Opt edges.

Finally we output the better of the solutions from Algorithms 1 and 2. The number of edges in this

solution is max{Ω(k),Ω( 1
nk )Opt2} ≥

√
Ω(k · 1

nk · Opt2) = Ω( 1√
n
)·Opt. We note that the second algorithm

can be easily derandomized using conditional expectation, to give the following.

Theorem 2.1 There is an O(
√

n)-approximation algorithm for 0-1 Max-QAP. Hence there is an
O(
√

n log2 n)-approximation algorithm for Max-QAP.

Remarks. A possible simplification to our algorithm could be just to output the better of maximum
common star packing and a uniformly random permutation. However this algorithm achieves only an
approximation ratio Ω(n2/3) as shown by an example where both graphs G and H are cliques on n2/3

vertices. We note that this simpler algorithm can in fact be shown to achieve a Θ(n2/3) approximation
guarantee. Hence in our algorithm, it is important to find appropriate dense subgraphs before applying
a random permutation. A tight example for our algorithm is when G and H are identical

√
n regular

graphs containing a perfect matching: both Algorithms 1 and 2 return solutions of value O(n), whereas
the optimal value is Ω(n

√
n).

2.2 Maximum Value Common Star Packing In this section, we consider the maximum value
common star packing problem: given two undirected n-vertex graphs G,H and a number 1 ≤ p ≤ n,
compute a maximum value common star packing in G and H that consists of exactly p stars. We present
a 5-approximation algorithm for this problem. A related problem is capacitated star packing [3], where
given a single weighted complete graph and a fixed size vector s = 〈s1, · · · , sp〉, the goal is to compute a
maximum weight star packing having size vector s. Arkin et al. [3] gave a 3-approximation algorithm for
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capacitated star packing. Our algorithm for common star packing is based on local-search and is similar
to the algorithm in [3].

In Algorithm 1 for 0-1 Max-QAP, we require the maximum value common star packing when the
number of stars p is not fixed: for this purpose we run the algorithm for fixed p (described below) over
all values of 1 ≤ p ≤ n, and pick the best common star packing.

The algorithm for common star packing always maintains a common star packing given by a pair of
star packings S = {S1, · · · , Sp} in G and T = {T1, · · · , Tp} in H, where Si and Ti have the same size
(for all 1 ≤ i ≤ p). For a common star packing 〈S, T 〉 as above, we denote by E(S) =

⋃p
i=1 E(Si) (resp.

E(T ) =
⋃p

i=1 E(Ti)) the set of edges in S (resp. T ). Observe that the value of this common star packing
is |E(S)| = |E(T )|. We define a bijection σ : E(S) → E(T ) that maps each edge in E(Si) to some edge
in E(Ti) (for every 1 ≤ i ≤ p). Given common star packing 〈S, T 〉, a local move is specified by a tuple
〈i, xi, yi, c

′
i〉 where:

• Index 1 ≤ i ≤ p specifies a pair of stars Si ∈ S and Ti ∈ T .
• xi ∈ G and yi ∈ H denote new centers of the ith stars.
• 0 ≤ c′i ≤ n denotes the new size of the ith stars.

Let v = |E(S)| = |E(T )| denote the value of the common star packing. Applying move 〈i, xi, yi, c
′
i〉

to 〈S, T 〉 involves the following modifications (below, two edges are called independent if they are not
incident to a common vertex).

(i) Remove edges E(Si) from E(S) and E(Ti) = σ(E(Si)) from E(T ).
(ii) Let Xi ⊆ E(S) denote the edges of E(S) incident to vertex xi. Remove Xi from E(S) and σ(Xi)

from E(T ).
(iii) Let Yi ⊆ E(T ) denote the edges of E(T ) incident to vertex yi. Remove Yi from E(T ) and

σ−1(Yi) from E(S).
(iv) Let Ai denote a set of c′i edges incident to vertex xi in G such that each edge in Ai is independent

of all edges in E(S). If there does not exist such an Ai, the local move fails.
(v) Let Bi denote a set of c′i edges incident to vertex yi in H such that each edge in Bi is independent

of all edges in E(T ). If there does not exist such a Bi, the local move fails.
(vi) Add Ai to E(S) and Bi to E(T ), and augment bijection σ so that σ(Ai) = Bi.

In steps (i)-(iii), we only remove corresponding pairs of edges (under bijection σ) from E(S) and E(T ).
This ensures that after these modifications 〈S, T 〉 remains a feasible common star packing. Furthermore,
the value of 〈S, T 〉 after step (iii) is v − |Si| − |Xi| − |Yi|. If the local move does not fail, then we obtain
sets Ai and Bi in steps (iv)-(v). Note that Ai (resp. Bi) corresponds to a c′i size star centered at xi

(resp. yi) in graph G (resp. H). By its definition, star Ai (resp. Bi) can be added to S (resp. T ) to
obtain a star packing. Since |Ai| = |Bi| = c′i, after step (vi) 〈S, T 〉 is a common star packing of value
v + c′i−|Si|− |Xi|− |Yi|. Finally the local move is said to be improving iff it does not fail and the increase
in value c′i − |Si| − |Xi| − |Yi| > 0.

The algorithm is initialized with S and T being zero-value star packings in graphs G and H respectively.
Then it performs any sequence of improving local moves, until no further improvement is possible. The
value of the solution increases by at least one in each step, and the maximum value of a common star
packing is n (number of vertices). So the number of iterations is at most n. The number of local moves
at any step is at most n4, and each local move (steps (i)-(vi)) can be easily performed in polynomial
time. Thus the entire algorithm runs in polynomial time.

We now argue that any locally optimal solution is a 5-approximate solution. Let S = {S1, · · · , Sp} in
G and T = {T1, · · · , Tp} in H denote the common star packing at a local optimum, where |Si| = |Ti| = ci

for all 1 ≤ i ≤ p. Similarly let S∗ = {S∗1 , · · · , S∗p} in G and T ∗ = {T ∗1 , · · · , T ∗p } in H denote the optimal
common star packing, where |S∗i | = |T ∗i | = c∗i for all 1 ≤ i ≤ p. Define touch(S∗i ) to be the number of
edges in S that have a vertex in common with star S∗i , and touch(T ∗i ) the number of edges in T having a
vertex in common with star T ∗i . Since S, S∗, T , and T ∗ are star packings,

∑p
i=1 touch(S∗i ) ≤ 2

∑p
i=1 ci

and
∑p

i=1 touch(T ∗i ) ≤ 2
∑p

i=1 ci.

Proposition 2.3 For any 1 ≤ i ≤ p, c∗i − ci − touch(S∗i )− touch(T ∗i ) ≤ 0.
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Proof. Fix a 1 ≤ i ≤ p. Suppose for a contradiction that c∗i − ci − touch(S∗i )− touch(T ∗i ) > 0. Let
xi ∈ G be the center of star S∗i and yi ∈ H be the center of star T ∗i . Let αi (resp. βi) denote the number
of edges in S (resp. T ) incident to xi (resp. yi). Define c′i := c∗i − touch(S∗i ) − touch(T ∗i ) + αi + βi.
Consider the local move 〈i, xi, yi, c

′
i〉. Observe that when this move is applied to 〈S, T 〉, we have |Xi| = αi

and |Yi| ≤ βi in steps (ii) and (iii) respectively. Since touch(S∗i ) is the number of edges of S incident to
star S∗i and |Xi| = αi is the number of edges in S incident to xi, there are at least |S∗i |− (touch(S∗i )−αi)
edges of star S∗i that are independent of E(S) in step (iv). Now observe that c′i ≤ c∗i + αi − touch(S∗i ),
and hence step (iv) succeeds. By an identical argument, it follows that step (v) also succeeds. Finally,
the increase in value by this local move is:

c′i − ci − |Xi| − |Yi| ≥ c∗i − ci − touch(S∗i )− touch(T ∗i ) > 0

But this contradicts the fact that 〈S, T 〉 is a local optimum. Thus we have the claim. ¤
Adding the p expressions given by Proposition 2.3, we have:

p∑

i=1

c∗i −
p∑

i=1

ci −
p∑

i=1

touch(S∗i )−
p∑

i=1

touch(T ∗i ) ≤ 0 ⇒
p∑

i=1

c∗i − 5
p∑

i=1

ci ≤ 0,

since
∑p

i=1 touch(S∗i ) ≤ 2
∑p

i=1 ci and
∑p

i=1 touch(T ∗i ) ≤ 2
∑p

i=1 ci. Hence any local optimum is a 5-
approximation and we obtain the following theorem.

Theorem 2.2 There is a 5-approximation algorithm for maximum value common star packing.

2.3 Asymmetric Maximum Quadratic Assignment We note that our algorithm for the general
Max-QAP problem extends readily to the case when the matrices W,D are asymmetric. The reduction
to 0-1 Max-QAP (Lemma 2.1) clearly holds in the asymmetric case as well. Hence it suffices to consider
the directed version of 0-1 Max-QAP, where given two n-vertex directed graphs, the goal is to find a
permutation of one graph that maximizes the number of common edges. Following the notation in
Section 2.1, if k denotes the number of non-isolated vertices in the optimal graph O, then Claim 2.1
implies that O contains a star-packing (in the undirected sense) of size at least k/4. It follows that there
is either an In-star packing (where edges of each star are directed to its center) or an Out-star packing
(where edges of each star are directed away from its center) having size k/8. The Common Star Packing
algorithm of Section 2.2 easily extends to give a constant factor approximation for computing a maximum
value common In-star (resp. Out-star) packing in two directed graphs. So Algorithm 1 is guaranteed to
find a solution of value Ω(k).

In Algorithm 2, we consider both graphs as being undirected. Then exactly as before, we obtain
two 3k vertex subgraphs such that one of them has Ω(1) · Opt edges and the other Ω

(
k
n

) · Opt edges.
Finally observe that a uniformly random mapping of two r-vertex directed graphs having m1 and m2

edges results in at least m1·m2
r2 common directed edges in expectation. So Algorithm 2 outputs a solution

of value Ω
(

1
nk

) · Opt2. Thus we obtain the following.

Corollary 2.1 There is an O(
√

n log2 n) approximation algorithm for asymmetric Max-QAP.

3. Maximum Quadratic Assignment Problem with Triangle Inequality In this section
we treat the special case of the Maximum Quadratic Assignment Problem where the elements of matrix
D satisfy the triangle inequality, i.e. dij + djk ≥ dik for all i, j, k ∈ [n]. In this case we give an improved
2e

e−1 -approximation algorithm.

Let G and H be the complete undirected graphs with edge weights defined by matrices W and D,
respectively. Let M be the matching in graph H obtained by the straightforward greedy algorithm: pick
the heaviest edge in graph H and delete all incident edges, in the remaining graph choose the heaviest
edge and so on. We will call such a matching M greedy. Note that |M | = bn/2c since H is a complete
graph. Each edge e of graph H is incident with either one or two edges of matching M . For any edge
e ∈ H, let m(e) be the edge in M with the largest weight that is incident to e. By the construction of
the greedy matching M , we have dm(e) ≥ de, ∀e ∈ H.
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We consider the following modification of the given Max-QAP instance, which we call the auxiliary
problem. Find a permutation π of [n] that maximizes:

∑

i,j∈[n],i 6=j

wi,j · dm(π(i),π(j)), (1)

i.e. the weight of each edge (i, j) in graph G is multiplied by the weight of edge m(π(i), π(j)) in graph
H (which is incident to the edge (π(i), π(j)) in H). Let Opt∗ be the value of the optimal solution to
the Max-QAP instance, and let Aux∗ be the optimal value of the auxiliary problem (1). We first prove a
simple lemma based on triangle inequality.

Lemma 3.1 Aux∗ ≥ Opt∗ ≥ Aux∗/2

Proof. Since dm(e) ≥ de for all edges e ∈ H, we obtain the first inequality Aux∗ ≥ Opt∗.

Consider now an optimal solution (permutation) σ for the auxiliary problem (1), that maps vertices of
G to those of H. Let σ′ denote the random permutation where we swap assignments along each edge of
matching M with probability 1/2. More precisely, consider an edge (u, v) ∈ M such that i and j are the
two vertices of graph G mapped to the endpoints of this, i.e. u = σ(i) and v = σ(j). We set σ′(i) = u,
σ′(j) = v with probability 1/2, and σ′(i) = v, σ′(j) = u with probability 1/2. This process is repeated
independently for all edges of the greedy matching M .

We now prove that the expected value of the original Max-QAP instance on the random permutation
σ′ is at least Aux∗/2 that would imply the second inequality of the lemma. Consider an edge (i, j) in
graph G, and let σ(i) = u and σ(j) = v. If (u, v) ∈ M , then the expectation of the term corresponding
to (i, j) in the objective function of Max-QAP on permutation σ′ is exactly wijdu,v. If (u, v) 6∈ M and
both u and v are incident to some edge from M , then let ū and v̄ be the other endpoints of edges from M
incident to u and v, i.e. (u, ū) ∈ M and (v, v̄) ∈ M . In this case, by triangle inequality the expectation
of the objective function term corresponding to (i, j) on permutation σ′ is exactly:

wij ·
(

du,v + du,v̄ + dū,v + dū,v̄

4

)
≥ wij · max{du,ū, dv,v̄}

2
= wij ·

dm(σ(i),σ(j))

2
,

where the first inequality uses triangle inequality on d. Analogously, if vertex u or v (say v) is the
single vertex of H that is not incident to any edge of the greedy matching M and (u, ū) ∈ M , then
the expectation of the objective function term corresponding to (i, j) on permutation σ′ is (again using
triangle inequality on d):

wij ·
(

du,v + dū,v

2

)
≥ wij · du,ū

2
= wij ·

dm(σ(i),σ(j))

2
.

Summing up the contribution to the Max-QAP objective over all edges (i, j) ∈ G, the expected value
of permutation σ′ is at least Aux∗

2 which implies Opt∗ ≥ Aux∗/2. ¤

3.1 Algorithm for the auxiliary problem In the rest of the section, we will show how to construct
a (1 − 1

e ) approximation algorithm for the auxiliary problem. We consider the following more general
problem. The input is an undirected edge-weighted graph G = (V, E, w) with nonnegative edge weights
we ≥ 0 for e ∈ E and nonnegative numbers {∆i}n

i=1. The goal is to find a permutation π of vertices of
graph G that maximizes

2 ·
∑

(i,j)∈E

wij ·



n∑

p=min{πi,πj}
∆p


 (2)

We first reduce the auxiliary problem (1) to one of the above form (2). The weighted graph G is the
complete graph on vertex set V = [n] with edge-weights W . Let l = bn/2c and D1 ≥ D2 ≥ · · · ≥ Dl be
the edge-weights of greedy matching M . We set ∆2q = Dq −Dq+1 for all 1 ≤ q ≤ l (here Dl+1 = 0), and
all other ∆s are set to 0. We also renumber vertices in graph H, in the auxiliary problem (1), so that
the edges in the greedy matching M are chosen in the order (1, 2), (3, 4), · · · , (2l− 1, 2l). Note that for
any permutation π and vertices i, j ∈ G, we have

dm(π(i),π(j)) =
∑

p=min{π(i),π(j)}
∆p
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Hence for every permutation π, objective (2) is equivalent to objective (1): note that (2) sums over un-
ordered pairs (i, j) whereas (1) sums over ordered pairs, and since W,D are symmetric the two objectives
are equal. In the following we obtain an e

e−1 -approximation algorithm for problem (2).

Problem (2) generalizes the Maximum Vertex Cover problem where, given an edge-weighted undirected
graph and a number k, the goal is to find k vertices that cover the maximum weight of edges. The
maximum vertex cover problem is APX-hard [21] and the best known approximation ratio is ≈ 3

4 [10].
We present a (1 − 1

e ) approximation algorithm for problem (2) using a natural LP relaxation. In the
following, x-variables are assignment variables mapping vertices to positions, and each variable zijs

denotes whether either of vertices i, j ∈ V is mapped to some position in {1, · · · , s} (where z ∈ [n]).

max 2 ·
∑

(i,j)∈E

wij

n∑
s=1

∆s · zijs, (3)

s.t. zijs ≤
s∑

t=1

xit +
s∑

t=1

xjt, ∀ (i, j) ∈ E, ∀ s = 1, . . . , n (4)

zijs ≤ 1, ∀ (i, j) ∈ E, ∀ s = 1, . . . , n (5)
∑

i∈V

xit = 1, ∀ t = 1, . . . , n (6)

n∑
t=1

xit = 1, ∀ i ∈ V (7)

xit ≥ 0, ∀ i ∈ V, ∀ t = 1, . . . , n (8)
zijs ≥ 0, ∀ (i, j) ∈ E, ∀ s = 1, . . . , n (9)

Our algorithm is a natural randomized rounding of the optimal solution (x∗, z∗) of the above linear
program. For each position t = 1, . . . , n we treat constraint (6) as a density function and choose a
vertex i ∈ V at random according to this distribution, to assign to position t. After that each position
t = 1, . . . , n has one chosen vertex. If a vertex is chosen by many positions then we assign it to the
earliest one. The vertices not chosen by any position in the previous step of the algorithm are assigned
to arbitrary empty positions.

We now derive the expected performance guarantee of the algorithm. For each edge (i, j) ∈ E we
estimate its contribution to the objective function:

wij

n∑
s=1

∆s · Pr(i or j is assigned a position ≤ s) = wij

n∑
s=1

∆s ·
(

1−
s∏

t=1

(1− x∗it − x∗jt)

)
(10)

≥ wij

n∑
s=1

∆s

(
1− exp

(
−

s∑
t=1

(x∗it + x∗jt)

))
(11)

≥ wij

n∑
s=1

∆s

(
1− 1

e

)
·min

{
s∑

t=1

(x∗it + x∗jt), 1

}
(12)

=

(
1− 1

e

)
· wij

n∑
s=1

∆sz
∗
ijs

Inequality (11) follows from the fact that 1 + x ≤ ex for all x ∈ R, and inequality (12) from 1− e−x ≥
(1− 1

e )x for 0 ≤ x ≤ 1. Therefore, the total expected objective function value of the rounded solution is
at least 1− 1

e times the optimal value of the linear programming relaxation. Combined with Lemma 3.1,
we have the following.

Theorem 3.1 There is a 2e
e−1 approximation algorithm for Max-QAP with triangle inequality.

Derandomization. The above randomized rounding algorithm can be derandomized using conditional
expectations since we have an exact expression for the expected objective value (10). Similarly, the algo-
rithm in Lemma 3.1, that obtains a solution to Max-QAP from one for problem (1) can be derandomized.
Hence we obtain a deterministic algorithm in Theorem 3.1.
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4. Some Remarks on an LP Relaxation for Maximum Quadratic Assignment Consider the
following integer program for Max-QAP. We have assignment variables xi,p corresponding to a mapping
between vertices of the two graphs, and variables yi,p,j,q denote whether “i maps to p and j maps to
q”. The LP relaxation LPQAP is obtained by dropping the integrality condition on variables, and is given
below.

max
∑

i,j∈[n],i 6=j wij

∑
p,q∈[n],p 6=q dpq · yi,p,j,q,

s.t.
∑n

i=1 xi,p = 1, ∀ 1 ≤ p ≤ n∑n
p=1 xi,p = 1, ∀ 1 ≤ i ≤ n∑n
i=1 yi,p,j,q = xj,q, ∀ 1 ≤ p, j, q ≤ n

(LPQAP)
∑n

p=1 yi,p,j,q = xj,q, ∀ 1 ≤ i, j, q ≤ n∑n
j=1 yi,p,j,q = xi,p, ∀ 1 ≤ i, p, q ≤ n∑n
q=1 yi,p,j,q = xi,p, ∀ 1 ≤ i, j, p ≤ n

xi,p ≥ 0, ∀ 1 ≤ i, p ≤ n
yi,p,j,q ≥ 0, ∀ 1 ≤ i, p, j, q ≤ n.

General Max-QAP. The dense k subgraph problem is the special case of Max-QAP when matrix D is
the incidence matrix of a k-clique (i.e. dpq = 1 if 1 ≤ p, q ≤ k, and dpq = 0 otherwise), and W is the
incidence matrix of the input graph. We note that in the case of dense k subgraph, this LP can be
shown to have an integrality gap of O(

√
n): LPQAP is at least as good as the standard LP for dense k

subgraph, which has integrality gap ≈ n
k (due to Goemans); in addition LPQAP cannot have value larger

than min{k2, m} (where m is number of edges in the input graph), so its integrality gap is at most k.
The following example shows that this is nearly tight. Consider k =

√
n, and a random k-regular graph

(see Wormald [25] for such models) corresponding to W . With high probability, the optimal value of the
integer program can be bounded by O(k log n). However, the LP solution when all xi,p = 1

n can be shown
to have objective value Ω(k2). This gives an Ω(

√
n

log n ) lower bound on the integrality gap of LPQAP.

Triangle inequality Max-QAP. We also observe that for Max-QAP with triangle inequality, our ap-
proximation algorithm (Section 3) implies the same upper bound on the integrality gap of the above LP
relaxation. Given an optimal solution (x, y) to LPQAP for Max-QAP, we induce a solution (x̃, z) for the LP
relaxation for problem (2), where x̃it = xit for all i, t ∈ [n] and zijs =

∑s
p=1(

∑n
q=1 yipjq +

∑n
q=s+1 yiqjp)

for all 1 ≤ i < j ≤ n, s ∈ [n]. We claim that zijs ≤ 1 and zijs ≤
∑s

t=1(x̃it + x̃jt). Indeed,

zijs =
s∑

p=1

n∑
q=1

yipjq +
n∑

q=s+1

s∑
p=1

yiqjp ≤
n∑

p=1

n∑
q=1

yipjq = 1,

zijs =
s∑

p=1

n∑
q=1

yipjq +
s∑

p=1

n∑
q=s+1

yiqjp ≤
s∑

p=1

n∑
q=1

yipjq +
s∑

p=1

n∑
q=1

yiqjp =
s∑

p=1

(xip + xjp)

So (x̃, z) is indeed feasible to linear program (3)-(9). Now in place of the first inequality in Lemma 3.1,
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we can argue that the LP-objective in (3) of (x̃, z) is at least the LP-objective of (x, y) in LPQAP. Indeed,

wij

n∑
s=1

∆szijs =

wij

n∑
s=1

∆s

s∑
p=1

(
n∑

q=1

yipjq +
n∑

q=s+1

yiqjp) =

wij

∑

p,q∈[n],p 6=q

yipjq

(
n∑

s=p

∆s +
p−1∑
s=q

∆s

)
=

wij

∑

p,q∈[n],p 6=q

yipjq

n∑

s=min(p,q)

∆s =

wij

∑

p,q∈[n],p 6=q

dm(p,q)yipjq ≥

wij

∑

p,q∈[n],p 6=q

dpqyipjq.

Then the LP-rounding algorithm for problem (2) together with the second part of Lemma 3.1 implies
that the integrality gap of LPQAP for Max-QAP is at most 2e

e−1 , when one of the matrices satisfies triangle
inequality.

References

[1] W. P. Adams and T. A. Johnson, Improved Linear Programming-based Lower Bounds for the Quadratic
Assignment Problem, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 16, 1994,
43-77.

[2] A. Ageev and M. Sviridenko, Pipage rounding: a new method of constructing algorithms with proven perfor-
mance guarantee, J. Comb. Optim. 8 (2004), pp. 307–328.

[3] E. Arkin, R. Hassin, S. Rubinstein and M. Sviridenko, Approximations for Maximum Transportation Problem
with Permutable Supply Vector and Others Capacitated Star Packing Problems, Algorithmica, 39, 2004, 175-
187.

[4] E.M. Arkin, R. Hassin and M. Sviridenko, Approximating the maximum quadratic assignment problem,
Information Processing Letters, 77, 2001, 13-16.

[5] S. Arora, A. Frieze and H. Kaplan, A new rounding procedure for the assignment problem with applications
to dense graph arrangement problems, Mathematical Programming, 92(1), 2002, 1-36.

[6] R.E. Burkard, E. Cela, P. Pardalos and L.S. Pitsoulis, The quadratic assignment problem, In Handbook
of Combinatorial Optimization, D.Z. Du, P.M. Pardalos (Eds.), Vol. 3, Kluwer Academic Publishers, 1998,
241-339.

[7] Eranda Cela, The Quadratic Assignment Problem: Theory and Algorithms, Springer, 1998.

[8] Uriel Feige, Relations between average case complexity and approximation complexity, In Proceedings of the
34th Annual ACM Symposium on Theory of Computing, 2002, 534-543.

[9] Uriel Feige, Guy Kortsarz, and David Peleg, The Dense k-Subgraph Problem, Algorithmica, 29(3), 410-421,
2001.

[10] Uriel Feige and Michael Langberg, Approximation Algorithms for Maximization Problems Arising in Graph
Partitioning, Journal of Algorithms, 41(2), 2001, 174-211.

[11] T. Feo and M. Khellaf, A class of bounded approximation algorithms for graph partitioning, Networks, 20,
1990, 181-195.

[12] N. Guttmann-Beck and R. Hassin, Approximation algorithms for minimum tree tree partition, Discrete
Applied Mathematics, 87, 1998, 117-137.

[13] N. Guttmann-Beck and R. Hassin, Approximation algorithms for min-sum p-clustering, Discrete Applied
Mathematics, 89, 1998, 125-142.

[14] R. Hassin, A. Levin and M. Sviridenko, Approximating the minimum quadratic assignment problems, Sub-
mitted for publication.

[15] R. Hassin and S. Rubinstein, Robust matchings. SIAM J. Discrete Math. 15 (2002), pp. 530–537.

[16] R. Hassin and S. Rubinstein, An improved approximation algorithm m for the metric maximum clustering
problem with given cluster sizes, Information Processing Letters 98 (2006), pp. 92-95.

[17] R. Hassin, S. Rubinstein and A. Tamir, Approximation Algorithms for Maximum Dispersion, Operations
Research Letters 21 (1997), pp. 133-137.



12 Nagarajan and Sviridenko: On the Maximum Quadratic Assignment Problem
Mathematics of Operations Research 00(0), pp. xxx–xxx, c©20xx INFORMS

[18] Subhash Khot, Ruling Out PTAS for Graph Min-Bisection, Dense k-Subgraph, and Bipartite Clique, SIAM
J. Comput., 36(4), 2006, 1025-1071.

[19] E.M. Loilola, N.M.M. De Abreu, P.O. Boaventura-Netto, P.M. Hahn, and T. Querido, A survey for the
quadratic assignment problem, Invited Review, European Journal of Operational Research, 176, 657-690,
2006.

[20] P. Pardalos and H. Wolkowitz, eds., Proceedings of the DIMACS Workshop on Quadratic Assignment Prob-
lems, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 16, 1994.

[21] E. Petrank, The hardness of approximation: gap location, Computational Complexity, 4, 1994, 133-157.

[22] M. Queyranne, Performance ratio of polynomial heuristics for triangle inequality quadratic assignment prob-
lems, Operations Research Letters, 4, 1986, 231-234.

[23] S. Sahni and T. Gonzalez, P-complete approximation problems, J. ACM, 23, 1976, 555-565.

[24] V. Vazirani, Approximation Algorithms, Springer, 2002.

[25] N.C. Wormald, Models of random regular graphs. Surveys in Combinatorics, 1999, J.D. Lamb and D.A.
Preece, eds. London Mathematical Society Lecture Note Series, vol 276, pp. 239-298.


