
Approximation Algorithms for Requirement cut on graphs

Viswanath Nagarajan∗ R. Ravi†

Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15213.

Abstract

In this paper, we unify several graph partitioning problems including multicut, multiway cut,
and k-cut, into a single problem. The input to the requirement cut problem is an undirected
edge-weighted graph G = (V, E), and g groups of vertices X1, · · · , Xg ⊆ V , with each group Xi

having a requirement ri between 0 and |Xi|. The goal is to find a minimum cost set of edges
whose removal separates each group Xi into at least ri disconnected components.

We give an O(log n · log(gR)) approximation algorithm for the requirement cut problem,
where n is the total number of vertices, g is the number of groups, and R is the maximum
requirement. We also show that the integrality gap of a natural LP relaxation for this problem
is bounded by O(log n · log(gR)). On trees, we obtain an improved guarantee of O(log(gR)).
There is an Ω(log g) hardness of approximation for the requirement cut problem, even on trees.

1 Introduction

Graph partitioning problems form a fundamental area of the study of approximation algorithms.
The simplest graph partitioning problem is the well known s-t minimum cut problem, where given
an edge weighted graph and two specified vertices s and t, the goal is to find a minimum weight set
of edges whose removal disconnects s and t. The classical result of Ford & Fulkerson [18] proved a
max-flow min-cut duality which related the maximum flow and minimum cut problems.

Multicut: Klein et al. [14] considered a generalization of the s-t minimum cut problem to
multiple pairs. In the multicut problem, given a set of source-sink pairs {(s1, t1), · · · , (sk, tk)} in
an edge-capacitated graph, the goal is to find a minimum capacity set of edges whose removal
separates each si from ti. The corresponding flow problem is maximum multicommodity flow:
there is one commodity for each si-ti pair, and the objective is to maximize the total flow routed
(over all commodities) while respecting the capacities. Klein et al. [14] gave an O(log C · log2 k)
approximation algorithm for multicut, where C is the total capacity over all edges. Garg et al. [10]
improved the approximation guarantee to O(log k), which is currently the best known. In [10], the
authors also proved that the ratio of the minimum multicut to the maximum multicommodity flow
is Θ(log k).

Multiway cut: In this problem, there is a set X of terminals, and the goal is to remove a
minimum cost set of edges so that no two terminals are in the same connected component. The first

∗Supported in part by NSF ITR grant CCR-0122581 (The ALADDIN project) and CCF-0728841. Email:
viswa@cmu.edu

†Supported in part by NSF grants CCF-0430751, CCF-0728841 and ITR grant CCR-0122581 (The ALADDIN
project). Email: ravi@cmu.edu

1

approximation algorithm for this problem was due to Dahlhous et al. [7], which gave a guarantee
of 2(1− 1

|X|). Using a clever geometric LP relaxation [5], the approximation ratio was improved to
1.3438 in the two papers [5, 11].

Multi-multiway cut: Recently, Avidor & Langberg [4] extended multiway cut and multicut
to a multi-multiway cut problem. Given g sets of vertices X1, · · · , Xg, the goal is to find a minimum
cost set of edges whose removal completely disconnects each of the sets X1, · · · , Xg. The authors [4]
presented an O(log g) approximation algorithm for multi-multiway cut.

Steiner multicut: Another interesting graph partitioning problem is the Steiner multicut
problem [12]. In this problem, we are given g groups of vertices X1, · · · , Xg, and the goal is to find
a minimum cost set of edges that separates each group X1, · · · , Xg. A set S of vertices is said to
be separated, if S is not contained in a single connected component. Klein et al. [12] presented an
O(log3 gt) approximation algorithm for this problem, where t = maxg

i=1 |Xi| is the maximum size
of a group.

k-cut: This is another well studied graph partitioning problem [23], where the goal is to find a
minimum cost set of edges that separates the graph into at least k connected components. Saran &
Vazirani [23] gave the first approximation algorithm for this problem, which achieves a guarantee of
2− 2/k. Alternate algorithms for this problem, achieving the same approximation guarantee were
given by [21, 22]. More recently, Chekuri & Guha [6] considered the Steiner k-cut problem. This
is a generalization of the k-cut problem, where a subset X of vertices is specified as terminals, and
the objective is to find a minimum cost set of edges whose removal results in at least k disconnected
components, each containing a terminal. Chekuri & Guha [6] showed that the greedy algorithm
of [23] can be modified to get a 2− 2/k-approximation for this problem. They also showed how to
round a natural LP relaxation to achieve the same bound.

In this paper, we study a common generalization that unifies all the graph partitioning prob-
lems mentioned above (see Figure 1). The input to the requirement cut problem is an n-
vertex undirected graph G = (V,E) with non-negative costs ce on its edges, g groups of vertices
X1, X2, · · ·Xg ⊆ V with a requirement ri between 0 and |Xi| for each group Xi. The objective
is to find a minimum cost set of edges whose removal separates each group Xi into at least ri

disconnected components (each of which contains at least one member from the group). Below we
summarize some of the cut problems in our framework, how requirement cut generalizes them, and
the best known approximation results for each of them.

Cut Problem Modeling as Requirement cut Best approximation ratio
Multicut |Xi| = ri = 2 for all i = 1, · · · , g O(log g) [10]
Multiway cut g = 1, r1 = |X1| 1.3438 [11]
Multi-multiway cut ri = |Xi| for all i = 1, · · · , g O(log g) [4]
Steiner multicut ri = 2 for all i = 1, · · · , g O(log3 gt) [12]

O(log n · log g) (this paper)
Steiner k-cut g = 1, k = r1 ≤ |X1| 2(1− 1

k) [6]
Requirement cut — O(log n · log(gR)) (this paper)

1.1 Our Results and Paper Outline

We obtain an O(log n·log(gR)) approximation algorithm for the requirement cut problem on general
graphs, where n is the number of vertices in the graph, g is the number of groups and R = maxg

i=1 ri

is the maximum requirement of any group. We present two algorithms achieving this guarantee.

2

Requirement cut

Multiway

cut

Multicut

Steiner

multicut

k-cut

Steiner k-cut

Figure 1: Containment of cut problems

The first (and more interesting) algorithm is via rounding a natural LP relaxation. This also shows
that the integrality gap of this LP relaxation is at most O(log n · log(gR)). The LP rounding
procedure is described in Section 2. The second algorithm is based on the greedy heuristic for set
cover. The greedy step in this approach is an interesting problem in itself, and has been studied in
Klein et al. [12] as the Steiner ratio cut problem. We provide an improved approximation algorithm
for this problem (when n is at most polynomial in gt), and show that it yields an O(log n · log(gR))
approximation algorithm for the requirement cut problem. The greedy algorithm is presented in
Section 3.

We also show that when restricted to trees, the approximation ratio for requirement cut can
be improved to O(log(gR)). On the other hand, a simple reduction from set cover shows that this
problem is at least Ω(log g) hard to approximate, even on a star (Section 2.2). The LP rounding
algorithm on trees generalizes the randomized rounding for set cover, whereas the second method
extends the set cover greedy algorithm. While the first algorithm relies on the tree structure
for rounding and hence incurs a log-squared overhead, the second method leaves some hope for
improvement. The running time of the first algorithm is better, as it involves solving a single linear
program.

As noted in the introduction, the Steiner multicut problem of Klein et al. is a special case
of the requirement cut problem; so our algorithm implies an improved approximation ratio of
O(log n · log g) for Steiner multicut. However, we note that using a similar idea even the algorithm
in [12] can be shown to achieve this improved guarantee.

2 LP based algorithm

In this section, we present an O(log n · log(gR)) approximation algorithm for requirement cut based
on rounding a natural linear program. We first formulate requirement cut as an integer program,
and obtain its linear relaxation (Section 2.1). Then we consider the case when the input graph
is a tree, and show that randomized rounding gives an O(log(gR)) approximation (Section 2.2).
Finally we show how requirement cut on a general graph can be reduced to requirement cut on a
tree through the LP, to obtain an approximation algorithm for the general case (Section 2.3).

3

2.1 IP formulation and a linear relaxation

We consider an integer program for the requirement cut problem, and a linear relaxation for it. This
formulation is a generalization of that used in Chekuri & Guha [6] for the Steiner k-cut problem.
By adding edges of zero cost, we may assume that the input graph G = (V, E) is complete. Our
IP has a 0-1 variable de for each edge e ∈ E, which represents whether or not this edge is cut.

min
∑

e∈E cede

s.t.
(Steiner − IP)

∑
e∈Ti

de ≥ ri − 1 ∀Ti : Steiner tree on Xi, ∀i = 1 · · · g
de ∈ {0, 1} ∀e ∈ E

This integer program is clearly an exact formulation of the requirement cut problem. However, the
LP relaxation of Steiner − IP does not have a polynomial time separation oracle (the separation
problem is minimum Steiner tree). So we consider a relaxation of the Steiner tree constraints, by
requiring that all spanning trees on the induced graph G[Xi] have length at least ri − 1, for each
group Xi. Observe that, in any minimal solution to (Steiner − IP), the edge variables d satisfy
the triangle inequality: i.e. for any vertices u, v, w ∈ V , if d(u,v) = d(v,w) = 0 then d(u,w) = 0.
So addition of the triangle inequality constraints to (Steiner − IP) does not change the optimal
solution. Relaxing the integrality of d, we obtain the following linear programming relaxation for
requirement cut.

min
∑

e∈E cede

s.t.
(LP)

∑
e∈Ti

de ≥ ri − 1 ∀Ti : spanning tree in G[Xi], ∀i = 1 · · · g
d(u,w) ≤ d(u,v) + d(v,w) ∀u, v, w ∈ V

0 ≤ de ≤ 1 ∀e ∈ E

Note that (LP) can be solved in polynomial time using the ellipsoid algorithm (using a minimum
spanning tree algorithm in the separation oracle). Let d∗ denote an optimal solution to (LP), and
define a new length function d as de = min{2 · d∗e, 1} for all e ∈ E. Since d∗ is a metric, so is d. It
is also clear that edge lengths in both d∗ and d are in [0, 1]. The next claim follows from the MST
heuristic for Steiner tree.

Claim 1 For any group Xi (i = 1, · · · g), the minimum Steiner tree on Xi w.r.t. d has length at
least ri − 1.

Proof: We fix a group i for the rest of the proof. Let S = (V (S), E(S)) be the minimum Steiner
tree (under metric d) on group Xi. Denote the length of S by d(S). We will construct a spanning
tree S′ on Xi which has d∗-length d∗(S′) ≤ d(S). Since d∗ is a feasible solution to the linear program
(LP), the claim would follow. Vertices in Xi are referred to as terminals, and vertices in V \ Xi

are Steiner vertices. Edges in which both end points are terminals are called terminal edges, and
all other edges are Steiner edges.

We first modify S so that the only length 1 (in metric d) edges in S are terminal edges. If
(u, v) is an edge in S with du,v = 1 and u is a Steiner vertex, then consider removing edge (u, v)
from S to obtain 2 subtrees Su and Sv. Clearly there is at least one terminal in each of Su and Sv.
Arbitrarily add an edge (u′, v′) to S where u′ ∈ Su and v′ ∈ Sv are terminals. It is clear that the
length of S does not increase since du′,v′ ≤ 1. So we may assume that all Steiner edges in S have

4

d-length strictly less than 1. Now consider the length function d∗: from the preceding argument,
any Steiner edge e ∈ E(S) has length d∗e = de/2.

We now shortcut over Steiner vertices in S to obtain a spanning tree S′ on Xi, as follows.
Let Et ⊆ E(S) denote the set of terminal edges in S, and {Tj}l

j=1 the trees in the forest induced
by E(S) \ Et. Note that in each tree Tj , all leaves are terminals and all edges are Steiner edges.
Taking an Euler tour of each tree Tj , we obtain tree T ′j over just the terminals spanned by Tj ; since
all edges of Tj are Steiner edges, d∗(T ′j) ≤ 2 · d∗(Tj) = d(Tj). We now obtain the spanning tree
S′ on Xi as S′ = Et ∪ (∪l

j=1T
′
j). Since d∗e ≤ de for all edges, we can bound the length of S′ as

d∗(S′) =
∑

e∈Et
d∗e +

∑l
j=1 d∗(T ′j) ≤

∑
e∈Et

d∗e +
∑l

j=1 d(Tj) ≤
∑

e∈Et
de +

∑
e∈E(S)\Et

de = d(S).
This proves the claim.¥

2.2 LP rounding for requirement cut on trees

In this section, we consider a special case of requirement cut when the input graph is a tree. We show
how to round the linear program (LP) within a factor of O(log gR), to obtain an approximation
algorithm for requirement cut on trees. We note that even this restriction is at least as hard to
approximate as set-cover. Consider a star with one edge corresponding to each set in the set-cover
instance. For each element j, we create a group that contains the root, and the leaves of all edges
corresponding to sets containing j. Further, we set the requirement of each group to 2, and all edge
costs to 1. Clearly, there is a one-to-one correspondence of feasible solutions to the requirement
cut instance and the set cover instance, which also preserves the cost. This shows that requirement
cut on trees is at least Ω(log g) hard to approximate [9].

Given a requirement cut instance on a tree T = (V, E), the algorithm begins by solving (LP)
optimally and obtaining the solution d defined in Claim 1. Let OPT ∗ denote the optimal value
of (LP). We now describe how d is rounded to an integral solution. Our algorithm proceeds in
phases, and augments the (partial) solution in each phase. Let Ck ⊆ E denote the partial solution
at the start of the phase k; so C1 = φ. Let F k = T \ Ck denote the forest in phase k, with the
edges in Ck removed. Each phase involves a randomized rounding for all the edges: the rounding
in phase k picks each edge e ∈ F k independently with probability de, and adds all chosen edges
to the partial solution Ck to get Ck+1. It is clear that the expected cost in each phase is at most∑

e∈F cede ≤ 2
∑

e∈E ced
∗
e = 2 ·OPT ∗.

Let ck
i denote the number of connected components containing Xi in F k. The residual require-

ment of group Xi at the start of phase k is defined to be sk
i = max{0, ri − ck

i }. The rounding
procedure ends when the residual requirement of each group is 0, and the requirement of each
group is completely satisfied at this point. We show that the expected number of phases in this
algorithm is O(log gR), which gives us the desired approximation guarantee. The main step in this
is to show that in each phase, the total residual requirement (summed over all groups) goes down
by a constant factor in expectation. This technique was also used in the paper of Konjevod et
al. [15] on the covering Steiner problem.

2.2.1 Rounding in a single phase

The analysis here is for a single phase, and we drop the superscript k for ease of notation. For a
group Xi, define Fi to be the sub-forest induced by Xi in F . Let Hi be the forest obtained from
Fi by short cutting over all degree two Steiner (non Xi) vertices. So all Steiner vertices in Hi have
degree at least 3. Such a forest is useful because of the following claim.

5

Claim 2 Suppose H = (V (H), E(H)) is a forest with vertices X ⊆ V (H) denoted terminals, and
with each vertex V (H)\X having degree at least 3. Then, the removal of any m ≥ 1 edges of E(H)
results in at least dm+1

2 e more components containing terminals.

Proof: It suffices to prove the claim when H is a tree. The forest case can be obtained by adding
the contributions from its trees (and using the fact that dae + dbe ≥ da + be). Consider any set
A ⊆ E(H) of m ≥ 1 edges, and the components C1, C2, · · ·Cm+1 of H \A. Denote a component Ci

to be terminal, if it contains a terminal, and non-terminal otherwise. We can think of A as a tree
T ′ on the node set {C1, · · ·Cm+1}. Suppose that a non-terminal component Ci has l non terminals,
and f edges leaving it. Since each non-terminal has degree ≥ 3, the total degree in Ci is at least
3l. There are exactly l − 1 internal edges in Ci, so we have a total degree 2l − 2 + f ≥ 3l, i.e.
f ≥ l + 2 ≥ 3. Thus, if we look at the tree T ′, each non terminal component has degree at least 3.
In such a tree, there are at least d |T ′|2 e+ 1 = dm+1

2 e+ 1 terminal Cis, i.e. H \A has at least dm+1
2 e

more terminal components.¥
Recall that si is the residual requirement of group Xi at the start of the current phase. For any

subgraph F ′ of F , the length of F ′ is d(F ′) =
∑

e∈F ′ de. For any pair of vertices u, v ∈ V , let pu,v

denote the probability that vertices u and v are disconnected in this phase of rounding.

Lemma 1 The total probability weight on Hi,
∑

e∈Hi
pe, is at least (1− 1

e) · d(Hi).

Proof: For those edges e of Hi which are also edges in F , it is clear that pe = de. Now consider an
edge (u, v) ∈ Hi that is obtained by short cutting a path P in Fi. We claim that pu,v ≥ (1− 1

e)du,v.
Since each edge is rounded independently, and u and v are separated if any of the edges in P is
removed, pu,v = 1−Πe∈P (1− de) ≥ 1− e−d(P). We consider the following 2 cases:

• d(P) ≤ 1. Note that 1−e−y ≥ (1−1/e)y for y ∈ [0, 1]. So in this case, pu,v ≥ (1−1/e)d(P) ≥
(1− 1/e)du,v, since d is a metric.

• d(P) ≥ 1. In this case pu,v ≥ 1− 1/e ≥ (1− 1/e)du,v, since du,v ∈ [0, 1].

Thus, summing pu,v over all edges (u, v) ∈ Hi we get the lemma. ¥
Now consider adding edges to forest Hi to make it a Steiner tree on Xi. If Xi appears in

ci connected components in F , we need to add ci − 1 edges. Since every edge has d-length at
most 1, adding ci − 1 edges increases the length of Hi by at most ci − 1. But from Claim 1,
every Steiner tree on Xi has length at least ri − 1. So we get d(Hi) + (ci − 1) ≥ (ri − 1), i.e.,
d(Hi) ≥ ri − ci = si (assuming that group Xi has residual requirement si ≥ 1). Lemma 1 then
implies that

∑
e∈Hi

pe ≥ (1− 1/e)si ≥ si
2 .

Consider a 0-1 random variable Zi
e for each edge e = (u, v) ∈ Hi, which is 1 iff vertices u

and v are disconnected in this phase, and 0 otherwise; note that Pr[Zi
e = 1] = pe. The edges in

forest F corresponding to each e ∈ Hi are disjoint; so the random variables Zi
e (for e ∈ Hi) are

independent. Let Yi =
∑

e∈Hi
Zi

e, which is the number of edges cut in forest Hi. Although Hi is
not a subgraph of F , disconnecting vertices in Hi is equivalent to disconnecting them in F . Now,
E[Yi] =

∑
e∈Hi

E[Zi
e] =

∑
e∈Hi

pe ≥ si
2 . We make use of the following version of the Chernoff bound

(see eg., Motwani & Raghavan [19], Theorem 4.2). 1

1In the preliminary version of this paper [20], we used only linearity of expectation in the analysis, which is
incorrect. This stronger deviation bound is required for the rounding analysis to work.

6

Lemma 2 (Chernoff bound) Let I1, · · · , In be independent 0-1 random variables, I =
∑n

j=1 Ij,
and E[I] = µ. Then for any 0 < δ < 1, Pr[I < (1− δ) · µ] < e−µδ2/2.

Since Yi is the sum of independent 0-1 random variables Zi
e, and E[Yi] ≥ si

2 , Lemma 2 implies the
following for any group Xi with positive residual requirement (si ≥ 1):

Pr[Yi <
si

4
] ≤ Pr[Yi <

1
2
E[Yi]] < e−E[Yi]/8 ≤ e−si/16 ≤ e−1/16

Let Ni be the increase in the number of components of group Xi in this phase. Since Hi is a forest
that satisfies the conditions of Claim 2, we have Ni ≥ Yi/2. Thus we have:

Pr[Ni <
si

8
] ≤ Pr[Yi <

si

4
] ≤ e−1/16 (1)

2.2.2 Bounding the number of phases

Let random variable Sk
i denote the residual requirement of group Xi at the start of phase k,

and Nk
i the increase in the number of components of group Xi in phase k. Note that Sk+1

i =
max{Sk

i −Nk
i , 0}. The analysis in Section 2.2.1 holds for any phase k. Rewriting inequality (1), we

have q = Pr[Sk+1
i > 7

8si|Sk
i = si] = Pr[Nk

i < si
8 |Sk

i = si] ≤ e−1/16 (although (1) requires si ≥ 1,
note that this inequality is trivial when si = 0). Thus,

E[Sk+1
i |Sk

i = si] ≤ si · q +
7si

8
· (1− q) =

7 + q

8
si

So unconditionally, E[Sk+1
i] ≤ α·E[Sk

i], where α = 7+q
8 ≤ 7+e−1/16

8 is a constant less than 1. Now let
Sk =

∑g
i=1 Sk

i be the total residual requirement at the start of phase k. By linearity of expectation,
E[Sk+1] =

∑g
i=1 E[Sk+1

i] ≤ α
∑g

i=1 E[Sk
i] = α ·E[Sk]. Applying this inequality recursively, we have

that after k phases, E[Sk+1] ≤ αkE[S1] ≤ αk ·gR, since the total residual requirement at the start of
the algorithm S1 =

∑g
i=1 ri ≤ gR. So if we choose k∗ = log2(gR)+2

log2(1/α) = O(log(gR)), E[Sk∗+1] ≤ 1/4.
Using the Markov inequality, Pr[Sk∗+1 ≥ 1] ≤ 1/4. Recall that the expected cost in each phase is at
most 2 ·OPT ∗; so after k∗ phases the expected total cost is at most 2k∗ ·OPT ∗. Again applying the
Markov inequality, with probability at least 3

4 , the total cost after k∗ phases is at most 8k∗ ·OPT ∗.
So with probability at least 1

2 , this rounding algorithm produces a feasible solution of cost at most
8k∗ ·OPT ∗ = O(log(gR)) ·OPT ∗. Thus, we have proved the following.

Theorem 1 There is a polynomial time randomized rounding algorithm for requirement cut on
trees, that obtains a solution of cost O(log(gR)) times the optimal value of (LP).

This also shows that the integrality gap of (LP) on trees is O(log(gR)). A lower bound of Ω(log g)
on the integrality gap of (LP) follows from the integrality gap example for the set cover linear
program. So the analysis in this section is almost tight.

Remark: An alternate rounding algorithm. The rounding algorithm that was analyzed above
can be summarized as follows: if there are k∗ phases, the final (randomized) solution S is obtained
by including each edge e of tree T independently with probability qe = 1 − (1 − de)k∗ . The proof
of Theorem 1 implies that when k∗ ≥ c · log(gR) (for a sufficiently large constant c), the solution
S is feasible to the requirement cut instance with probability at least 3

4 .

7

A related rounding procedure involves picking each edge e of T independently with probability
q̃e = min{k∗ · de, 1} (for a suitable value of k∗); let S̃ denote the resulting randomized solution.
Observe that for any e ∈ T , qe ≤ 1 and qe = 1− (1− de)k∗ ≤ k∗ · de. Thus qe ≤ q̃e for all e ∈ T ; in
other words, the solution S̃ stochastically dominates S. We use the following monotone property
of the requirement cut problem: if S1 is a feasible solution to an instance of requirement cut and
S2 ⊇ S1, then S2 is also a feasible solution. When k∗ ≥ c · log(gR) (for a large constant c), solution
S is feasible to the requirement cut instance with probability at least 3

4 (as mentioned above);
combined with the monotone property and the fact that S̃ dominates S, it follows that S̃ is also a
feasible solution with probability at least 3

4 . As in the proof of Theorem 1, since the expected cost
of solution S̃ is k∗ · OPT ∗, S̃ is a feasible solution of cost at most 8k∗ · OPT ∗ with probability at
least 1

2 .

2.3 LP rounding for requirement cut

In this section we show how the linear program (LP) yields an O(log n · log(gR)) approximation
algorithm for requirement cut on general graphs. This would also show that the integrality gap
of (LP) is at most O(log n · log(gR)). Let I denote any instance of requirement cut on a graph
G = (V (G), E(G)), with groups X1, · · · , Xg and corresponding requirements r1, · · · , rg. Let LPG

denote the LP relaxation for I, d∗ its optimal solution, and OPT ∗ its optimal value. Our rounding
procedure uses solution d∗ (which defines a metric), and embeds it as a fractional solution into a
distribution of tree instances. Then we use the rounding algorithm for requirement cut on trees
(Section 2.2) to obtain an integral solution on a tree instance, which also corresponds to a solution
to the requirement cut instance I. We use the following embedding result of Fakcharoenphol et
al. [8].

Theorem 2 ([8]) For any metric (V, d) with |V | = n, there exists a distribution T of tree metrics
satisfying:

1. For all (T, κ) ∈ T , κi,j ≥ di,j , ∀ i, j ∈ V .

2. ET [κi,j] ≤ ρ · di,j , ∀ i, j ∈ V , where ρ = O(log n).

Furthermore, trees from distribution T can be sampled in polynomial time.

The rounding algorithm on general graphs first embeds metric (V (G), d∗) into a distribution
T of dominating tree metrics, as in Theorem 2. Let (T, κ) ∈R T be a random tree metric from
this distribution. Here T = (V (T), E(T)) is a tree on the vertex set V (G) plus some additional
(Steiner) vertices, and κ defines a tree metric on V (T) by assigning distances to the tree edges
E(T). For any edge e ∈ E(T), we denote by sepe the set of edges of the original graph G that
are separated by e: sepe = {(i, j)|i, j ∈ V (G), e lies on the i − j path in T}. Edge costs in T are
defined as follows: c′e =

∑
(i,j)∈sepe

ci,j for all e ∈ E(T) (non tree edges have cost 0). Consider a
random instance J of requirement cut on trees, defined on T with cost function c′, and groups
X1, · · · , Xg having requirements r1, · · · , rg (same as in I). Given any feasible integral solution S
to the tree instance J , it is clear that the edge-set ∪e∈Ssepe defines a feasible integral solution to
I of the same cost.

Now consider the LP relaxation LPT of J (a requirement cut instance on trees). Define κ′u,v =
min{κu,v, 1} for all u, v ∈ V (T); note that κ′ is a metric with distances in [0, 1]. Since κ restricted
to V (G) dominates d∗ (Theorem 2) and d∗ is a metric with distances in [0, 1], κ′ restricted to V (G)

8

also dominates d∗. So for any spanning tree Ti on a group Xi, its length under κ′, κ′(Ti) ≥ d∗(Ti),
its length under d∗. Since d∗ is a feasible solution for LPG, we get κ′(Ti) ≥ ri − 1. Thus κ′ is a
feasible (fractional) solution to LPT . The cost of this fractional solution is given by the random
variable C =

∑
u,v∈V (T) c′u,v · κ′u,v =

∑
e∈E(T) c′e · κ′e ≤

∑
e∈E(T) c′e · κe (since κ dominates κ′). Now

since κ is a tree metric,

C ≤
∑

e∈E(T)

c′e · κe =
∑

e∈E(T)

κe

∑

(i,j)∈sepe

ci,j =
∑

i,j∈V (G)

ci,j

∑

e:(i,j)∈sepe

κe =
∑

i,j∈V (G)

ci,j · κi,j

Using Theorem 2 and linearity of expectation, we get E[C] ≤ ρ·∑i,j∈V (G) ci,jd
∗
i,j = O(log n)·OPT ∗.

Now using the rounding algorithm for trees (Theorem 1), we get an integral solution to J of
expected cost at most O(log n · log(gR)). Since any integral solution to J also corresponds to an
integral solution to I, we obtain the following.

Theorem 3 There is a polynomial time randomized rounding algorithm for requirement cut on
graphs, that obtains a solution of cost O(log n · log(gR)) times the optimal value of (LP).

Remark: Improved approximation for small sized groups. We note that there is an alternate
algorithm that gives an O(t log g) approximation ratio, where t = maxg

i=1 |Xi| is the size of the
largest group. This follows from the algorithm for multi-multiway cut [4]. We first solve the LP
relaxation (LP) to get a metric d∗ with objective value OPT ∗. The following argument holds for
any group Xi. Consider a minimum spanning tree Ti on Xi, with length d∗(Ti) ≥ ri−1. Since each
edge has length at most 1, Ti has at least ri − 1 edges of length at least 1

t . Removing the ri − 1
longest edges in Ti, we obtain ri connected components. Pick one Xi-vertex from each component
to obtain set Si = {s1, s2, · · · , sri} ⊆ Xi. Since Ti is an MST on Xi, each pairwise distance (under
metric d∗)in Si is at least 1

t .
Define a new metric d′ = min{t · d∗, 1}. In metric d′, the distance between any pair of vertices

in Si is 1 (for each i = 1, · · · , g). Consider a multi-multiway cut instance on the sets S1, S2, · · · , Sg:
recall that the goal is to remove a minimum cost set of edges that completely disconnects each of
{Si}g

i=1. The approximation algorithm in Avidor and Langberg [4] was based on the following LP
relaxation for multi-multiway cut.

min
∑

e∈E cede

s.t.
d(x,y) ≥ 1 ∀x, y ∈ Si, ∀i = 1 · · · g
d(u,w) ≤ d(u,v) + d(v,w) ∀u, v, w ∈ V

0 ≤ de ≤ 1 ∀e ∈ E

Observe that d′ is a feasible fractional solution to this linear program. So using the algorithm
in [4], we obtain a set of edges whose removal completely disconnects each Si, and has cost at most
O(log g)(d′ · c) ≤ O(t · log g) · OPT ∗. It is clear that this solution is also feasible to the original
requirement cut instance. Thus we have an O(t · log g) approximation for requirement cut, which
is an improvement when the largest group size t is a constant.

3 Greedy algorithm

In this section we present a greedy algorithm for the requirement cut problem that achieves a
guarantee of O(log n·log(gR)). This algorithm is deterministic, and its approximation ratio matches

9

that of the randomized rounding algorithm (Section 2). The greedy algorithm works in phases, and
maintains a partial solution in every phase. Each phase is a greedy step that augments the partial
solution. The algorithm ends when the requirements of all groups have been satisfied. We first
define an appropriate greedy subproblem to solve in each phase, then obtain an approximation
algorithm for this subproblem (Section 3.1), and finally show how this can be used to solve the
requirement cut problem (Section 3.2).

Consider an instance of requirement cut on graph G = (V,E), and groups X1, · · · , Xg having
requirements r1, · · · , rg. As before, by adding 0 cost edges, we assume that graph G is complete.
Let OPT ∗ denote the optimal cost of this instance. The partial solution at the start of phase k
is a set of edges Ck ⊆ E, and the residual graph in phase k is Gk = G \ Ck. For any group Xi,
the residual requirement in phase k is the number of additional components that Xi should be split
into, in order to satisfy its requirement (see also Section 2.2). The total residual requirement (over
all groups) in phase k is denoted φk. In any phase, a group Xi is said to be active if it has a positive
residual requirement. At the start of the algorithm, C1 = φ and the residual requirement of each
group Xi is ri − 1.

In phase k, a cut in graph Gk = (V, E \ Ck) refers to a set of edges of the form ∂kS
.= {(i, j) ∈

E \ Ck|i ∈ S, j /∈ S}, where S ⊆ V is a set of vertices. The coverage of cut ∂kS, cov(∂kS), is
defined as the number of active groups (in phase k) that are separated by ∂kS in Gk. Note that this
definition of coverage does not take into account, the increase in the number of components of a
group: this is because if the increase is more than the residual requirement of the group, it does not
help in satisfying any requirement. The cost-effectiveness of cut ∂kS is defined to be the ratio of
its cost to its coverage, and is denoted eff(∂kS) = c(∂kS)

cov(∂kS) . In each phase k, the greedy algorithm
adds a cut of (approximately) minimum cost effectiveness to its partial solution, to obtain Ck+1.
Since the algorithm only removes cuts and the initial graph G is complete, in each phase, all the
connected components are complete 2. The next lemma shows why the minimum cost-effective cut
is a good choice as a greedy step.

Lemma 3 In any phase k, there is a cut ∂kM such that M is contained in some connected com-
ponent of Gk, and eff(∂kM) ≤ 2OPT ∗

φk
.

Proof: Let S1, S2, · · ·Sl denote the connected components in the graph obtained by removing the
edges of an optimal solution S∗ from the residual graph Gk. Consider the cuts {∂kSi}l

i=1. It is clear
that each edge in ∪l

i=1∂kSi is contained in S∗, and participates in exactly two cuts in {∂kSi}l
i=1.

So we have
∑l

i=1 c(∂kSi) ≤ 2 ·OPT ∗.
Starting with graph Gk, consider removing cuts step by step, in the order ∂kS1, ∂kS2, · · · ∂kSl,

to end up with the graph Gk \ S∗ having connected components {Si}l
i=1. Note that all connected

components in each step of this procedure are complete, and the cut removed in each step is
contained in some connected component. So in any single step above, the increase in the number
of connected components is at most 1; and the additional requirement satisfied for any group in
one step is also at most 1. So the total (over all groups) additional requirement satisfied in any
one step is equal to the number of (currently active) groups separated in that step. Clearly any
group that is active at some step in this procedure is also active in Gk (i.e., in phase k). So the
total additional requirement satisfied over all groups and all steps is at most

∑l
i=1 cov(∂kSi). On

the other hand, since S∗ is a feasible solution to the requirement cut instance, the total residual
2A connected component consisting of vertices U ⊆ V is said to be complete if every edge with both end-points

in U is present.

10

requirement in Gk \ S∗ is 0. But the total residual requirement in Gk is φk; so the the total
additional requirement satisfied (over all groups & steps) in this procedure is at least φk. Thus we
have

∑l
i=1 cov(∂kSi) ≥ φk. Now,

l
min
i=1

eff(∂kSi) =
l

min
i=1

c(∂kSi)
cov(∂kSi)

≤
∑l

i=1 c(∂kSi)∑l
i=1 cov(∂kSi)

≤ 2
OPT ∗

φk

So the minimum cost effective cut amongst {∂kSi}l
i=1 has cost-effectiveness at most 2OPT ∗

φk
. Fur-

thermore, it is clear that each {Si}l
i=1 lies in some connected component of Gk.¥

3.1 The Steiner ratio problem

In making the greedy choice in any phase, we wish to compute a cut of minimum cost effectiveness.
Formally, we are given a connected graph H = (V (H), E(H)) with costs ce on edges, and g groups
of vertices X1, · · · , Xg ⊆ V (H). Recall that a cut in graph H is any set of edges of the form
∂S = {(i, j) ∈ E(H) : i ∈ S, j /∈ S}, where S ⊆ V (H). The goal is to find a cut that minimizes the
ratio of its cost to the number of groups that it separates. This is also the minimum ratio Steiner
cut problem that was studied in Klein et al. [12], where an O(log2 gt) approximation algorithm was
given. Here, using the results of Fakcharoenphol et al. [8], we improve the approximation ratio
to O(log n). We note that this is an improvement over [12] when n is at most polynomial in gt;
otherwise the earlier O(log2 gt) guarantee is better. When all groups have size 2, the Steiner ratio
problem reduces to sparsest cut [16, 3, 17, 2], for which the currently best known approximation
guarantee is O(

√
log g · log log g) due to Arora et al. [1].

The approximation algorithm for the Steiner ratio problem is based on rounding a natural linear
programming relaxation, which is described below. This is also the LP relaxation that was used
in Klein et al. [12]. Using the MST algorithm in the separation oracle, this LP can be solved by
the Ellipsoid algorithm in polynomial time. Again, we assume that the graph H is complete, by
adding edges of zero cost.

min
∑

e∈E(H) cele
s.t.∑g

i=1

∑
e∈Ti

le ≥ 1 ∀ (T1, · · · , Tg) where,
(LP − ratio) Ti : spanning tree on H[Xi], ∀i = 1, · · · , g

0 ≤ le ≤ 1 ∀e ∈ E(H)
l(u,w) ≤ l(u,v) + l(v,w) ∀u, v, w ∈ V (H)

To see that this is indeed a relaxation of the Steiner ratio problem, consider the optimal solution
B∗ (which is a cut) of the Steiner ratio problem. Define a 0-1 metric l′ corresponding to B∗ by
setting l′(u, v) = 0 iff u and v are in the same connected component in H \ ∂B∗, and 1 otherwise.
Let σ be the number of groups separated by ∂B∗. Clearly, the sum of the minimum spanning trees
in H[Xi] (for i = 1, · · · g) is also σ. Now the metric 1

σ · l′ is a feasible solution to (LP − ratio), and
has cost c(∂B∗)

σ = eff(∂B∗), which is the optimal value of the Steiner ratio problem.
Let l be the optimal solution to (LP − ratio), and OPT ′ =

∑
e∈E(H) ce · le its cost. We now

describe how l can be rounded to get an approximately optimal cut. Using Theorem 2, the algorithm
first embeds metric (V (H), l) to a distribution T of dominating tree metrics. Let (T, κ) ∈R T be a
random sample from T . As defined in Section 2.3, each edge f ∈ T corresponds to a cut in graph

11

H, sepf = {(i, j)|i, j ∈ V (H), f lies on the i − j path in T}. We say that edge f ∈ T separates
group i if removing edge f from T disconnects Xi, and denote this f |Xi. Below, T [Xi] denotes
the tree induced by Xi in T , and MSTi denotes the minimum spanning tree on Xi in the specified
metric. We have,

c(sepf)
cov(sepf)

= min
f∈T

[
κfc(sepf)

κf
∑g

i=1 1f |Xi

]
≤

∑
f∈T κf

∑
(i,j)∈sepf

ci,j∑
f∈T κf

∑g
i=1 1f |Xi

=

∑
i,j ci,j

∑
f :(i,j)∈sepf

κf∑
f∈T κf

∑g
i=1 1f |Xi

=

∑
i,j ci,jκi,j∑g

i=1

∑
f :f |Xi

κf

=

∑
i,j ci,jκi,j∑g

i=1 κ(T [Xi])
≤ 2 ·

∑
i,j ci,jκi,j∑g

i=1 κ(MSTi)
(1)

≤ 2 ·
∑

i,j ci,jκi,j∑g
i=1 l(MSTi)

(2)

≤ 2 ·
∑

i,j

ci,jκi,j (3)

The only non trivial inequalities above are the last three. Since T [Xi] is a Steiner tree on Xi, the
length of an MST on Xi is at most 2 times the length of T [Xi], so (1) follows. For (2), note that κ
restricted to V (H) dominates l, and (3) follows from the feasibility of l in (LP−ratio). It was shown
in [8] that, given a metric (in this case, l) and weights on all pairs of vertices (in this case ci,j), their
tree embedding algorithm can be derandomized to find a single tree with weighted average stretch
at most O(log n) times that of metric l. Thus we can find (in deterministic polynomial time), a
single tree metric (T ′, κ′) such that

∑
i,j ci,j · κ′i,j ≤ ρ ·∑i,j ci,jli,j , where ρ = O(log n). Given such

a tree, the algorithm outputs the minimum cost effective cut B corresponding to an edge of T ′, as
the approximate solution. From the above argument, it follows that eff(∂B) ≤ 2ρ ·OPT ′, and we
obtain an O(log n) approximation algorithm for the Steiner ratio problem.

Since sparsest cut is a special case of the Steiner ratio problem, the Ω(log n) integrality gap for
the sparsest cut linear program [16] also implies that this approximation guarantee is tight for any
algorithm based on the linear program (LP − ratio).

3.2 Approximating requirement cut

As mentioned, the algorithm for requirement cut involves greedily augmenting the partial solution
in phases, until all the residual requirements are 0. The greedy step in phase k is as follows. For each
connected component of the residual graph Gk, run the Steiner ratio algorithm (Section 3.1), and
among all the solutions, pick the cut Bk of minimum cost-effectiveness. Lemma 3 along with the
Steiner ratio approximation implies that eff(∂kBk) ≤ 4ρ · OPT ∗

φk
. Using a standard analysis based

on the greedy algorithm for set cover (see eg., [13]), we obtain that the total cost of the solution
(over all phases) is at most 4ρ(lnφ1+1)·OPT ∗, where φ1 is the total residual requirement in the first
phase of the algorithm. Since φ1 ≤ gR, the cost of the greedy solution is O(log n · log(gR)) ·OPT ∗.
Clearly, the number of phases is at most gR, which gives a polynomial time algorithm.

Theorem 4 The greedy algorithm is an O(log n · log(gR)) approximation algorithm for the require-
ment cut problem on graphs.

12

Note that when restricted to trees, the greedy step is trivial: cuts are just edges, and we can
enumerate all of them. So the greedy algorithm is actually an O(log(gR)) approximation for
requirement cut on trees.

4 Conclusions

It would be interesting to obtain improved approximation guarantees for the requirement cut prob-
lem, even in special cases such as planar graphs. One approach could be to improve the approxi-
mation guarantee for the Steiner ratio problem. Arora et al. [2] used a semidefinite programming
relaxation for sparsest cut (which is a special case of the Steiner ratio problem) to obtain an
O(
√

log n) approximation algorithm. However those techniques do not seem to apply directly to
the Steiner ratio problem, and it would be interesting to see if a suitable SDP relaxation yields a
stronger bound.

References

[1] Sanjeev Arora, James R. Lee, and Assaf Naor. Euclidean distortion and the Sparsest Cut.
Journal of the American Mathematical Society, 21:1–21, 2008.

[2] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and
graph partitioning. In Proceedings of the 36th annual ACM symposium on Theory of computing,
pages 222–231, 2004.

[3] Yonatan Aumann and Yuval Rabani. An O(log k) Approximate Min-Cut Max-Flow Theorem
and Approximation Algorithm. SIAM Journal on Computing, 27(1):291–301, 1998.

[4] A. Avidor and M. Langberg. The Multi-Multiway cut problem. Theoretical Computer Science,
377(1-3):35–42, 2007.

[5] Gruia Calinescu, Howard J. Karloff, and Yuval Rabani. An Improved Approximation Algo-
rithm for Multiway Cut. Journal of Computer and System Sciences, 60(3):564–574, 2000.

[6] Chandra Chekuri and Sudipto Guha. The Steiner k-cut problem. SIAM Journal on Discrete
Mathematics, 20(1):261–271, 2006.

[7] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–894, 1994.

[8] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics
by tree metrics. Journal of Computer and System Sciences, 69(3):485–497, 2004.

[9] Uriel Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):634–
652, 1998.

[10] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate Max-flow Min-
(multi)cut Theorems and Their Applications. SIAM Journal on Computing, 25(2):235–251,
1996.

13

[11] D.R. Karger, P.N. Klein, C. Stein, M. Thorup, and N.E. Young. Rounding algorithms for
a geometric embedding for minimum multiway cut. Mathematics of Operations Research,
29(3):436–461, 2004.

[12] Philip N. Klein, Serge A. Plotkin, Satish Rao, and Eva Tardos. Approximation Algorithms for
Steiner and Directed Multicuts. Journal of Algorithms, 22(2):241–269, 1997.

[13] Philip N. Klein and R. Ravi. A Nearly Best-Possible Approximation Algorithm for Node-
Weighted Steiner Trees. Journal of Algorithms, 19(1):104–115, 1995.

[14] P.N. Klein, S. Rao, A. Agarwal, and R. Ravi. An approximate max-flow min-cut relation for
multicommodity flow, with applications. Combinatorica, 15:187–202.

[15] Goran Konjevod, R. Ravi, and Aravind Srinivasan. Approximation algorithms for the covering
Steiner problem. Random Structures and Algorithms, 20(3):465–482, 2002.

[16] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM, 46(6):787–832, 1999.

[17] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its
algorithmic applications. Combinatorica, 15(2):215–245, 2005.

[18] Jr. L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8, 1956.

[19] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[20] Viswanath Nagarajan and R Ravi. Approximation algorithms for requirement cut on graphs. In
Proceedings of the 8th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, pages 209–220, 2005.

[21] Joseph Naor and Yuval Rabani. Tree packing and approximating k-cuts. In Proceedings of the
12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 26–27, 2001.

[22] R. Ravi and Amitabh Sinha. Approximating k-cuts via network strength. In Proceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 621–622, 2002.

[23] Huzur Saran and Vijay V. Vazirani. Finding k Cuts within Twice the Optimal. SIAM Journal
on Computing, 24(1):101–108, 1995.

14

