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This paper studies an extension of the k-median problem under uncertain demand. We are given an n-vertex
metric space (V, d) and m client sets {Si ⊆ V }m

i=1, and the goal is to open a set of k facilities F such that the
worst-case connection cost over all the client sets is minimized, i.e.,

min
F⊆V,|F |=k

max
i∈[m]





∑
j∈Si

d(j, F )



 ,

where for any F ⊆ V , d(j, F ) = minf∈F d(j, f). This is a “min-max” or “robust” version of the k-median problem.
Note that in contrast to the recent papers on robust and stochastic problems, we have only one stage of decision-
making where we select a set of k facilities to open. Once a set of open facilities is fixed, each client in the uncertain
client-set connects to the closest open facility. We present a simple, combinatorial O(log n+log m)-approximation
algorithm for the robust k-median problem that is based on reweighting/Lagrangean-relaxation ideas. In fact, we
give a general framework for (minimization) k-facility location problems where there is a bound on the number
of open facilities. We show that if the location problem satisfies a certain “projection” property, then both the
robust and stochastic versions of the location problem admit approximation algorithms with logarithmic ratios.
We use our framework to give the first approximation algorithms for robust and stochastic versions of several
location problems such as k-tree, capacitated k-median, and fault-tolerant k-median.
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1. Introduction. Consider the following class of facility location problems: given a metric space
(V, d) with |V | = n locations, and a subset of locations S ⊆ V containing clients that want service, we
want to locate a set of k facilities F ⊆ V to minimize the cost of servicing clients S from the facilities
F , denoted by Φ(F | S). Since the number of facilities to be opened is constrained by the number k, we
refer to such problems as k-facility location problems.

Below we list several examples of problems that fall under this category.

(i) k-Median: For the k-median problem,

Φ(F | S) =
∑

x∈S

d(x, F ),

1



2 Anthony et al.: A Plant Location Guide for the Unsure
Mathematics of Operations Research 00(0), pp. xxx–xxx, c©20xx INFORMS

where we define d(x, F ) = minf∈F d(x, f) .
(ii) k-Center: For the k-center problem,

Φ(F | S) = max
x∈S

d(x, F ).

(iii) k-Person TSP: For the k-person TSP,

Φ(F | S) = minimum total distance traveled by salesmen, one at each f ∈ F,
so as to visit all clients in S.

Many k-facility location problems are known to be NP-hard, and have been extensively studied in both
the computer science and operations research literature.

In this paper, we study several k-facility location problems under uncertainty in demands, i.e., when
the client-set is not fixed in advance. Specifically, we consider the following stochastic and robust versions
of these problems. We are given several sets S1, S2, . . . , Sm of clients, which are called scenarios. The
goal is to locate k facilities that are simultaneously good for all scenarios—more precisely, we want to
minimize the objective function

Robust-Φ =
m

max
i=1

Φ(F | Si),

in the robust (or min-max) version, and

Stochastic-Φ =
m∑

i=1

pi · Φ(F | Si),

in the stochastic version (for given probability values pi for each scenario Si). Recall that Φ(F | Si)
denotes the cost of servicing client set Si using the set of facilities F .

The robust and the stochastic versions of these location problems naturally model cases with uncertain
or dynamic systems. For instance, we might want to locate our facilities knowing that one of several
scenarios are likely to happen but we do not know which. Or, we might know consumer demand patterns
on each day of the week (and maybe on special holidays) and might want to locate facilities to be
simultaneously good given these scenarios. Note that these problems only have a single stage of decision-
making, in contrast to much work that has been done on two-stage stochastic optimization [2, 22, 32, 19,
36].

1.1 Our Results and Techniques. We use the k-median problem as an example to illustrate the
basic ideas of our algorithm. We present an O(log m + log n)-approximation algorithm for the robust
k-median problem in Section 3 where m is the number of different client sets and n is the number
of vertices in the given metric. The algorithm uses ideas from the classical reweighting/Lagrangean
relaxation techniques (see, e.g., [42, 4]) in conjunction with a reverse-greedy algorithm [8]. We note that
the natural approach to solve the problem by embedding the metric space into a tree metric does not seem
to give us an advantage here as we do not know how to obtain a better than logarithmic approximation
for the problem even on a uniform metric. (The uniform metric is one where all points are at equal
distance from each other, and it is a tree metric, since it can be represented as the shortest-path metric
on the leaves of the unweighted star graph K1,n.)

We then show that, in fact, a similar algorithm works for any k-facility location problem that satisfies
the following “β-projection” property for the single-scenario version (this is formalized in (4.2)).

Given any instance of a k-location problem with objective function Φ, client set S, and
an infeasible solution F with K > k facilities, there are K − k facilities F ′ ⊆ F such
that shutting down a random facility in F ′ (chosen uniformly) causes the cost to rise in
expectation by at most β

K−k times the optimum.

To give some intuition for this property, consider the k-median problem, and the special case when
the set F contains the optimal solution F ∗: in this case we can set F ′ = F \ F ∗ and when we close a
facility f ∈ F ′, we assign all the clients originally assigned to f to the facilities these clients were assigned
to in F ∗ = F \ F ′. The sum over all f ∈ F ′ of the cost-increase in shutting down facility f , is at most
OPT, where OPT denotes the optimal objective value. Hence the average cost-increase of shutting down
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a facility in F ′ is at most OPT/|F ′| = OPT/(K− k). Note that we looked only at a special case, and one
has to consider other cases when F ∗ 6⊆ F , but loosely, the projection property says that even if F ∗ 6⊆ F ,
we can “project” the F ∗ onto some k vertices in F , such that closing a random facility from the other
K − k facilities F \ F ∗ behaves more-or-less in the above-mentioned fashion.

In Section 4, we show that for any k-location problem Φ with the above β−projection property and
where the objective function Φ is computable in polynomial time, there is

(i) an O(β · (log n + log m))-approximation algorithm for the robust version of Φ, and
(ii) an O(β · log n)-approximation algorithm for the stochastic version of Φ.

Additionally, the algorithm for stochastic k-location problems is incremental [28, 26] in the following
sense. We obtain a permutation π of all locations V such that for any bound 1 ≤ t ≤ n on the number
of facilities, {π1, · · · , πt} is an approximately optimal solution to the stochastic t-location problem.

We show that the projection property holds for the following problems with β = O(1):

(i) Hard-capacitated k-median with uniform capacities (the non-uniform soft-capacitated version
was studied in [9]),

(ii) Fault-tolerant k-median with non-uniform requirements (the uniform version was studied in [38]),
(iii) k-tree.

Hence, the robust and the stochastic versions of all these problems admit logarithmic approximation
guarantees. We also note that the results for hard-capacitated k-median and non-uniform fault-tolerant
k-median seem to be the first logarithmic approximation guarantees known for even the deterministic
versions of these problems (where there is only one scenario or client set).

Finally, we show that not all natural k-facility location problems give good results using this framework,
since they do not satisfy the projection property. In particular, we show that the stochastic k-center
problem is as hard to approximate as the (minimization) dense-k-subgraph problem. Dense-k-subgraph
is a well-studied problem for which the best approximation guarantee is O(nδ) (for some constant δ <
1/3) [16], and improving on this is a long-standing open question.

We would like to point out that in all the k-location problems we consider, we do not have costs
associated with openings facilities at specific locations.

1.2 Related Work. Location problems under uncertainty have long been studied in the operations
research literature due to their vast applicability in real world scenarios. Sheppard [35] used a scenario
based approach to model uncertainty in demand and minimize the expected cost, while Cooper [11] was
among the first to consider the robust objective on location problems. Following this, similar models
for location problems such as k-median and uncapacitated facility location were studied [29, 41, 33].
See Louveaux [27] and Daskin and Owen [12] for more thorough surveys of location problems under
uncertainty with robust and stochastic objectives; a good summary can be found in the recent survey by
Snyder [37]. The papers by van Hentenryck et al. [39] have also proposed online stochastic algorithms for
some stochastic location problems. However, to the best of our knowledge, no algorithms with provable
guarantees have been given for robust k-median and the other stochastic/robust location problems we
consider in our work.

In the single-scenario case, many results are known for the k-median problem [7, 6, 23, 1, 28, 8] as well
as its capacitated [9] and fault-tolerant versions [38], and k-center problems [34, 20]. Out of these, the
one most relevant to our work is the reverse-greedy algorithm of Chrobak et al [8] whose work we adapt
and extend: our proofs of the projection property give reverse-greedy O(log n)-approximation algorithms
for all the problems we consider.

While facility location problems have been considered in the context of stochastic optimization (see,
e.g., [22, 32, 19, 36]), and robust optimization (see, e.g., [13, 18, 15]), it is not clear how to use the
techniques in these previous papers to solve the problems we consider where we have a strict bound on
the number of open facilities.

Bicriteria results for robust versions of profit maximization k-location problems (e.g., locating k depots
such that one salesman can start at each of these depots and travel for at most some time budget B,
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so as to maximize the number of clients visited) can be obtained by recent work on robust submodular
function maximization by Krause et al. [25].

Outline. In Section 3, we present our results for the robust k-median problem. We first consider the
case of uniform metrics, which gives many of the ideas, and then extend the ideas to general metrics.
We then abstract out the general framework in Section 4. In the following sections (Section 5, Section 6
and Section 7), we show that the k-tree problem, capacitated k-median problem and the fault-tolerant k-
median problem satisfy our general framework and thus admit O(log m+log n)-approximation guarantees
for their robust version, and O(log n)-approximations for their stochastic versions. Finally, we give
evidence of the hardness of approximating stochastic k-center in Section 8.

2. Notation and Preliminaries. In the following discussion, we consider finite metric spaces (V, d)
with |V | = n points. The function d : V × V → R+ satisfies the following two conditions:

(i) d(u, v) + d(v, w) ≥ d(u,w) for all u, v, w ∈ V (triangle inequality),
(ii) d(u, v) = d(v, u) for any u, v ∈ V (symmetry).

A metric (V, d) is uniform if d(x, y) = 1 for all x, y ∈ V, x 6= y. For a set S ⊆ V and j ∈ V , we define
d(j, S) = minj′∈S d(j, j′). We let diam(V, d) denote the diameter of the metric; i.e.,

diam(V, d) = max
i,j∈V

d(i, j).

For any integer t ≥ 1, [t] denotes the set {1, 2, . . . , t}. All logarithms in the paper are base-2 logarithms,
unless otherwise specified. The t-th harmonic number is Ht = 1 + 1

2 + 1
3 + · · ·+ 1

t . We will often use the
standard approximation that Ht = O(log t). We also use the notation ⊕ for symmetric difference, i.e. for
sets A and B, A⊕B = (A \B)

⋃
(B \A).

Approximation Algorithm. Given a minimization problem Π and a parameter α ≥ 1, an α-
approximation algorithm for the problem Π is an algorithm that, on every input instance I, outputs
a feasible solution whose cost is at most a factor α times the cost of an optimal solution for the instance
I [40] in time polynomial in the length of the input.

3. The Robust k-Median Problem. In the robust k-median problem, we are given an n-vertex
metric space (V, d), m subsets S1, · · · , Sm ⊆ V of clients, and a bound k on the number of facilities. We
want to find a set of k facilities F ⊆ V that minimizes the objective,

m
max
i=1

∑

v∈Si

d(v, F ).

In this section, we prove the following.

Theorem 3.1 (Robust k-Median Result) There is an O(log m+ log n)-approximation algorithm for
the robust k-median problem where m is the number of client sets and n is the number of vertices in the
given metric.

3.1 A Warm Up: the Uniform Metric. We first study the special case when (V, d) is a uniform
metric. The analysis here illustrates the basic ideas for the subsequent algorithms. In the uniform metric
case, the problem can be recast as follows:

Given a ground set V and a family of m sets S1, · · · , Sm ⊆ V , find a set F ⊆ V where
|F | = k such that the maximum “exposure” maxm

i=1 |Si \ F | is minimized.

The set F corresponds to open facilities and the exposure of any set Si is the number of elements in
Si that are left uncovered by the open facilities, i.e. |Si \ F |. We first observe that it is NP-hard to
approximate robust k-median on uniform metrics to better than a factor of 2.

Theorem 3.2 The robust k-median problem on uniform metrics is NP-hard.

Proof. We reduce from the decision version of the minimum vertex cover problem: given a graph
G = (V, E) and a parameter k, the goal is to decide if there is a subset V ′ ⊂ V with |V ′| ≤ k such that
for each edge (u, v) ∈ E, at least one of u and v is in V ′.
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Given an instance 〈G = (V, E), k〉 of vertex cover, we construct a robust k-median instance as follows.
We consider a uniform metric on the vertex set V , and corresponding to each edge e = (u, v) ∈ E there
is a scenario Se = {u, v}. The goal is to open k facilities F so as to minimize the maximum exposure,
maxe=(u,v)∈E |{u, v} \ F |.

If G has a vertex cover V ′ of size k, then setting F = V ′ would cover at least one vertex from each set
{Se | e ∈ E}, and hence the optimal value of robust k-median is at most 1. On the other hand, if G has
no vertex cover of size at most k then any choice of F ⊆ V (of size k) would miss both vertices of some
edge in E. Hence in this case, the optimal value of the robust k-median instance would be 2. Since the
vertex cover problem is NP-hard, this proves the theorem.

The same reduction implies that robust k-median on general metrics is (2 − ε)-hard to approximate
for any ε > 0. For this, we modify the above uniform metric by introducing L (some large number)
copies of each vertex in V (all copies of a vertex are at zero distance from each other), and for each edge
e = (u, v) ∈ E scenario Se consists of all copies of vertices u and v. In this case, if G has a vertex cover of
size k then the optimal value is L; otherwise the optimal value is 2L. Thus it is NP-hard to approximate
robust k-median on general metrics to better than factor two. ¤

Our algorithm for the uniform metric robust k-median problem is based on maintaining ‘weights’ for
each scenario and reweighting them appropriately. This technique is similar to the Experts algorithm
in learning theory (see survey [3]), and the fast combinatorial algorithms for solving fractional cover-
ing/packing linear programs [31].

We first observe that two natural greedy algorithms do not work well for this problem. One simple
approach is to start with all elements, and repeatedly drop the element that increases the exposure of the
fewest sets, until the number of elements is k. Another greedy approach would be to repeatedly drop any
element that keeps the maximum exposure minimized, until the number of elements is k. Appendix B
gives bad examples for both these algorithms.

In order to get a result for minimizing the maximum exposure, we “penalize” the newly exposed sets
by increasing their weights, so that exposing them further costs us even more. Formally, the algorithm
is as stated in Algorithm I.

Algorithm I: Uniform Metric Robust k-Median
• Set w1

i ← 1 (1 ≤ i ≤ m) and open facilities F 1 = V .
• For t = 1, · · · , n− k do:

(i) For each v ∈ F t, W t(v) :=
∑

i|Si3v wt
i , i.e. total weight of sets containing v.

(ii) Let vt be the element v ∈ F t that minimizes W t(v)

(iii) Drop this element to get F t+1 ← F t \ {vt}.
(iv) Set wt+1

i ← 2 · wt
i if Si 3 vt; and wt+1

i ← wt
i if Si 63 vt.

• Output F n−k+1 of size k.

The next claim follows immediately from the statement of the algorithm.

Claim 3.3 If the exposure of some set Si at the end of the algorithm is `, then its weight is 2`.

Claim 3.4 Let W t =
∑m

i=1 wt
i be the total weight at the beginning of round 1 ≤ t ≤ n − k, and let the

maximum exposure of the optimal solution be `∗. Then

W t+1 ≤ W t

(
1 +

`∗

n− k − t + 1

)
.

Proof. Let F ∗ be the k elements picked in the optimal solution: they expose at most `∗ in each of
the sets. Note that there are n − k elements in V \ F ∗, and by round t at most t − 1 of these elements
might have been discarded, leaving at least n − k − t + 1 elements in F t \ F ∗. Since each set contains
at most `∗ of these elements, an averaging argument shows that there must be an element such that the
total weight of sets containing it is at most W t × `∗

n−k−t+1 . Thus W t(vt) is at most this quantity. But
the weight adjustment step implies that W t+1 = W t + W t(vt), which proves the lemma. ¤
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We are now ready to prove the performance guarantee of Algorithm I.

Theorem 3.5 If the maximum exposure of the optimal solution is `∗, then the maximum exposure in the
solution found by Algorithm I is O(log n)·`∗+O(log m). Hence there is an O(log m+log n)-approximation
algorithm for robust k-median on uniform metrics.

Proof. By Claim 3.4, the total weight of the m sets at the end of Algorithm I is at most:

W 1 ·
n−k∏
t=1

(
1 +

`∗

n− k − t + 1

)
≤ m · exp

{
n−k∑
t=1

`∗

n− k − t + 1

}

= m · exp{`∗Hn−k},
where Ht is the tth harmonic number. Now if some set is exposed ` times, its weight (and hence the total
weight of all sets) is at least 2` by Claim 3.3. Therefore,

2` ≤ m · exp{`∗Hn−k}. (3.1)

Taking logarithms on both sides of (3.1), we get that

` ≤ log m + O(`∗ ·Hn−k).

Finally using Ht = O(log t) proves the theorem. ¤
We note that an algorithm based on solving a suitable linear programming relaxation followed by

randomized rounding gives an improved (1 + ε)`∗ + O(log m/ε) guarantee (with any constant 0 < ε < 1)
for robust k-median on uniform metrics, where `∗ is the optimal value; the details appear in Appendix A.
However that algorithm does not extend to the case of general metrics considered in the next section.

3.2 Robust k-Median on General Metrics. In this section, we generalize the algorithm on
uniform metrics to obtain an O(log m+log n)-approximation algorithm for the robust k-median problem
on general metrics. This algorithm is based on a reverse greedy algorithm for k-median due to Chrobak
et al. [8] combined with a weight-update scheme similar to the one described above. We assume (by
scaling) that distances in the metric are at least one; and let ∆ := diam(V, d). Then observe that the
optimal value of any robust k-median instance lies in the interval [1, n∆]; recall that n = |V |.

In Algorithm II (described below), we also assume that we know a value B such that 4 · OPT ≤ B ≤
8 · OPT, where OPT is the optimal value of the given robust k-median instance. This assumption can
discharged by running the algorithm several times, trying all values of B that are powers of two in the
interval [1, 8n∆]; and finally taking the minimum cost solution. We need to try O (log(n∆)) different
values for B, which is polynomial in the size of the input.

Algorithm II: Robust k-Median for general metrics
• Set w1

i ← 1 for all 1 ≤ i ≤ m and F 1 ← V .
• For t = 1, · · · , n− k do:

(i) For each v ∈ F t and each 1 ≤ i ≤ m, let δt
i(v) be the increase in the k-median objective for Si when

the set of facilities changes from F t to F t \ {v}, i.e.,

δt
i(v) :=

∑
x∈Si

(
d(x, F t \ v)− d(x, F t)

)
.

(ii) Set F̂ t ← {
v ∈ F t | δt

i(v) ≤ B
2
∀1 ≤ i ≤ m

}
.

(iii) Set vt ← argmin
{∑m

i=1 wt
i · δt

i(v) : v ∈ F̂ t
}

. Drop this vertex and set F t+1 ← F t \ {vt}.
(iv) For all 1 ≤ i ≤ m, update

wt+1
i ← wt

i ·
(

1 +
1

B

)δt
i(v

t)

.

• Output F n−k+1 with k facilities.

We first prove the following lemma.
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Lemma 3.1 In any iteration 1 ≤ t ≤ n − k, there exists a set Qt ⊆ F t of size at most k such that for
each scenario {Si}m

i=1, ∑

v∈F t\Qt

δt
i(v) ≤ 2

∑

x∈Si

d(x, F ∗) ≤ 2OPT,

where F ∗ is an optimal solution to the robust k-median instance, and OPT = maxm
i=1

∑
x∈Si

d(x, F ∗).

Proof. Our arguments here follow those by Chrobak et al. [8]. For each f∗ ∈ F ∗, let η(f∗) :=
argming∈F t d(f∗, g), i.e., the vertex in F t closest to f∗. Let Qt ⊆ F t be the “projection” of F ∗ onto
F t, i.e., the vertices in F t closest to F ∗. Formally, Qt := {η(f∗) | f∗ ∈ F ∗}. Note that the size of the
projection is |Qt| ≤ |F ∗| = k.

In the following discussion, fix any i ∈ {1, · · · ,m}; and the superscripts t are dropped for brevity.
Summing the changes δi(v) over all the vertices in R = F \Q, we get

∑

v∈R

δi(v) =
∑

v∈R

( ∑

x∈Si

d(x, F \ v)−
∑

x∈Si

d(x, F )

)

=
∑

x∈Si

∑

v∈R

(d(x, F \ v)− d(x, F ))

≤
∑

x∈Si

(d(x,Q)− d(x, F )) (3.2)

≤
∑

x∈Si

(2 · d(x, F ∗) + d(x, F )− d(x, F )) (3.3)

= 2
∑

x∈Si

d(x, F ∗). (3.4)

To derive inequality (3.2), consider some client x ∈ Si, and fx ∈ F that serves x in solution F (see also
Figure 1). If fx ∈ Q, then for any v ∈ R,

d(x, F \ v) = d(x, F ) ⇒
∑

v∈R

(d(x, F \ v)− d(x, F )) = 0.

If fx ∈ R, then
∑

v∈R

(d(x, F \ v)− d(x, F )) = d(x, F \ fx)− d(x, F ) ≤ d(x,Q)− d(x, F ).

To obtain inequality (3.3), let f∗x ∈ F ∗ be the facility that serves x in solution F ∗ (see Figure 1). Using
the triangle inequality, we have that

d(x,Q) ≤ d(x, f∗x) + d(f∗x , Q)
= d(x, f∗x) + d(f∗x , F )
≤ d(x, f∗x) + d(f∗x , x) + d(x, F )
= 2 · d(x, F ∗) + d(x, F ).

Finally, for any i ∈ [m], the last expression (3.4) is bounded from above by 2 · OPT. ¤
The following claim ensures that the algorithm is well-defined, and always terminates with a feasible

solution to robust k-median.

Claim 3.6 Assuming B ≥ 4 · OPT, in any iteration 1 ≤ t ≤ n − k and in step (ii) of Algorithm II, we
have F t \Qt ⊆ F̂ t, and hence F̂ t is non-empty.

Proof. By Lemma 3.1, there is a set Qt (of size at most k) such that
∑

v∈F t\Qt δt
i(v) ≤ 2·OPT ≤ B/2

for all scenarios i ∈ [m]. Moreover, the δ’s are non-negative: hence, each individual cost increase δt
i(v)

is at most B/2 for all v ∈ F t \Qt and for all i ∈ [m], implying that F̂ t ⊇ F t \Qt. Since Qt has size at
most k, and |F t| > k, the set F̂ t is non-empty. ¤
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F ∗ F = F t

Qt

x fx

f ∗

x d(x, Q)

d(x, F )

d(x, F ∗)

d(f∗

x
, Q)

Figure 1: Argument for robust k-median. The shaded portion on the right is Q = Qt, and the grey
arrows indicate the “projection” from F ∗ to F .

Claim 3.7 Assuming B ≥ 4 · OPT, in any iteration 1 ≤ t ≤ n− k, we have

min
v∈F̂ t

{
m∑

i=1

wt
i · δt

i(v)

}
≤ 2 · OPT

n− k − t + 1

m∑

i=1

wt
i .

Proof. Let us fix Qt as in Lemma 3.1. Let us sum the weighted δt
i(v) values, this time both over

vertices in F t \Qt and over scenarios i ∈ [m]:

∑

v∈F t\Qt

m∑

i=1

wt
i · δt

i(v) =
m∑

i=1

wt
i ·

∑

v∈F t\Qt

δt
i(v) ≤

m∑

i=1

wt
i · 2 · OPT.

The last inequality follows from Lemma 3.1. Finally, a simple averaging using the fact that F t\Qt ⊆ F̂ t

(from Claim 3.6) shows that:

min
v∈F̂ t

{
m∑

i=1

wt
i · δt

i(v)

}
≤ min

v∈F t\Qt

{
m∑

i=1

wt
i · δt

i(v)

}

≤ 1
|F t \Qt|

∑

v∈F t\Qt

m∑

i=1

wt
i · δt

i(v)

≤ 2 · OPT

n− k − t + 1

m∑

i=1

wt
i .

The last inequality uses |F t \Qt| ≥ n− t− k + 1 since |F t| = n− t + 1 and |Qt| ≤ k. ¤

Lemma 3.2 Assume that B ≥ 4 ·OPT. Let W t =
∑m

i=1 wt
i denote the total weight of all scenarios at the

start of iteration 1 ≤ t ≤ n− k. Then the total weight at the start of the next iteration,

W t+1 ≤ W t · exp
(

1
n− k − t + 1

)
.

Proof. For any iteration t and scenario i, the weight update step ensures that

wt+1
i = wt

i

(
1 + 1

B

)δt
i(v

t) ≤ wt
i · exp (δt

i(v
t)/B) ,

where vt ∈ F̂ t is the facility that is dropped in iteration t. From the definition of the set F̂ t, we have
0 ≤ δt

i(v
t)/B ≤ 1/2. Moreover, for y ∈ [0, 1/2], we have ey ≤ 1 +

√
e · y. This implies

wt+1
i ≤ wt

i ·
(

1 +
√

e
δt
i(v

t)
B

)
,
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and hence

W t+1 ≤
m∑

i=1

wt
i ·

(
1 +

√
e

δt
i(v

t)
B

)
= W t +

√
e

B
·

m∑

i=1

wt
i · δt

i(v
t).

Using Claim 3.7 and the facts that B ≥ OPT/4 and
√

e < 2, it follows that

W t+1 ≤ W t +
√

e
B · 2·OPT

n−k−t+1 ·W t ≤
(
1 + 1

n−k−t+1

)
W t ≤ W t · exp (1/(n− k − t + 1)) ,

where the last inequality follows as 1 + x ≤ ex. ¤
We now prove the main result of this section.

Proof of Theorem 3.1. Let Alg = maxm
i=1

∑n−k
t=1 δt

i(v
t) denote the value of the solution Fn−k+1

at the end of the algorithm, and let i0 be the value of i achieving the maximum in the above expression.
Hence, the total weight

Wn−k+1 ≥ wn−k+1
i0

=
(

1 +
1
B

)Alg

.

Furthermore, repeated applications of Lemma 3.2 imply that

Wn−k+1 ≤ W 1 · eHn−k = m · eHn−k .

Taking logarithms and approximating the harmonic number by a logarithm, we get

Alg ≤ O(log m + log n)/ log
(

1 +
1
B

)
.

Using B = Θ(OPT), B ≥ 1 and the fact that log2(1 + y) ≥ y for y ∈ [0, 1], we get

Alg ≤ O(log m + log n) · OPT.

¤
In the next section, we show how a similar algorithm works for robust and stochastic location problems

satisfying certain properties, and give a general framework for solving such problems.

We note that the stochastic k-median problem can be easily reduced to the usual k-median problem
with weights on clients. Since this latter problem admits a constant factor approximation algorithm [23, 1],
the same holds for stochastic k-median as well.

4. A General Framework for Robust and Stochastic Location. Consider a location problem
Π on a metric space (V, d) where the cost of serving a set of clients S ⊆ V from a set of facilities F ⊆ V
is given by Φ(F | S). We assume that Φ is a monotone non-increasing function in the set of facilities, i.e.,
Φ(F ∪ {x} | S) ≤ Φ(F | S) for all F, S ⊆ V and x ∈ V . In other words, opening more facilities does not
cause the cost to increase. We are also given a parameter k ≤ n = |V |, and want to choose a set of at most
k facilities F ⊆ V that minimizes the resulting cost Φ(F | S). For instance, Φ(F | S) =

∑
v∈S d(v, F )

defines the k-median objective function.

Robust Version, Robust(Π). In the robust version Robust(Π) of the location problem Π, we are given
m different scenarios S1, S2, . . . , Sm ⊆ V and the goal is to open a set of k facilities F that minimizes

m
max
i=1

Φ(F | Si).

Stochastic Version, Stoc(Π). In the stochastic version Stoc(Π) of the location problem Π, we are given
scenarios {Si}m

i=1 each occurring with probabilities {pi}m
i=1 (with

∑m
i=1 pi = 1) and the goal is to find a

set F of size k that minimizes
m∑

i=1

pi Φ(F | Si).

We show that simple greedy-like procedures give good approximations to both these versions of the
location problem Π, given that the following properties hold:
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P1 (Cost Computation) For any facility set F ⊆ V and client set S ⊆ V , the objective value
Φ(F | S) is computable in polynomial time. This implies that for any client set S ⊆ V , facility
set F ⊆ V , and x ∈ F , we can compute, in polynomial time, the incremental cost of dropping x:

δ(F, x | S) := Φ(F \ x | S)− Φ(F | S). (4.1)

Note that the monotonicity property implies that this value is always non-negative.
P2 (β-Projection) There is a β ≥ 1 such that, for any set F ∗ ⊆ V of size k and a set F ⊆ V of

size greater than k, there exists a “small” set Q ⊆ F of size |Q| ≤ k such that for all client-sets
S ⊆ V , ∑

x∈F\Q
δ(F, x | S) ≤ β · Φ(F ∗ | S). (4.2)

In applications, it also suffices to prove (P1) and (P2) with any lower bound Φ′ in place of Φ, that
satisfies the following properties:

• Φ′ is a γ-factor lower bound for Φ, i.e. it satisfies Φ′(F | S) ≤ Φ(F | S) ≤ γ · Φ′(F | S) for all
F, S ⊆ V . In addition, there is a polynomial time algorithm that given any F, S ⊆ V , outputs a
solution satisfying clients S from facilities F , having cost at most γ · Φ′(F | S).

• Φ′ is monotone, i.e. Φ′(F ∪ {x} | S) ≤ Φ′(F | S) for all F, S ⊆ V and x ∈ V .

If we use Φ′ in place of Φ, an additional factor γ appears in the approximation guarantees of
Theorems 4.1 & 4.2. This modification is useful in cases where the lower bound Φ′ is polynomial-time-
computable, but the objective function Φ itself is not; e.g. the k-person TSP (Section 5).

The first property (P1) naturally arises in a reverse-greedy-style algorithm for location problems. The
second property (P2) is only required to prove the performance guarantee: it seems somewhat mysterious
at first, and is useful in the same way as Lemma 3.1 was for the robust k-median problem. Proving this
property is very problem specific; see Section 1.1 for some intuition for property (P2) applied to the
k-median problem.

4.1 Algorithm for Robust Location. Recall that the input consists of a metric (V, d), client sets
{Si}m

i=1, and objective function Φ satisfying properties (P1) and (P2). We assume (by scaling) that
distances in the metric are at least one. We also assume that there is a polynomial-time computable
upper bound U such that (i) Φ(F | S) ≤ U for every F ⊆ V (with |F | = k) and S ⊆ V , and (ii) log U is
polynomial in the input size. This is a mild assumption, and (to the best of our knowledge) is satisfied
by all previously studied location problems. For example, in the k-median problem U = n · diam(V, d).

The general algorithm (described below) is a natural extension of the algorithm for the robust k-median
problem. We assume that the algorithm knows a value B ∈ [2 β OPT, 4 β OPT], where OPT denotes the
optimal value of the robust k-location instance. As in the k-median case, this can be achieved by
performing a binary search for B in the interval [1, 4 β U ] in order to find the smallest B such that the
algorithm runs successfully.

General Algorithm for Robust k-Location
1 Initialize weights w1

i ← 1 for all 1 ≤ i ≤ m and the set of facilities F 1 ← V .

2 For t = 1, · · · , n− k do:

(a) For each v ∈ F t and i ∈ [m], let δt
i(v) := δ(F t, v | Si) = Φ(F t \ {v} | Si)− Φ(F t | Si).

(b) Set F̂ t ← {
v ∈ F t | δt

i(v) ≤ B
2
∀1 ≤ i ≤ m

}
.

(c) Let vt = argmin
{∑m

i=1 wt
i · δt

i(v) : v ∈ F̂ t
}

be a vertex with the least weighted increase.

(d) Drop this vertex vt and set F t+1 ← F t \ {vt}.
(e) Update weights by wt+1

i ← wt
i ·

(
1 + 1

B

)δt
i(v

t)
for all 1 ≤ i ≤ m.

3 Output F n−k+1 with k facilities.

Theorem 4.1 (Framework: Robust Version) Given a robust location problem Robust(Π), where Π
satisfies properties (P1) and (P2), there is an O(β · log(n+m))-approximation algorithm for Robust(Π),
where m is the number of scenarios, and n = |V |.
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The proof is almost identical to that for robust k-median, and is given here for completeness.

Lemma 4.1 Assuming that B ≥ 2β · OPT, in any iteration 1 ≤ t ≤ n − k and in step 2b, we have
F t \Qt ⊆ F̂ t, and hence F̂ t is non-empty.

Proof. By the projection property (P2), there is a set Qt (of size at most k) such that∑
v∈F t\Qt δt

i(v) ≤ β · OPT ≤ B/2 for all scenarios i. Since the δs are non-negative, each individual

cost increase δt
i(v) is at most B/2 for all v ∈ F t \Qt and i ∈ [m]. This implies that F̂ t ⊇ F t \Qt. Since

Qt has size at most k, and |F t| > k, the set F̂ t must be non-empty. ¤

Lemma 4.2 Assuming that B ≥ 2β · OPT, in any iteration 1 ≤ t ≤ n− k, we have

min
v∈F̂ t

{
m∑

i=1

wt
i · δt

i(v)

}
≤ β · OPT

n− k − t + 1

m∑

i=1

wt
i .

Proof. Let us fix Qt as promised by the projection property (P2), and sum the δt
i(v) values both

over vertices v ∈ F t \Qt and over scenarios i ∈ [m]:

∑

v∈F t\Qt

m∑

i=1

wt
i · δt

i(v) =
m∑

i=1

wt
i ·

∑

v∈F t\Qt

δt
i(v) =

m∑

i=1

wt
i ·

∑

v∈F t\Qt

δ(F t, v | Si) ≤
m∑

i=1

wt
i · β · OPT.

The last inequality follows from Property (P2). Since F t \Qt ⊆ F̂ t by Lemma 4.1, we have:

min
v∈F̂ t

{
m∑

i=1

wt
i · δt

i(v)

}
≤ min

v∈F t\Qt

{
m∑

i=1

wt
i · δt

i(v)

}

≤ 1
|F t \Qt|

∑

v∈F t\Qt

m∑

i=1

wt
i · δt

i(v)

≤ β · OPT

n− k − t + 1

m∑

i=1

wt
i .

The last inequality uses |F t \Qt| ≥ n− t− k + 1 since |F t| = n− t + 1 and |Qt| ≤ k. ¤

Lemma 4.3 Assume that B ≥ 2β · OPT. Let W t =
∑m

i=1 wt
i denote the total weight of all scenarios at

the start of iteration 1 ≤ t ≤ n− k. Then the total weight at the start of the next iteration,

W t+1 ≤ W t · e1/(n−k−t+1).

Proof. For any iteration t and scenario i, the weight update step ensures that

wt+1
i = wt

i

(
1 + 1

B

)δt
i(v

t) ≤ wt
i · exp (δt

i(v
t)/B) ,

where vt ∈ F̂ t is the facility that is dropped in iteration t. From the definition of the set F̂ t, we have
0 ≤ δt

i(v
t)/B ≤ 1/2. Moreover, for y ∈ [0, 1/2], we have ey ≤ 1 +

√
e · y. This implies

wt+1
i ≤ wt

i ·
(

1 +
√

e
δt
i(v

t)
B

)
,

and hence

W t+1 ≤
m∑

i=1

wt
i ·

(
1 +

√
e

δt
i(v

t)
B

)
= W t +

√
e

B
·

m∑

i=1

wt
i · δt

i(v
t).

Using Lemma 4.2 and the facts that B ≥ 2 β · OPT and
√

e < 2, it follows that

W t+1 ≤ W t +
√

e

B
· β · OPT

n− k − t + 1
·W t ≤

(
1 +

1
n− k − t + 1

)
W t.

Finally, the inequality 1 + x ≤ ex implies the lemma. ¤
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Proof of Theorem 4.1. Let Alg = maxm
i=1

∑n−k
t=1 δt

i(v
t) denote the value of the solution Fn−k+1

at the end of the algorithm, and let i0 be the value of i achieving the maximum in the above expression.
Hence the total weight

Wn−k+1 ≥ wn−k+1
i0

=
(

1 +
1
B

)Alg

.

A repeated application of Lemma 4.3 implies that

Wn−k+1 ≤ W 1 · eHn−k = m · eHn−k .

Taking logarithms and approximating the harmonic number by a logarithm, we get

Alg ≤ O(log m + log n)/ log
(

1 +
1
B

)
.

Using the fact that log2(1 + y) ≥ y for y ∈ [0, 1], we get

Alg ≤ O(log m + log n) · β · OPT.

¤

4.2 Algorithm for Stochastic Location. We can extend our framework to stochastic problems
as well: given a location problem Π as in the previous section and scenarios {Si}m

i=1 that now come
with probabilities {pi}m

i=1 with
∑m

i=1 pi = 1, the stochastic problem Stoc(Π) seeks to find a set F of
size k that minimizes

∑m
i=1 pi Φ(F | Si). We denote the optimal set by F ∗, each scenario’s cost by

OPTi = Φ(F ∗ | Si), and StocOpt =
∑m

i=1 pi OPTi. The algorithm we present for stochastic location
problems is similar to that for the robust version, but is even simpler since it does not use the weight
updates.

General Algorithm for Stochastic k-Location
1 Initialize the set of facilities F 1 ← V .

2 For t = 1, · · · , n− k do:

(a) For each v ∈ F t and i ∈ [m], let δt
i(v) := δ(F t, v | Si) = Φ(F t \ {v} | Si)− Φ(F t | Si).

(b) Let vt = argmin
{∑m

i=1 pi δt
i(v) : v ∈ F t

}
be a vertex with the least expected increase.

(c) Drop this vertex vt and set F t+1 ← F t \ {vt}.
3 Output F n−k+1 with k facilities.

Theorem 4.2 (Framework: Stochastic Version) Given a stochastic location problem Stoc(Π),
where Π satisfies properties (P1) and (P2), there is an O(β · log n)-approximation algorithm for Stoc(Π).
Here n = |V | is the number of vertices.

Lemma 4.4 In any iteration 1 ≤ t ≤ n− k, we have

min
v∈F t

{
m∑

i=1

pi δt
i(v)

}
≤ β · StocOpt

n− k − t + 1
.

Proof. Let us fix Qt as promised by the projection property (P2). Then
∑

v∈F t\Qt

m∑

i=1

pi · δt
i(v) =

m∑

i=1

pi

∑

v∈F t\Qt

δt
i(v) ≤

m∑

i=1

pi · β · OPTi = β StocOpt.

The second inequality follows from the projection property (P2). Observe that |F t| = n− t+1 ≥ k+1
and |Qt| ≤ k; hence |F t \Qt| ≥ n− k − t + 1 ≥ 1. Now,

min
v∈F t

{
m∑

i=1

pi · δt
i(v)

}
≤ min

v∈F t\Qt

{
m∑

i=1

pi · δt
i(v)

}

≤ 1
|F t \Qt|

∑

v∈F t\Qt

m∑

i=1

pi · δt
i(v)

≤ β · StocOpt

n− k − t + 1
,
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which completes the proof of the lemma. ¤
Proof of Theorem 4.2. The cost of the solution found by the algorithm is eventually:

m∑

i=1

pi ·
n−k∑
t=1

δt
i(v

t) =
n−k∑
t=1

m∑

i=1

pi · δt
i(v

t) ≤
n−k∑
t=1

β · StocOpt

n− k − t + 1
,

using Lemma 4.4. But this is just O(β · log(n− k)) · StocOpt, proving the theorem. ¤
Remark 1: Our algorithm for stochastic location problems is also incremental in the sense of [28, 26]:
given metric (V, d) and scenarios {Si, pi}m

i=1, the output is a single permutation of the vertices such that
for every 1 ≤ k ≤ |V |, the solution consisting of the first k vertices in this permutation is an approximate
solution to the stochastic k-location instance.

Remark 2: Our framework for stochastic location problems also extends to the model where the demand
distribution is not given explicitly, instead by means of a sampleable black-box. This model is well-
studied in the context of two-stage stochastic optimization problems, e.g. [19, 36, 5]. Let D denote the
demand distribution, i.e. the actual client-set S ⊆ V is drawn according to D. We now describe the
modifications required in the above algorithm for stochastic location. In any iteration 1 ≤ t ≤ n − k,
define δt(v) := ES←D [δ(F t, v | S)] for each v ∈ F t. For each v ∈ F t, let δ̃t(v) denote an estimate of δt(v)
obtained by taking the average of a large (polynomial) number of independent samples from D. The
algorithm for general demand distributions replaces Steps (2a) and (2b) by the following:

(2a’) For each v ∈ F t, compute δ̃t(v) by sampling from D.

(2b’) Let vt ← argmin
{

δ̃t(v) | v ∈ F t
}

.

Using Chernoff bounds [30], it can be shown that with high probability, all the estimates δ̃t(v) obtained
in the algorithm are within a factor of two of the respective true values δt(v). Then the same analysis as
above implies that w.h.p. the solution Fn−k+1 has objective value O(β · log(n− k)) · StocOpt.

5. The k-Tree and k-Person TSP Problems. In the k-tree problem, we are given a metric space
(V, d) and a set S of clients, and we want to open a set of k facilities F ⊆ V and build a forest of minimum
cost in the induced metric (F ∪ S, d) so that for each client v ∈ S, there is some facility f ∈ F such that
this forest contains a path from v to f (and we say that the forest connects v to f). In particular, we
want to minimize d(κ(F, S)), where κ(F, S) denotes the minimum-cost forest in the metric induced on
the set F ∪ S that connects each vertex in S to some vertex in F . Thus the objective function is:

Φ(F | S) = d(κ(F, S)) =
∑

e∈κ(F,S)

d(e). (5.1)

It is worth noting that once we choose the set F of facilities, κ(F, S) (for a given client-set S) is a
minimum spanning tree in the distance function obtained from (F ∪ S, d) by shrinking all the nodes in
F to a single “root” vertex; hence the real effort is in choosing the set of facilities F . This also implies
that property (P1) holds for the k-tree problem.

k-Person TSP. In this problem, given a metric space (V, d) and a set S of clients, the goal is to open
a set of k facilities F ⊆ V ; but now the goal is to build k tours, so that for each i ∈ [k], the ith tour
contains the ith facility in F , each client in S is visited by some tour, and the sum of the tour lengths
is minimized. Given an instance I of the k-person TSP problem, the cost of the optimal k-tree for I
is a lower bound on the cost of the optimal k-person TSP for I; moreover, given a forest which is a
k-tree solution to the instance I, taking Euler tours for each of the trees in the forest gives a solution
for k-person TSP with cost at most twice as much. Hence, an α-approximation algorithm for the robust
version of the k-tree problem gives a 2α-approximation algorithm for the robust version of the k-person
TSP problem. In this section we focus on the k-tree problem.

To apply the general framework of Section 4 to k-tree, we show that this problem satisfies the two
required conditions. Property (P1) has been established above. The subsequent lemma shows that the
β-projection property (P2) is satisfied with β = 4.

Lemma 5.1 (Property (P2) for k-Tree) For every F ∗ ⊆ V with |F ∗| = k and F ⊆ V with |F | > k,
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Figure 2: The solution κ(F, S) and one possible mapping σ : D → D ∪ F ∗.

there exists a subset Q ⊆ F of size at most k such that for all S ⊆ V ,
∑

r∈F\Q
[d(κ(F \ r, S))− d(κ(F, S))] ≤ 4 · d(κ(F ∗, S)).

Proof. For each f∗ ∈ F ∗ choose a facility η(f∗) ∈ F closest to f∗, i.e. η(f∗) := argming∈F d(f∗, g).
Define Q = {η(f∗) | f∗ ∈ F ∗}; clearly |Q| ≤ |F ∗| = k. Fix an arbitrary client set S ⊆ V . Recall that
δ(F, r | S) = d(κ(F \ r, S)) − d(κ(F, S)) denotes the increase in the cost for S upon dropping facility
r ∈ F . For each vertex r ∈ F , define:

C(r) = {s ∈ S : (r, s) is an edge in κ(F, S)}, and D(r) = C(r) \ F ∗.

Since each tree in κ(F, S) contains exactly one vertex from F , the sets {D(r)}r∈F are disjoint subsets of
S \ F ∗; define D := ∪r∈F D(r). We define a useful map σ : D → D ∪ F ∗ as follows (see also Figure 2).

1 Obtain an Euler tour on each tree in forest κ(F ∗, S). This corresponds to |F ∗| = k vertex-disjoint
tours τ1, · · · , τk on F ∗

⋃
S.

2 For each j ∈ [k], orient tour τj clockwise and restrict the tour to vertices in D ∪ F ∗, by short-
cutting over vertices S \ (D ∪ F ∗).

3 For each vertex v ∈ D, let τj (some j ∈ [k]) be the tour that contains v; and set σ(v) ← v′ where
v′ ∈ D ∪ F ∗ is the unique successor vertex of v, given by the clockwise orientation in τj .

Note that is map is indeed well-defined: since D ⊆ S, each vertex in D appears in some tour {τj}k
j=1

and hence has a unique successor as required in the last step above. Since each vertex of D
⋃

F ∗ has
in-degree one in the orientation of tours, it follows that map σ is one-to-one. Finally, the total length of
the tours {τj}k

j=1 is at most 2 · d(κ(F ∗, s)), which implies:
∑

v∈D

d(v, σ(v)) ≤ 2 · d(κ(F ∗, S)). (5.2)

Now fix any r ∈ F \ Q; we will upper bound δ(F, r | S). To show this, we modify F ′ = κ(F, S) to
obtain a feasible forest F(r) such that each S-vertex is connected to some vertex in F \ r. We will show
that the length of forest F(r) is not much more than d(F ′), which would bound δ(F, r | S). The forest
F(r) is constructed as follows: starting with the forest F ′, delete the edges {(r, v) | v ∈ C(r)} adjacent
to r in this forest, and add the following edge-sets: (i) {(v, σ(v)) | v ∈ D(r)} where σ is the map defined
earlier; (ii) {(f∗, η(f∗)) | f∗ ∈ σ(D(r)) ∩ F ∗}; and (iii) {(g, η(g)) | g ∈ C(r) ∩ F ∗}. Recall that for any
f ∈ F ∗, η(f) ∈ Q is the closest facility to f in F .
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Feasibility of F(r). We first show that F(r) is a feasible forest connecting each S-vertex to F \ r: it
suffices to argue that C(r) is connected to F \ r. Note that vertices C(r) ∩ F ∗ are directly connected
to Q ⊆ F \ r by edge-set (iii) above. We will now show that edge-sets (i) and (ii) suffice to connect
D(r) = C(r) \ F ∗ to F \ r as well. Let E(r) := {(v, σ(v)) | v ∈ D(r)}, i.e. edge-set (i) above.

Claim 5.1 The edges E(r) connect each D(r)-vertex to some vertex in
(
D \D(r)

) ⋃ (
F ∗ ∩ σ(D(r))

)
.

Proof of Claim 5.1. Fix any v ∈ D(r), and let Tv denote the set of vertices that are connected to
v using edges E(r). Note that by definition of the map σ, we have Tv ⊆ D

⋃ (
F ∗ ∩ σ(D(r))

)
. Hence if

Tv \D(r) 6= ∅, it follows that v is connected to some vertex in
(
D\D(r)

) ⋃ (
F ∗∩σ(D(r))

)
. Suppose (for a

contradiction) that Tv \D(r) = ∅, i.e. Tv ⊆ D(r). Since F ∗∩D(r) = ∅, it must be (again by construction
of σ) that there is some vertex u ∈ Tv with σ(u) 6∈ Tv. But as (u, σ(u)) ∈ E(r), this contradicts the
definition of Tv. Thus it must be that Tv contains some vertex from

(
D \D(r)

)⋃ (
F ∗ ∩ σ(D(r))

)
. ¤

Note that edge-set (ii) connects each vertex in F ∗ ∩ σ(D(r)) to Q. Combined with Claim 5.1, each
D(r)-vertex is connected to some vertex in D \D(r) or Q. Finally observe that each vertex in D \D(r)
remains connected to F \ r in forest F(r); and since Q ⊆ F \ r, we obtain that F(r) connects each
D(r)-vertex to some vertex in F \ r.

Bounding Cost of F(r). Next, we upper bound the increase in cost δ(F, r | S) ≤ d(F(r))−d(F ′) by:

δ(F, r | S) ≤ −
∑

v∈C(r)

d(r, v) +
∑

v∈D(r)

d(v, σ(v)) +
∑

g∈C(r)∩F∗
d(g, F ) +

∑

f∗∈σ(D(r))∩F∗
d(f∗, F ). (5.3)

The last term of this expression can be bounded by
∑

f∗∈σ(D(r))∩F∗
d(f∗, F ) ≤

∑

v∈D(r)

d(σ(v), F )

≤
∑

v∈D(r)

[d(σ(v), v) + d(v, F )] ,

where the last inequality follows from triangle inequality. Plugging the final expression above into (5.3),

δ(F, r | S) ≤ 2 ·
∑

v∈D(r)

d(v, σ(v)) +
∑

v∈C(r)

[d(v, F )− d(v, r)] ≤ 2 ·
∑

v∈D(r)

d(v, σ(v))

where the final inequality uses that r ∈ F .

Now summing over all r ∈ F \Q, we get:
∑

r∈F\Q
δ(F, r | S) ≤ 2 ·

∑

r∈F\Q

∑

v∈D(r)

d(v, σ(v)) ≤ 2 ·
∑

v∈D

d(v, σ(v)).

Finally, by (5.2), this last expression is at most 4 · d(κ(F ∗, S)), which completes the proof. ¤
Using this lemma within our general framework, we obtain:

Corollary 5.2 (Robust/Stochastic k-Tree Result) There is an O(log(m + n))-approximation algo-
rithm for the robust k-tree problem, and an O(log n)-approximation algorithm for the stochastic k-tree
problem.

Note that we could also consider robust/stochastic versions of the k-Steiner-tree problem, where given
clients S and facilities F , the goal is to construct a forest that is not necessarily induced on F ∪ S,
connecting each S-vertex to some F -vertex, i.e. the solution may use vertices outside F ∪ S as Steiner
points. In the k-tree problem considered above, κ(F, S) was required to be induced on F ∪ S. However,
these two objectives are within a factor two of each other, and we obtain the same approximation results
for robust/stochastic k-Steiner-tree. As mentioned earlier, we also obtain identical guarantees for the
robust/stochastic versions of the k-person TSP.
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6. Capacitated k-Median Problem. In this problem, we are given a metric (V, d), a client-set
S ⊂ V , a number k and a capacity µ such that |S| ≤ k · µ; the goal is to open a set of k facilities
F ⊆ V and construct an assignment ρ : S → F of clients to open facilities such that at most µ clients
are assigned to any open facility (i.e., |ρ−1(f)| ≤ µ for all f ∈ F ), and the objective

∑
v∈S d(v, ρ(v)) is

minimized. A map ρ : S → F is said to be feasible iff |ρ−1(f)| ≤ µ for all f ∈ F ; additionally we define
the cost of mapping ρ as D(ρ) :=

∑
v∈S d(v, ρ(v)). Thus, given client-set S ⊆ V and facility-set F ⊆ V ,

the objective in capacitated k-median is:

Φ(F | S) = min {D(ρ) | map ρ : S → F is feasible} .

Note that Φ(F | S) and the map ρ : S → F achieving the minimum can be found in polynomial
time by solving a minimum cost b-matching problem [10]. In this section we show that the capacitated
k-median problem satisfies the conditions for our general framework, and hence we obtain logarithmic
approximations for its robust and stochastic versions.

To the best of our knowledge, our algorithm for the robust version gives the first non-trivial approxima-
tion guarantee for even the deterministic version of the problem, with hard capacity constraints. Chuzhoy
and Rabani [9] obtain a constant factor approximation for the deterministic version with non-uniform
soft capacities where the algorithm violates capacities by a constant factor.

To apply our general framework for robust and stochastic location problems, we establish the two
properties (P1) and (P2). Property (P1) holds trivially: as noted above, given facilities F ⊂ V and
clients S ⊆ V , Φ(F | Si) can be computed in polynomial time via b-matching [10].

We will prove the β-projection property (P2) with β = 2. Recall that we are given any set F ∗ ⊆ V of
k facilities, and another set F ⊆ V of more than k facilities. Define σ : F ∗ → F to be a minimum cost
matching between F ∗ and F that assigns each vertex of F ∗ to a distinct vertex in F . We set Q := σ(F ∗)
to be those facilities in F that are matched to some facility in F ∗. Note that |Q| = |F ∗| = k, as required.
In the rest of this section we show that for any S ⊆ V ,

∑

r∈F\Q
δ(F, r | S) ≤ 2 · Φ(F ∗ | S). (6.1)

This would establish property (P2) with β = 2. Let ρ∗ : S → F ∗ (resp. ρ : S → F ) denote the minimum-
cost feasible mapping from S to F ∗ (resp. S to F ). In order to establish (6.1), we construct for each
r ∈ F \Q, a feasible mapping ρ(r) : S → F \ {r} such that:

∑

r∈F\Q

(
D

(
ρ(r)

)
−D(ρ)

)
≤ 2 · Φ(F ∗ | S); (6.2)

this suffices since δ(F, r | S) ≤ D(ρ(r))−D(ρ) for any r ∈ F \Q. In the next subsection we describe how
these new mappings are constructed, and in the following subsection we bound the cost increases.

6.1 Constructing New Assignments. A useful assignment is ρ′ := σ ◦ ρ∗, which maps S to Q.
This is a candidate choice for ρ(r) for every r ∈ F \ Q; however this may result in a large increase in
cost. Another natural choice for ρ(r) is to map (i) all v ∈ S with ρ(v) = r to ρ′(v) ∈ Q, and (ii) all other
u ∈ S to ρ(u). However this might violate capacity at some facilities. Hence defining the new mappings
requires several clients to be reassigned, as described below.

It will be convenient to view any map θ : S → F as a bipartite graph on disjoint vertex-sets S and
F with edge-set E(θ) := {(v, θ(v)) | v ∈ S}. Note that for any feasible map θ, in the resulting bipartite
graph, vertices in S have degree one, and those in F have degree at most µ. Recall that both ρ and
ρ′ = σ ◦ ρ map S to F . Define bipartite multigraph H with disjoint vertex-sets S and F , and edge-set
EH := E(ρ)

⊔
E(ρ′) (i.e. if an edge appears in both E(ρ) and E(ρ′) then graph H contains two distinct

copies of it). Note that in graph H, each S-vertex has degree exactly two, vertices in F \Q have degree
at most µ, and vertices in Q have degree at most 2µ.

A path P ⊆ EH is called an alternating path if it starts at a vertex in F \ Q, ends at a vertex in
Q, and uses edges alternately from E(ρ) and E(ρ′). For every vertex v ∈ ρ−1(F \ Q), we will show the
existence of an alternating path Pv starting at vertex ρ(v) ∈ F \S and with edge (ρ(v), v) ∈ E(ρ). Define
P := {Pv | v ∈ ρ−1(F \Q)}, and E(P) :=

⋃
Pv. We will also ensure the following two conditions for this

collection P of paths.
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F ∗ F

Q

x ρ(x)

ρ∗(x)

ρ′(x) = σ(ρ∗(x))

Figure 3: Figure showing maps ρ : S → F , optimal map ρ∗ : S → F ∗ applied to point x ∈ S, and also
the matching σ : F ∗ → F .

C1 The paths in P are edge disjoint, i.e. Pv

⋂
Pu = ∅ for all distinct u, v ∈ ρ−1(F \Q).

C2 The bipartite graph on vertex-sets S and F with edges E(P)⊕E(ρ) has each S-vertex of degree
one, and each F -vertex of degree at most µ.

To establish the existence of this collection P, we first prove the existence of a circulation in a suitably
defined network flow problem. Then we show how this circulation gives rise to the desired collection P.

An Auxiliary Flow Problem. Consider a directed multigraph T on vertex set V (T ) := F
⋃{s} where

s is a new vertex. The arcs in T are given by the multiset A(T ) := {(ρ(v), ρ′(v)) | v ∈ S}⋃{(s, f) |
f ∈ F \ Q}⋃{(q, s) | q ∈ Q}. For any vertex u ∈ F , denote by δ+(u) (resp. δ−(u)) the number of arcs
in the multiset {(ρ(v), ρ′(v)) | v ∈ S} leaving (resp. entering) vertex u. By the properties of mappings
ρ and ρ′, it follows that δ+(u), δ−(u) ≤ µ for all u ∈ F ; furthermore, δ−(u) = 0 for all u ∈ F \ Q.
Consider an instance of the circulation problem on T given by integer lower-bounds {κa | a ∈ A(T )} and
upper-bounds {ηa | a ∈ A(T )} on arcs. An assignment of integer values x : A(T ) → Z+ to the arcs is
called a circulation iff:∑

(u,v)∈A(T )

x(u, v) −
∑

(v,u)∈A(T )

x(v, u) = 0, ∀u ∈ V (T ) and κa ≤ x(a) ≤ ηa, ∀a ∈ A(T ).

Hoffman’s circulation theorem [21] states that there exists a circulation if and only if:∑

(u,v)∈A(T ),u∈X,v 6∈X

ηu,v ≥
∑

(v,u)∈A(T ),u∈X,v 6∈X

κv,u, for all X ⊆ V (T ). (6.3)

Set the upper and lower bounds on arcs of A(T ) as follows:

ηu,v :=





µ− δ+(u) if v = s and u ∈ Q
1 if u, v ∈ F
∞ if u = s and v ∈ F \Q

κu,v :=





0 if v = s and u ∈ Q
0 if u, v ∈ F
δ+(v) if u = s and v ∈ F \Q

We claim that this circulation instance satisfies (6.3). Consider any X ⊆ V (T ). We denote the left-
hand-side in (6.3) by η(X), and the right-hand-side by κ(X). If s ∈ X then it follows that κ(X) = 0, and
η(X) ≥ κ(X) trivially. Now suppose s 6∈ X, and let X1 = X ∩ (F \Q) and X2 = X ∩Q; so X = X1

⋃
X2.

It is clear that κ(X) =
∑

u∈X1
δ+(u). For any Y ⊆ F , define ∆+(Y ) to be the number of arcs (u, v) ∈

{(ρ(w), ρ′(w))}w∈S with u ∈ Y and v 6∈ Y . Observe that η(X) = µ · |X2| −
∑

u∈X2
δ+(u) + ∆+(X). In

order to establish η(X) ≥ κ(X), it suffices to show that ∆+(X) + µ · |X2| ≥
∑

u∈X δ+(u).

Consider the arcs AX ⊆ {(ρ(w), ρ′(w))}w∈S having their tail1 in X: there are |AX | =
∑

u∈X δ+(u)
such arcs. Since δ−(u) = 0 for all u ∈ F \ Q, we can partition AX into A′X ⊆ AX having head
in X2 = X ∩ Q, and A′′X ⊆ AX having head in Q \ X. Since δ−(u) ≤ µ for all u ∈ Q, we have
|A′X | ≤

∑
u∈X2

δ−(u) ≤ µ · |X2|. Observe that each arc in A′′X has tail in X and head in Q \ X: thus
|A′′X | ≤ ∆+(X). Finally, ∑

u∈X

δ+(u) = |AX | = |A′X |+ |A′′X | ≤ µ · |X2|+ ∆+(X),

which gives η(X) ≥ κ(X) that in turn implies (6.3).
1We use the standard terminology for directed graphs, the tail of an arc (u, v) is u, and its head is v.
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Constructing Alternating Paths P. We now show how this integral circulation x in T can be used
to construct the alternating paths P. Note that by definition of the circulation instance, x restricted to
arcs {(ρ(w), ρ′(w))}w∈S can be decomposed into an arc-disjoint collection of paths {P̂v | v ∈ ρ−1(F \Q)}
where each P̂v originates at ρ(v) using arc (ρ(v), ρ′(v)) and ends at some Q-vertex. Moreover, the total
number of paths ending at any q ∈ Q is at most µ − δ+(q), due to the upper-bounds ηas. Note that
there is a one-to-one correspondence between arcs {(ρ(w), ρ′(w))}w∈S and set S. Using this, for each
v ∈ ρ−1(F \ S), directed path P̂v corresponds to path Pv in the (undirected) bipartite graph H, defined
as follows: for every arc (ρ(w), ρ′(w)) (where w ∈ S) in P̂v, path Pv contains two edges (ρ(w), w) and
(w, ρ′(w)). Thus it follows that each Pv is an alternating path in H, that starts at vertex ρ(v) using edge
(ρ(v), v) and ends at some Q-vertex.

Proving condition (C1). Since the collection {P̂v | v ∈ ρ−1(F \Q)} is arc-disjoint in T , paths P = {Pv |
v ∈ ρ−1(F \ S)} are edge-disjoint in H.

Proving condition (C2). Let {P̂v | v ∈ ρ−1(F \ Q)} consist of arcs {(ρ(w), ρ′(w)) | w ∈ W},
where W ⊆ S. Then E(P) = {(ρ(w), w)}w∈W

⋃{(ρ′(w), w)}w∈W . So E′
H := E(ρ) ⊕ E(P) =

{(ρ(y), y)}y∈S\W
⋃{(ρ′(w), w)}w∈W . Clearly each S-vertex has degree exactly one in E′

H . Vertices in
F \Q have zero degree in E′

H : since W ⊇ ρ−1(F \Q) by construction, and ρ′ maps S to Q. We now upper
bound the degree of any vertex q ∈ Q in E′

H . Recall that δ+(q) is the degree of vertex q in E(ρ). Let
e(q) denote the number of directed paths in {P̂v | v ∈ ρ−1(F \Q)} that end at vertex q; by construction
of the circulation instance, e(q) ≤ µ − δ+(q). Additionally the number of paths in P ending at q also
equals e(q). Since P consists of edge-disjoint alternating paths in graph H, the degree of vertex q in
E′

H = E(ρ)⊕ E(P) equals δ+(q) + e(q) ≤ µ. This completes the proof of (C2).

Defining Mappings ρ(r). For each r ∈ F \Q, we define ρ(r) : S → F \ {r} as follows.

1 Consider bipartite graph Gr on disjoint vertex-sets S and F , and edge set:

Er := E(ρ)⊕ (∪v∈ρ−1(r)Pv

)

2 For each v ∈ S, set ρ(r)(v) ← u where (u, v) ∈ Er is the unique such edge.

Lemma 6.1 For each r ∈ F \Q, the map ρ(r) is well-defined, feasible and ρ(r)(S) ⊆ F \ {r}.

Proof. Fix any r ∈ F \ Q for this proof. Note that each S-vertex has degree one in E(ρ), and
degree zero or two in every alternating path of P. So the degree of each S-vertex in Er is odd. However
Er ⊆ EH and each S-vertex has degree two in EH ; thus the degree of each S-vertex in Er is exactly one.
This implies that ρ(r) is indeed well-defined.

To show that ρ(r) is feasible, we will prove that each F -vertex has degree at most µ in Er. Let
W := ρ−1(r) ⊆ S, and X := ρ−1(F \ Q). Number the vertices in X from 1 to |X| such that W =
{1, 2, · · · , |W |}. Consider the following iterative way of modifying E(ρ). Starting with J0 ← E(ρ), define
for each i ∈ {1, · · · , |X|}, Ji ← Ji−1 ⊕ Pi. Since the paths P = {Pi}|X|i=1 are edge-disjoint, it follows that
J|X| = E(ρ)⊕ E(P) and J|W | = Er. For each 1 ≤ i ≤ |X|, the following hold:

1 For any vertex in F \ Q, its degree in Ji is at most its degree in Ji−1. Note that Pi contains
exactly one edge incident to a vertex in F \Q, namely edge (i, ρ(i)). Thus the degree of vertices
F \Q\{ρ(i)} is unchanged going from Ji−1 to Ji. Additionally, (i, ρ(i)) ∈ Ji−1 since it is in E(ρ)
and in none of P1, · · · , Pi−1. Hence the degree of vertex ρ(i) in Ji is one less than in Ji−1.

2 For any u ∈ Q, its degree in Ji is at least its degree in Ji−1. Clearly the degree of Q-vertices
not in Pi remain the same in Ji and Ji−1. For any vertex u ∈ Q visited in Pi, there is an edge
(u, ρ′−1(u)) that lies in path Pi but not Ji−1; so the degree of u in Ji is at least that in Ji−1.

From the above, we obtain that (i) the degree in J|W | of any (F \ Q)-vertex is at most its degree in
J0 = E(ρ), i.e. µ; and (ii) the degree in J|W | of any Q-vertex is at most its degree in J|X| = E(ρ)⊕E(P),
which is at most µ by Condition (C2). Recall that J|W | = Er, so we obtain that Er is a feasible map.

We now show that vertex r has degree zero in Er, which would imply that ρ(r)(S) ⊆ F \ {r}. By
definition of the alternating paths P, we have {(v, ρ(v)) | v ∈ W} ⊆ ∪v∈W Pv. Clearly {(v, ρ(v)) | v ∈
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W} ⊆ E(ρ). Thus {(v, ρ(v)) | v ∈ W}⋂
Er = ∅. Finally, since r ∈ F \Q, the only edges in H that are

incident to r are {(v, ρ(v)) | v ∈ W}: recall that ρ′ maps S to Q ⊆ F . Hence it follows that r has degree
zero in Er. ¤

6.2 Bounding the Cost Increase. Given the alternating paths P and the mappings in Lemma 6.1,
we now complete the proof of (6.2) by bounding the cost increases, i.e. D

(
ρ(r)

)−D(ρ) for r ∈ F \Q.

Increase of Single Alternating Path. Consider any v ∈ ρ−1(F \Q), and let S
⋂

Pv = {u1, u2, . . . , u`}
(in that order) be the S-vertices in alternating path Pv; note u1 = v. By definition of an alternating
path, we have ρ′(uj) = ρ(uj+1) for all 1 ≤ j ≤ `− 1. Define,

ε(Pv) :=
∑̀

j=1

(d(uj , ρ
′(uj))− d(uj , ρ(uj))) .

For any 1 ≤ j ≤ `, using triangle inequality we have,

d (uj , ρ
′(uj))− d(uj , ρ(uj)) ≤ d(uj , ρ

∗(uj)) + d (ρ∗(uj), ρ′(uj))− d(uj , ρ(uj))
= 2 · d(uj , ρ

∗(uj)) + d(ρ∗(uj), ρ′(uj))− (d(uj , ρ(uj)) + d(uj , ρ
∗(uj))

≤ 2 · d(uj , ρ
∗(uj)) + d(ρ∗(uj), ρ′(uj))− d(ρ∗(uj), ρ(uj)).

Using the above, we can bound

ε(Pv) ≤ 2
∑̀

j=1

d(uj , ρ
∗(uj)) +

∑̀

j=1

[d(ρ∗(uj), ρ′(uj))− d(ρ∗(uj), ρ(uj))] . (6.4)

Define a weighted bipartite graph M on disjoint vertex-sets F ∗ and F , with each edge (f, w) (for any
f ∈ F ∗ and w ∈ F ) having cost d(f, w). A subset of edges E′ in M is said to be an F ∗-matching if
E′ is a matching that contains some edge incident to each vertex in F ∗. Recall that σ : F ∗ → F is the
minimum cost F ∗-matching in M . Let E(σ) := {(f, σ(f)) | f ∈ F ∗} denote the edges in this matching.

Consider the path in graph M defined by edges P̃v := {(ρ(uj), ρ∗(uj))}`
j=1

⋃ {(ρ∗(uj), ρ′(uj))}`
j=1.

Note that this indeed describes a path since ρ′(uj) = ρ(uj+1) for all 1 ≤ j ≤ ` − 1. We claim that
E(σ)⊕P̃v is also an F ∗-matching in M . This is because for each j = 1, . . . , `, edge (ρ∗(uj), ρ′(uj)) ∈ E(σ)
and edge (ρ(uj), ρ∗(uj)) 6∈ E(σ), and since ρ(u1) ∈ F \ Q it has zero degree in E(σ). Since E(σ) is the
minimum cost F ∗-matching, we have

∑

e∈E(σ)

d(e)−
∑

e′∈E(σ)⊕P̃v

d(e′) =
∑̀

j=1

[d(ρ∗(uj), ρ′(uj))− d(ρ∗(uj), ρ(uj))] ≤ 0.

Plugging this into (6.4), we get

ε(Pv) ≤ 2
∑̀

j=1

d(uj , ρ
∗(uj)) = 2

∑

u∈S∩Pv

d(u, ρ∗(u)). (6.5)

Bounding cost of ρ(r). Fix any r ∈ F \Q, and let W (r) := ρ−1(r). Now,

D
(
ρ(r)

)
−D(ρ) =

∑

e∈E(ρ)⊕(∪v∈W (r)Pv)

d(e)−
∑

e′∈E(ρ)

d(e′)

=
∑

v∈W (r)

ε(Pv)

≤ 2
∑

v∈W (r)

∑

u∈S∩Pv

d(u, ρ∗(u)), (6.6)

where the first equality is by definition of ρ(r) (Lemma 6.1), the second equality uses the fact that
{Pv | v ∈ W (r)} are edge-disjoint, and the last inequality is by (6.5).
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By Condition (C1) the alternating paths in P are edge-disjoint in graph H. Furthermore, each S-
vertex has degree two in H, and degree zero or two in each path of P. Thus each S-vertex appears in at
most one alternating path from P. Thus we have,
∑

r∈F\Q

(
D

(
ρ(r)

)
−D(ρ)

)
≤ 2

∑

r∈F\Q

∑

v∈W (r)

∑

u∈S∩Pv

d(u, ρ∗(u)) ≤ 2
∑

u′∈S

d(u′, ρ∗(u′)) = 2 · Φ(F ∗ | S).

Above, the first inequality is by (6.6), and the second inequality uses (i) {W (r) | r ∈ F \Q} are disjoint
subsets of ρ−1(F \Q) and (ii) {S ∩ Pv | v ∈ ρ−1(F \Q)} are disjoint (as argued above). This completes
the proof of Property (P2) for capacitated k-median with β = 2.

Corollary 6.1 (Robust/Stochastic Capacitated k-Median Result) There is an O(log m+ log n)-
approximation algorithm for robust capacitated k-median, and an O(log n)-approximation algorithm for
stochastic capacitated k-median.

7. Fault-tolerant k-Median. In this problem, we are given a client set S ⊆ V , and a requirement
rv ∈ {1, 2, . . . , k} for each client v ∈ S. The goal is to open a set of k facilities F ⊆ V and connect
each client v to rv distinct facilities in F such that the total connection cost is minimized. Given the
facility-set F ⊆ V , each client v ∈ S should clearly be connected to be the rv facilities in F that are
closest to v, in order to minimize the objective. For any F ⊆ V , v ∈ S and integer 0 ≤ h ≤ |F |, let
Γ(v, F, h) denote the set of h distinct facilities in F that are closest to v; and let γ(v, F, h) denote the
cost of connecting v to the h distinct facilities in Γ(v, F, h), i.e.

γ(v, F, h) :=
∑

f∈Γ(v,F,h)

d(v, f), ∀ F ⊆ V, v ∈ S, h ∈ {0, 1, · · · , |F |}.

Thus the objective in fault-tolerant k-median is:

Φ(F | S) :=
∑

v∈S

γ(v, F, rv).

To use our framework to solve the robust and stochastic fault-tolerant k-median problems, the next
lemma proves the β-projection property (P2) with β = 2. Again property (P1) is trivial since it is easy
to calculate the exact cost of any solution.

For the problem where all the requirements rv are uniform, the best known approximation guarantee
for the single scenario version is 4 (Swamy and Shmoys [38]). To the best of our knowledge, our result is
the first non-trivial algorithm for non-uniform requirements, even for a single scenario.

Lemma 7.1 ((P2) for Fault-tolerant k-Median) For every F ∗ ⊆ V (|F ∗| = k) and F ⊆ V with
|F | > k, there exists Q ⊆ F with |Q| = k such that

∑

f∈F\Q

∑

v∈S

[γ(v, F \ f, rv)− γ(v, F, rv)] ≤ 2 · Φ(F ∗ | S) ∀S ⊆ V. (7.1)

Proof. Define the subset Q as a one-to-one mapping π : F ∗ → F as follows. Arbitrarily order the
elements of F ∗, and initialize Q ← ∅. For each g ∈ F ∗ in this order, set π(g) := arg min{d(g, f) | f ∈
F \Q} and Q ← Q

⋃{π(g)}. Clearly |Q| = |F ∗| = k and mapping π is one-to-one.

Fix any client-set S ⊆ V . For each v ∈ S, we define a mapping τv : Γ(v, F, rv) → Q thus:

1 Define Gv := Γ(v, F, rv) ∩Q. Set τv(g) ← g for all g ∈ Gv.
2 For each g ∈ Γ(v, F, rv) \Q, set τv(g) to be a distinct vertex from π(Γ(v, F ∗, rv)) \Gv.

Note that the second step is well-defined since |Γ(v, F, rv) \ Q| = rv − |Gv| = |π(Γ(v, F ∗, rv))| − |Gv| ≤
|π(Γ(v, F ∗, rv)) \ Gv|. Additionally τv indeed maps Γ(v, F, rv) to Q since π(Γ(v, F ∗, rv)) ⊆ Q. Finally
observe that τv is also one-to-one. Next we bound the total cost of this map τv.

Claim 7.1 For any v ∈ S,
∑

g∈Γ(v,F,rv)

d(v, τv(g)) ≤ γ(v, F, rv) + 2 · γ(v, F ∗, rv).
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Proof. Note that by definition of τv in Step 1 above,
∑

g∈Gv
d(v, τv(g)) =

∑
g∈Gv

d(v, g) (recall that
Gv = Γ(v, F, rv)

⋂
Q). For each g ∈ Γ(v, F, rv)\Gv, define fg := π−1(τv(g)); note that this is well-defined

since τv(g) ∈ Q, and furthermore fg ∈ Γ(v, F ∗, rv) by definition of τv in Step 2 above. Observe that fgs
for each g ∈ Γ(v, F, rv) \Gv are distinct.

Fix any g ∈ Γ(v, F, rv)\Gv. Now recall the greedy construction of Q, and consider the time when fg ∈
F ∗ was mapped under π to its nearest vertex in F . At that point, g ∈ Γ(v, F, rv)\Gv was not in Q (since
it is not in Q at the end of that process). Hence, the distance d(fg, π(fg)) ≤ d(fg, g) ≤ d(g, v) + d(v, fg).
Thus,

d(v, τv(g)) = d(v, π(fg)) ≤ d(v, fg) + d(fg, π(fg)) ≤ d(g, v) + 2 · d(v, fg).

Summing this expression over all g ∈ Γ(v, F, rv) \Gv and using the fact that {fg | g ∈ Γ(v, F, rv) \Gv}
are distinct vertices in Γ(v, F ∗, rv), we get:

∑

g∈Γ(v,F,rv)\Gv

d(v, τv(g)) ≤ 2 ·
∑

f∈Γ(v,F∗,rv)

d(v, f) +
∑

g∈Γ(v,F,rv)\Gv

d(v, g)

=⇒
∑

g∈Γ(v,F,rv)

d(v, τv(g)) ≤ 2 · γ(v, F ∗, rv) +
∑

g∈Γ(v,F,rv)

d(v, g).

Rewriting the right hand side as 2 · γ(v, F ∗, rv) + γ(v, F, rv) completes the proof of Claim 7.1. ¤
To complete the proof of Lemma 7.1, we show that for any f ∈ F \ Q, we can obtain a feasible

assignment of each vertex v ∈ S to rv facilities Cv(f) ⊆ F \ {f} as follows. If f 6∈ Γ(v, F, rv), then
Cv(f) := Γ(v, F, rv). Else if f ∈ Γ(v, F, rv) (note also that f ∈ F \ Q), then Cv := (Γ(v, F, rv) \
{f})⋃{τv(f)}. By definition of map τv, we have τv(f) ∈ Q \ Γ(v, F, rv); thus in either case Cv(f) ⊆
F \ {f} and |Cv(f)| = rv. Observe that the increase in v’s connection cost upon dropping f from F , i.e.
γ(v, F \ {f}, rv)− γ(v, F, rv) ≤ d(v, τv(f))− d(v, f). Now we have,

∑

f∈F\Q

∑

v∈S

(γ(v, F \ {f}, rv)− γ(v, F, rv)) ≤
∑

f∈F\Q

∑

v:f∈ Γ(v,F,rv)

(d(v, τv(f))− d(v, f))

=
∑

v∈S

∑

f∈ Γ(v,F,rv)\Q
(d(v, τv(f))− d(v, f))

=
∑

v∈S

∑

f∈ Γ(v,F,rv)

(d(v, τv(f))− d(v, f))

=
∑

v∈S





 ∑

f∈Γ(v,F,rv)

d(v, τv(f))


− γ(v, F, rv)




≤
∑

v∈S

((2 · γ(v, F ∗, rv) + γ(v, F, rv))− γ(v, F, rv))

= 2
∑

v∈S

γ(v, F ∗, rv) = 2 · Φ(F ∗ | S),

where the third last inequality follows from Claim 7.1. This finishes the proof of the lemma. ¤

Corollary 7.2 (Robust/Stochastic Fault-Tolerant k-Median Result) There is an O(log m +
log n)-approximation algorithm for robust fault-tolerant k-median, and an O(log n)-approximation al-
gorithm for stochastic fault-tolerant k-median.

8. The Stochastic k-Center Problem. In the previous sections, we gave approximation algo-
rithms for some robust and stochastic location problems. In this section, we study another natural
stochastic location problem, stochastic k-Center, and provide some evidence that it is hard to approxi-
mate well in polynomial time. We consider the uniform-probability stochastic k-center problem: given a
metric space (V, d), subsets S1, . . . , Sm ⊆ V and a bound k, the goal is to open a set F of k facilities to
minimize

m∑

i=1

max
x∈Si

d(x, F ).
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Note that the deterministic version of this problem (i.e. m = 1) is the k-center problem, for which several
2-approximations are known, and this is the best one can do unless P = NP [40].

In this section we show that the stochastic k-center problem is closely related to the dense k-subgraph
problem. Recall that in the standard (maximization) version of the dense k-subgraph problem, we are
given a graph G with n vertices and a value k, and the goal is to pick k vertices that maximize the number
of edges in the induced subgraph. One can also define the minimization version of dense k-subgraph,
where the goal is now to pick k edges to minimize the number of vertices incident to these edges. The best
result known for either version is that of Feige et al. [16] who gave an O(nδ)-approximation algorithm
for some δ < 1/3. The problem is believed to be hard, and [14, 24] showed that the dense k-subgraph
problem is hard to approximate within some constant ρ > 1 under two different complexity-theoretic
assumptions.

We study the (uniform-probability) stochastic k-center problem on the uniform metric, and hence can
formulate it as a set-covering-type problem:

Given m sets {Si}m
i=1 that are subsets of a ground set V , the goal is to pick a set F ⊆ V

of k elements to minimize the number of sets not contained within F ; i.e., the objective
is to minimize |{i ∈ [m] | Si 6⊆ F}|.

Theorem 8.1 (Stochastic k-Center Hardness) Suppose there exists an α-approximation algorithm
for the stochastic k-center problem on the uniform metric. Then there is an α-approximation algorithm
for the minimization version of dense k-subgraph.

Proof. Consider an instance of the minimization dense k-subgraph problem: given graph G =
(V (G), E(G)) and parameter kG, we want to pick at least kG edges to minimize the number of vertices
incident to these edges. We construct an instance of stochastic k-center on the ground set V := E(G). For
each vertex v ∈ V (G), we define a set Sv := {e ∈ E(G) | e is incident to v}. Now consider the instance
of stochastic k-center with V , {Sv | v ∈ V (G)} and the parameter k = |E(G)| − kG. Given any solution
F ⊆ V for this problem, consider the set F ′ = V \ F of size kG. Choosing F to minimize the number of
sets Sv that are not contained within F is the same as choosing F ′ to minimize the number of sets that
intersect F ′—but since a set Sv intersects F ′ precisely when some edge in F ′ is incident to v ∈ V (G), this
is precisely the same as solving the minimization dense k-subgraph instance. In particular, if the bound
k is not violated, any algorithm for stochastic k-center on uniform metrics with approximation ratio α
gives an identical approximation ratio for the minimization dense k-subgraph problem. ¤

9. Closing Remarks. In this paper we presented the first approximation algorithms for some natu-
ral classes of max-min (robust) and stochastic location problems. Our results propose a general framework
for obtaining approximation guarantees of O(log m + log n) for such problems, where m is the number of
possible “scenarios” and n is the size of the metric space. For some of these problems, one can improve
this to O(log m + log k) by first preprocessing the instance to define a new weighted instance on a metric
space of size O(k), and then extend the current algorithms to work for weighted instances as well. As
mentioned in Section 1, the algorithms in this paper only work in the case where there are no costs
involved with opening facilities at particular locations. Can we give algorithms with similar performance
guarantees for the situation with facility costs?
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Appendix A. Improved Guarantee for Robust k-Median on Uniform Metrics. We now
consider a natural linear relaxation for the robust k-median problem on a uniform metric. Recall that
there are n elements V , and m scenarios S1, · · · , Sm ⊆ V ; the goal is to pick k elements so as to minimize
the maximum number of uncovered elements in any scenario.

min z
s.t. z ≥ ∑

e∈Si
xe ∀ 1 ≤ i ≤ m∑

e∈V xe = n− k
0 ≤ x ≤ 1
z ≥ 0

In the above linear program, the variable xe is 1 if element e is not picked, and 0 otherwise. Let us fix
any solution (x, z) to this linear program. To round this solution, we use the dependent rounding scheme
of Gandhi et al. [17], which implies the following in our context:
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Theorem A.1 (Gandhi et al. [17]) There is a polynomial time randomized algorithm that generates
Xe ∈ {0, 1} for all e ∈ V such that:

1 Pr[Xe = 1] = xe for all e ∈ V .

2 Pr[
∑

e∈V Xe = n− k] = 1.

3 {Xe | e ∈ V } are negatively correlated. This implies that for any S ⊆ V and δ ≥ 0, we have:

Pr

[∑

e∈S

Xe > (1 + δ)µS

]
≤ min

{
e
−δ2µS

2+δ ,

(
e

δ + 1

)µS(1+δ)
}

.

Here µS = E[
∑

e∈S Xe].

Using this rounding scheme, it is clear that we always pick exactly k elements. For any scenario Si,
we have µi = E[

∑
e∈Si

Xe] =
∑

e∈Si
xe ≤ z. Fix any constant ε ∈ (0, 1); and set α := 8

ε ln m. Using the
first expression in property (3) of Theorem A.1 with δi = ε·µi+α

µi
for each Si, we have for each 1 ≤ i ≤ m:

Pr

[∑

e∈Si

Xe > (1 + ε) · µi + α

]
≤ exp

(
− (εµi + α)2

2µi + εµi + α

)
≤ 1

m2
,

where the last inequality uses the following calculation:

(εµi + α)2

2µi + εµi + α
≥ α ·

(
εµi + α

2µi + εµi + α

)
= α ·

(
1 +

2µi

εµi + α

)−1

≥ α ·
(

1 +
2
ε

)−1

≥ ε

4
· α = 2 ln m.

Using µi ≤ z for all scenarios Si, we get Pr[
∑

e∈Si
Xe > (1 + ε) · z + α] ≤ 1

m2 for each 1 ≤ i ≤ m.
Now, by a union bound over all scenarios we obtain that with probability at least 1− 1

m , the maximum
number of uncovered elements in any scenario is at most (1 + ε) · z + 8

ε · ln m. Thus we have:

Theorem A.2 For any constant 0 < ε < 1, there is a (randomized) approximation algorithm for robust k-
median on uniform metrics that, given any instance, returns a solution of value at most (1+ε)·`∗+ 8

ε ·ln m,
where `∗ is the optimal value of the given instance.

This randomized rounding algorithm can also be shown to achieve a better multiplicative approxima-
tion guarantee. Set β = 4 ln m

ln ln m . For each scenario Si, choose δi so that µi(1 + δi) = β dze; recall that z
is the LP objective and µi = E[

∑
e∈Si

Xe] =
∑

e∈Si
xe ≤ z. We assume that z > 0, otherwise the robust

k-median instance is trivial. Since µi ≤ z, we have 1 + δi ≥ β for all i ∈ [m]. Now using the second
expression in property (3) of Theorem A.1, for any i ∈ [m],

Pr

[∑

e∈Si

Xe > βdze
]
≤

(
e

1 + δi

)βdze
≤ (e/β)β ≤ exp

(
−β · 1

2
ln lnm

)
≤ 1

m2
.

Now, again by a union bound, with probability at least 1 − 1
m , the maximum number of uncovered

elements in any scenario is at most βdze, which implies:

Theorem A.3 There is a randomized O
(

ln m
ln ln m

)
-approximation algorithm for the robust k-median prob-

lem on uniform metrics.

Appendix B. Bad Examples From Section 3 Here we give bad examples for the two greedy
algorithms for robust k-median on uniform metrics, that were mentioned in Section 3.

Consider first the greedy algorithm that drops the element increasing the exposure of fewest sets. This
algorithm performs badly on the following instance. The universe V = {a1, a2, . . . , a3t} ∪ {b1, b2, . . . , bt},
and the sets/scenarios are as follows:

• There is a set S0 = {a1, a2, . . . , a3t}.
• For each j ∈ [t], there are three sets Sj1 = {bj , aj}, Sj2 = {bj , aj+t} and Sj2 = {bj , aj+2t}.
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Note that each element bj lies in three sets, whereas each element aj lies in two sets. The total number
of elements is n = 4t, and suppose we want to choose a set F ⊆ V with k = 3t to minimize the maximum
exposure. An optimal solution is to choose F = S0, which results in a maximum exposure of 1. However,
if we keep greedily dropping elements which increase the exposure of the fewest sets, we will drop some
t of the elements in S0, which will give us an exposure of t = |V |/4.

Next, consider the greedy algorithm that drops any element that keeps the maximum exposure min-
imized. The bad instance consists of universe V = {c1, . . . , ct}

⋃{d1, . . . , dt}, and let C := {c1, . . . , ct}.
For each j ∈ [t], there is a set C ∪ {dj}. The bound k = t. Clearly the optimal solution picks elements
C, resulting in a maximum exposure of one. However, one possible run of this greedy algorithm is to
repeatedly drop each element in C; this results in a solution having maximum exposure t.


