
Tight Bounds for Permutation Flow Shop Scheduling

Viswanath Nagarajan
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213.

email: viswa@cmu.edu

Maxim Sviridenko
IBM T.J. Watson Research center, Yorktown Heights, NY 10598.

email: sviri@us.ibm.com

In flow shop scheduling there are m machines and n jobs, such that every job has to be processed on the machines
in the fixed order 1, . . . , m. In the permutation flow shop problem, it is also required that each machine processes
the set of all jobs in the same order. Formally, given n jobs along with their processing times on each machine,
the goal is to compute a single permutation of the jobs σ : [n] → [n], that minimizes the maximum job completion
time (makespan) of the schedule resulting from σ. The previously best known approximation guarantee for this
problem was O(

√
m log m) [30]. In this paper, we obtain an improved O(min{√m,

√
n}) approximation algorithm

for the permutation flow shop scheduling problem, by finding a connection between the scheduling problem and
the longest increasing subsequence problem. Our approximation ratio is relative to the lower bounds of maximum
job length and maximum machine load, and is the best possible such result. This also resolves an open question
from [21], by algorithmically matching the gap between permutation and non-permutation schedules.

We also consider the weighted completion time objective for the permutation flow shop scheduling problem.
Using a natural linear programming relaxation, and our algorithm for the makespan objective, we obtain an
O(min{√m,

√
n}) approximation algorithm for minimizing the total weighted completion time, improving upon

the previously best known guarantee of εm for any constant ε > 0 [31]. We give a matching lower bound on the
integrality gap of our linear programming relaxation.

Key words: approximation algorithms; shop scheduling; increasing subsequence

MSC2000 Subject Classification: Primary: 90B35; Secondary: 68W25

OR/MS subject classification: Primary: Production, scheduling; Secondary: approximations, heuristic

1. Introduction In the flow shop problem, there are m machines located in a fixed order (say, 1
through m), and n jobs each of which consists of a sequence of operations on machines (in the order 1
through m). For any job j ∈ {1, . . . , n} and machine i ∈ {1, . . . , m} the length of the operation of job
j on machine i is called its processing time pij . A schedule for the jobs is feasible if (i) each machine
processes at most one job at any time; (ii) for each job, its operations on the machines are processed
in the fixed order 1 through m; and (iii) each operation (of a job on a machine) is processed without
interruption. The flow shop problem is a special case of acyclic job shop scheduling [5, 6], which in turn
is a special case of the general job shop scheduling [3, 15].

We study the permutation flow shop problem, which is the flow shop problem with the additional
constraint that each machine processes all the jobs in the same order. So any feasible schedule to the
permutation flow shop problem corresponds to a permutation of the n jobs. It is well-known [4] that there
exists an optimal schedule for the ordinary flow shop problem having the same processing order (of jobs)
on the first two machines and the same processing order on the last two machines. So the permutation
flow shop problem is equivalent to the ordinary flow shop problem for m ≤ 3 machines. However, it is
easy to construct an instance with m = 4 machines where no permutation schedule is optimal for the
ordinary flow shop problem.

Two natural objective functions that are typically considered for scheduling problems are makespan
and weighted completion time. The makespan of a schedule is the completion time of its last job, i.e.
maximum completion time among all jobs. For the weighted completion time objective, each job j comes
with a weight wj ≥ 0, and the weighted completion time of a schedule is the weighted sum of completion
times over all jobs.

1.1 Related Work When the number of machines m is a fixed constant, a PTAS is known for
the job-shop scheduling problem with the makespan objective due to Jansen et al. [12] and the total
weighted completion time objective due to Fishkin et al. [7]. It seems quite likely, that similar techniques
yield PTASes for the permutation flow shop scheduling problems with corresponding objective functions,
although such results did not appear in the literature. For the ordinary flow shop problem with the

1

mailto:viswa@cmu.edu�
mailto:viswa@cmu.edu�
mailto:sviri@us.ibm.com�
mailto:sviri@us.ibm.com�

2 : Tight Bounds for Permutation Flow Shop Scheduling
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

makespan objective, the best known approximation guarantee is O(log m(log log m)1+ε), where ε > 0 is
any constant, due to Czumaj and Scheideler [5]; in fact this result holds for the more general class of
acyclic-shop scheduling. Using the general result from [23] one can derive an approximation algorithm
with the analogous performance guarantee for the flow shop scheduling problem with the total weighted
completion time objective.

The following are two obvious lower bounds for the permutation flow shop scheduling problem with
the makespan objective: maximum job length l = maxn

j=1{
∑m

i=1 pi,j}, and maximum machine load
L = maxm

i=1{
∑n

j=1 pi,j}. Potts et al. [21] have shown a family of instances where the optimal makespan is
Ω(

√
min{m,n}) times the trivial lower bound (max{L, l}). It was an open question in [21] to determine

whether this bound is tight. The previously best known approximation guarantee for the makespan
problem is O(

√
m log m) due to Sviridenko [30]; this guarantee is relative to the trivial lower bound. Prior

to this, a number of algorithms [25, 19, 18] were shown to have a (tight) worst case guarantee of dm
2 e.

There are also some papers dealing with additive guarantees for this problem [26, 30]. Sevastianov [26]
gave an algorithm that always produces a schedule of length at most L+O(m2)maxi,j pi,j . Sviridenko [30]
obtained a similar guarantee of (1 + δ)L + Kδ(m log m)maxi,j pi,j for any δ > 0 (here Kδ is a function
depending on δ alone). The best multiplicative approximation guarantee obtainable from these results is
the O(

√
m log m) [30].

Smutnicki [31] gave a worst case analysis of several algorithms for the permutation flow shop problem
with the weighted completion time objective. Assuming a ρk approximation guarantee for the problem
on k machines, [31] gave an m

k ρk approximation algorithm for the problem on m machines. Assuming
that there exists a PTAS for the permutation flow shop scheduling problem with the weighted completion
time objective and fixed number of machines, one could obtain an εm guarantee for minimizing weighted
completion time (for any constant ε > 0). Alternatively, we could use the (2+ε)-approximation algorithm
from [28] that works basically for any shop scheduling problem with makespan criteria on constant number
of machines. Otherwise, the best known guarantee is m. To the best of our knowledge this is the previously
best known result for this problem.

The permutation flow shop scheduling problem has been very popular in the Operations Research
community in the last 40 years and there is a significant body of work devoted to the design of heuristics
for this problem. The survey paper [8] establishes a common framework for these heuristics, and describes
main classes of algorithms and research directions.

1.2 Our Results and Paper Outline We give a simple randomized algorithm (Section 2) for
minimizing makespan that achieves an approximation guarantee of 2

√
min{m,n}. This guarantee is

relative to the trivial lower bounds. The analysis is based on the connection between the permutation
flow shop scheduling problem and the longest increasing subsequence problem. This connection is new
and might be interesting in its own right. It also allows us to apply non-trivial probabilistic results on the
expected value and concentration of the longest increasing subsequence in a random sequence [16, 32, 9].

Hence we answer the open question in Potts et al. [21], by matching algorithmically the Ω(
√

min{m,n})
gap shown in [21]. We also show how this algorithm can be derandomized to obtain a deterministic
approximation guarantee of 3

√
min{m, n}. This algorithm uses the derandomization technique of pes-

simistic estimators due to Raghavan [24] and certain ideas from the proof of concentration bound from
[9]; the details are non-trivial and appear in Section 3. We note that among algorithms that are based
on the trivial lower bounds, our algorithm is the best possible (up to a 2

√
2 factor).

On the first sight our improvement of O(
√

log m) upon the previously best known bound from [30] looks
insignificant, but the proof in [30] is based on Chernoff Bounds and it is quite well-known that improving
upon Chernoff Bounds based proofs requires substantially new insights on the problem structure. For
example, for the famous combinatorial discrepancy problem the straightforward randomized algorithm
yields the bound of O(

√
n log n); but using more sophisticated techniques based on entropy and using

a pigeon-hole principle, Spencer proved a better non-constructive bound of O(
√

n) [2]. It is one of the
well-known open questions to obtain a constructive (algorithmic) proof of Spencer’s result; it is also
unknown if Spencer’s guarantee holds in the case when the matrix entries are arbitrary real numbers in
the interval [0, 1] while Chernoff bounds can be easily applied even in this more general case. The key to
our result is a decomposition of the matrix of processing times into a sum of permutation matrices and
noticing that the “intersection” of each such matrix with any critical path corresponds to an increasing

: Tight Bounds for Permutation Flow Shop Scheduling
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 3

subsequence in a certain permutation.

Our second contribution is a partial explanation of great practical performance of the simple greedy
algorithm for the permutation flow shop problem with the makespan objective. This algorithm was first
suggested by Nawaz, Enscore and Ham [17] and is also known under the name of “insertion heuristic”.
This algorithm initially orders jobs in the decreasing order of the job lengths and inserts them one by
one into the current schedule, always choosing the best position for a job in the current permutation.
Although this algorithm is very simple and has superb practical performance [8], there is no analytical
explanation of this phenomenon. Many practical algorithms either directly use the insertion heuristic or
generalize it in some way. The natural way of analyzing such a heuristic would be to define a potential
function which is improved on every step of the greedy procedure and prove some bound relating this
function with the makespan. Although we were not able to apply this method to the insertion heuristic,
our derandomization algorithm follows this framework. Moreover, our final derandomized algorithm
resembles the greedy algorithm of Nawaz, Enscore and Ham [17]. The difference is that our algorithm
greedily fixes the first few positions in the current permutation with respect to a certain potential function
(derived from the concentration bound on length of the longest increasing subsequence [9]), while the
greedy algorithm [17] just fixes a relative ordering of the first few jobs allowing unscheduled jobs to be
scheduled in between later on.

We then consider the weighted completion time objective (Section 4) and use our algorithm for mini-
mizing makespan to obtain an O(

√
min{m,n}) approximation algorithm for this problem. This algorithm

uses the linear relaxation of a natural integer programming formulation for the problem. Our rounding
algorithm is similar to the approach used in Queranne and Sviridenko [23] (and many other papers on
scheduling with the weighted completion time objective [11, 1, 10]); the difference is that we need to
ensure that when we apply the approach of geometric partitioning of the time interval, the schedule for
each such interval satisfies the permutation constraint. We also show a matching Ω(

√
min{m,n}) lower

bound on the integrality gap of our LP relaxation.

Recently and independently of our work, Sotelo and Poggi de Aragao [29] designed a deterministic
approximation algorithm for the permutation flow shop problem with makespan criteria. The performance
guanrantee of their algorithm is O(

√
n) and is slighly worse than ours. Although the algorithm and

analysis seem to be different from ours they also use the connection of the permutation flow shop problem
and increasing subsequences in permutations.

1.3 Preliminaries An instance of the permutation flow shop problem with m machines and n jobs
is given by an m × n matrix P = {pi,j | i = 1, · · · ,m, j = 1, · · · , n} of processing times, where pi,j is
the processing time of job j on machine i. We often denote the set {1, · · · , n} of all jobs by [n], and the
set {1, · · · ,m} of all machines by [m]. Any feasible schedule for permutation flow shop corresponds to
a permutation of the n jobs. Given a permutation π : [n] → [n] of jobs, the complete schedule of job-
operations on machines can be obtained by running jobs on machines in the order π while maintaining
the minimum possible wait-time between operations. It is convenient to think of π as a mapping from the
set of n possible positions to the set of n jobs. Therefore, π(p) denotes the job located at position p. For
any permutation π of the n jobs and a job j ∈ [n], we use Cπ

j to denote the completion time of job j under
the schedule π; we also denote the makespan of schedule π by Cπ

max = maxn
j=1 Cπ

j . Given non-negative
weights {wj}n

j=1 for the jobs, the weighted completion time objective of the schedule corresponding to
permutation π is

∑n
j=1 wjC

π
j .

A monotone path (or critical path) in an m×n matrix is defined to be a sequence 〈(x1, y1), · · · , (xt, yt)〉
of matrix positions such that (x1, y1) = (1, 1), (xt, yt) = (m,n), and for each 1 ≤ i < t either xi+1 = xi+1
& yi+1 = yi or xi+1 = xi & yi+1 = yi + 1. In particular, this definition implies that each monotone path
in an m× n matrix consists of exactly t = m + n− 1 positions. We denote the set of all monotone paths
in an m× n matrix by Mm,n.

A map τ : [n] → X ∪ {φ} where X ⊆ [m] is called a partial permutation if there is a subset Y ⊆ [n]
with |Y | = |X| such that (i) τ(Y) = X (τ is a one-to-one map from Y to X); and (ii) τ(z) = φ for all
z ∈ [n] \ Y . For such a partial permutation τ , we refer to the set X as its image, denoted Image(τ). A
0-1 m×n matrix Π is called a permutation matrix if every row and column has at most one entry that is
1 (all other entries are 0s). Note that there is an obvious correspondence between partial permutations
and permutation matrices. In the rest of the paper we will use partial permutations that map a subset

4 : Tight Bounds for Permutation Flow Shop Scheduling
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

of jobs into a set of machines.

2. Randomized Algorithm for Minimizing Makespan In this section, we give a randomized
Θ(

√
min{m,n}) approximation guarantee for minimizing makespan in the permutation flow shop prob-

lem. From the results of Potts et al. [21], it follows that this result is the best possible using the known
lower bounds for this problem (namely, machine load & job length). Our algorithm is extremely sim-
ple: always output a permutation chosen uniformly at random. The rest of this section proves that this
algorithm achieves a guarantee of 2

√
min{m,n}.

Given any instance of permutation flow shop, consider the m × n matrix P of processing times. We
first show how P can be decomposed into a collection of smaller matrices having certain properties.

Lemma 2.1 Given any matrix P ∈ Nm×n, there exist h = max{l, L} permutation matrices {Πk}h
k=1 such

that P =
∑h

k=1 Πk, where l = maxn
j=1{

∑m
i=1 pi,j} and L = maxm

i=1{
∑n

j=1 pi,j}.

Proof. Define a bipartite multi-graph graph G corresponding to P as follows. G has vertex bipar-
tition [m] and [n]. For every i ∈ [m] & j ∈ [n], G contains pi,j parallel edges between i & j. Note that
the maximum degree of G is exactly h = max{l, L}. By the König edge-coloring theorem for bipartite
graphs there is a valid coloring of the edges of G (no two adjacent edges receive the same color) with h
colors. Let E1, · · · , Eh denote the edges in each color class of such a valid coloring. For each 1 ≤ k ≤ h,
let Πk denote the m×n 0-1 matrix that contains 1s in the positions corresponding to edges of Ek, and 0s
everywhere else. Since we have a valid coloring, each Ek is a matching in G; in other words, the matrices
{Πk}h

k=1 are all permutation matrices. Further, since each edge of G is assigned some color, we have
P =

∑h
k=1 Πk. ¤

Recall that Mm,n denotes the set of all monotone paths in an m × n matrix. In this section, m and
n are fixed; so we abbreviate M = Mm,n. For any permutation σ of the n jobs, monotone paths can be
used to characterize the makespan of the schedule resulting from σ as follows:

Cσ
max = max

α∈M

∑

(i,q)∈α

pi,σ(q).

This well-known characterization follows from the fact that the makespan Cσ
max is lower bounded by

the total length of any monotone path since every two consecutive operations in such a path are either
consecutive operations of some job or consecutive operations on the same machine. It is also easy to
build a monotone path that attains the equality. Starting with the operation that finishes last (on the
last machine) include all operations preceding to that operation on the same machine till the last idle
time. Let Jj be the job whose m-th operation starts on the last machine after that idle time. Include the
m− 1st operation of job Jj into the monotone path. Include all operations preceding that operation on
machine m− 1 till the last idle time before that operation and so on.

Consider any permutation matrix Πk (k = 1, · · · , h) in the decomposition of Lemma 2.1. Let the
1-entries of Πk be in positions {(xk

1 , yk
1), · · · , (xk

r , yk
r)}, where 1 ≤ xk

1 < · · · < xk
r ≤ m and yk

1 , · · · , yk
r ∈ [n]

are distinct elements. Denote Xk = {xk
1 , · · · , xk

r} and Yk = {yk
1 , · · · , yk

r }; clearly, |Xk| = |Yk| = r ≤
min{m,n}. Define the map τk : [n] → Xk ∪ {φ} where τk(yk

g) = xk
g (for all 1 ≤ g ≤ r) and τk(z) = φ

for z /∈ Yk. Since each Πk is a permutation matrix, it follows that the τk is a partial permutation for
k = 1, . . . , h.

Finally, for any sequence S of elements from [m] ∪ φ, define I(S) to be the length of the longest
increasing subsequence of numbers in S (ignoring all occurrences of the null element φ).

Lemma 2.2 For any permutation σ on jobs and any monotone path α ∈M,
∑

(i,q)∈α

pi,σ(q) ≤
h∑

k=1

I(τk ◦ σ[n])

Proof. Clearly we have:
∑

(i,q)∈α

pi,σ(q) =
∑

(i,q)∈α

[
h∑

k=1

Πk(i, σ(q))] =
h∑

k=1

∑

(i,q)∈α

Πk(i, σ(q))

: Tight Bounds for Permutation Flow Shop Scheduling
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 5

Now consider a particular permutation matrix Πk (for k = 1, · · · , h) and the sum
∑

(i,q)∈α Πk(i, σ(q)).

Let Sk = {(i, q) ∈ α | Πk(i, σ(q)) = 1}; then the sum
∑

(i,q)∈α Πk(i, σ(q)) = |Sk|. Since Πk has at most
one non-zero entry in each row and column (given by the partial permutation τk) and α is a monotone
path, we obtain that Sk = {(i1, q1), · · · , (it, qt)} (where t = |Sk|), with the following properties:

(i) 1 ≤ i1 < · · · < it ≤ m and {i1, · · · , it} ⊆ Xk.
(ii) 1 ≤ q1 < · · · < qt ≤ n.
(iii) τk(σ(qg)) = ig for all 1 ≤ g ≤ t.

From the above, we have that i1 < i2 < · · · < it is an increasing subsequence of length t in the
sequence τk ◦σ[n] = 〈τk ◦σ(1), · · · , τk ◦σ(n)〉; namely given by the positions q1 < q2 < · · · < qt. Thus the
longest increasing subsequence in τk ◦σ[n] has length at least |Sk|. In other words,

∑
(i,q)∈α Πk(i, σ(q)) ≤

I(τk ◦ σ[n]). Summing this expression over all permutation matrices Πk for k = 1, · · · , h, we obtain the
statement of the Lemma. ¤

Note that the right hand side in the inequality in Lemma 2.2 does not depend on the monotone path
α; hence we obtain that Cσ

max = maxα∈M
∑

(i,q)∈α pi,σ(q)

≤ maxα∈M
∑h

k=1 I(τk ◦ σ[n]) =
∑h

k=1 I(τk ◦ σ[n]). We will also need the following:

Lemma 2.3 (Logan & Shepp [16]; Vershik & Kerov [32]) The expected
length of the longest increasing subsequence of a uniformly random permutation on r elements is (2 +
o(1))

√
r.

We are now ready for the main theorem of this section.

Theorem 2.1 Eσ[Cσ
max] ≤ (2 + o(1))h ·

√
min{m, n}. Hence there is a randomized polynomial time

(2
√

min{m,n})-approximation algorithm for the permutation flow shop problem.

Proof. From the linearity of expectation, Lemma 2.2 and the comment following it, it suffices to
bound Eσ[I(τk ◦ σ[n])] for each 1 ≤ k ≤ h. Fix a 1 ≤ k ≤ h: since σ is chosen uniformly at random
over all permutations, the jobs from Yk are ordered uniformly at random. Thus τk ◦ σ[n] is a uniformly
random ordering of the elements Xk (ignoring occurrences of φ). Applying Lemma 2.3, we immediately
obtain the following which proves the theorem.

Eσ[I(τk ◦ σ[n])] ≤ (2 + o(1))
√
|Xk| ≤ (2 + o(1))

√
min{m, n}.

¤
Thus we have a very simple randomized Θ(

√
min{m,n})-approximation algorithm for the permutation

flow shop problem, based on the trivial lower bound. Potts et al. [21] gave a family of examples where
the optimal permutation schedule has length at least 1√

2

√
min{m,n} times the lower bound. Hence our

result is the best possible guarantee (within a factor of 2
√

2) using these lower bound. We note that
Theorem 2.1 also implies that for any instance of flow shop scheduling, there is a permutation schedule
of length at most 2

√
min{m,n} times the length of an optimal non-permutation schedule; hence this

resolves positively the open question in Potts et al. [21] regarding the gap between permutation &
non-permutation schedules.

Tight Example. The following simple example shows that the performance guarantee of this randomized
algorithm is tight. There are n jobs and m = 2n machines. Each job j (for 1 ≤ j ≤ n) has processing
time 1 on machines j and n + j, and 0 elsewhere. The optimal permutation of jobs is n, n − 1, · · · , 1
which results in a makespan of 2. However, it follows from Lemma 2.3 that a random permutation has
expected makespan at least 2

√
n.

3. A Deterministic Algorithm We apply the technique of pessimistic estimators due to Raghavan
[24] to derandomize the algorithm of the previous section, and obtain a deterministic Θ(

√
min{m,n})-

approximation guarantee. We first apply the decomposition of Lemma 2.1 to obtain h permutation-
matrices Π1, · · · , Πh corresponding to P . By assigning weights w1, · · · , wh ∈ N to each of these permu-
tations, we can ensure that P =

∑h
k=1 wk · Πk and h ≤ mn; here

∑h
k=1 wk is the trivial lower-bound

6 : Tight Bounds for Permutation Flow Shop Scheduling
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

for the flowhop instance. This computation can be done easily in polynomial time by iteratively using
any bipartite matching algorithm. There are many more efficient algorithms for computing an edge-
coloring in bipartite multigraphs (See the table in Section 20.9b [27] for running times and references for
various edge-coloring algorithms). Further Lemma 2.2 implies that for any permutation σ : [n] → [n]
of the jobs, the resulting makespan Cσ

max ≤ C∗(σ) .=
∑h

k=1 wk · I(τk ◦ σ), where τks are the partial
permutations corresponding to the permutation-matrices Πks. From the previous section, we have that
Eσ[C∗(σ)] ≤ 2

√
min{m,n} ·∑h

k=1 wk. In this section, we give a deterministic algorithm that obtains a
permutation σ satisfying C∗(σ) ≤ 3

√
min{m,n} ·∑h

k=1 wk.

In particular, we show that given any collection of h partial permutations τ1, · · · , τh : [n] → [m]∪{φ},
each having a non-empty value on at most r elements, and associated weights {wk}h

k=1, there is a
polynomial time deterministic algorithm that computes a single permutation σ : [n] → [n] satisfying
C∗(σ) =

∑h
k=1 wk · I(τk ◦ σ[n]) ≤ 3

√
r · ∑h

k=1 wk. This immediately implies the desired deterministic
approximation guarantee for the permutation flow shop problem since each partial permutation has an
image of size at most r ≤ min{m, n}. In the following, we refer to a permutation that is chosen uniformly
at random as u.a.r. permutation.

The algorithm first computes the partial permutations τk and weights wk for k = 1, . . . , h, and then
builds the solution σ incrementally. In each step i = 1, . . . , n we suitably fix the value of σ(i) that
results in a prefix of the permutation 〈σ(1), . . . , σ(i)〉, i.e. we fix jobs located in the first i positions.
The choices for σ(i) in each step i are made in such a way that finally, C∗(σ) ≤ 3

√
r ·∑h

k=1 wk. Define
the following quantities for any partial permutation τk (1 ≤ k ≤ h), step 0 ≤ i ≤ n, and elements
a1, · · · , ai ∈ Image(τk) ∪ {φ}:

Ek
i (a1, · · · , ai)

.=
expected value of the longest increasing subsequence
in 〈a1, · · · , ai, τ〉, where τ is a permutation
on Image(τk) \ {a1, · · · , ai} picked u.a.r.

Uk
i (a1, · · · , ai)

.=
an efficiently computable upper bound on Ek

i (a1, · · · , ai)
(exact definition later).

In the above definitions, the elements a1, · · · , ai represent the values τk◦σ(1), · · · , τk◦σ(i) respectively,
obtained from the first i positions of permutation σ, that have been fixed thus far. We also define the
expected value of function C∗(σ) in step i as functions of the first i positions of permutation σ (that have
been fixed):

Ei(σ(1), · · · , σ(i)) :
expected value Eσ(i+1)···σ(n)[C∗(σ)], with 〈σ(i + 1) · · ·σ(n)〉
being a u.a.r. permutation on [n] \ {σ(1), · · · , σ(i)}

Note that for any 1 ≤ k ≤ h, since 〈σ(i + 1), · · · , σ(n)〉 is u.a.r. permutation on [n] \ {σ(1), · · · , σ(i)},
we obtain that 〈τk ◦ σ(i + 1), · · · , τk ◦ σ(n)〉 is u.a.r. permutation on Image(τk) \ {τk ◦ σ(j) : 1 ≤ j ≤ i}.
Thus we can rewrite Ei as:

Ei(σ(1), · · · , σ(i)) .=
h∑

k=1

wk · Ek
i (τk ◦ σ(1), · · · , τk ◦ σ(i))

We also define the efficiently computable upper bound on Ei as:

Ui(σ(1), · · · , σ(i)) .=
h∑

k=1

wk · Uk
i (τk ◦ σ(1), · · · , τk ◦ σ(i))

The precise definition of the upper bound functions Uk
i for k = 1, . . . , h and i = 0, . . . , n appears in

the next subsection. In Lemmas 3.1 and 3.2, we prove some important properties of the functions Ui,
which allow us to derandomize the algorithm of the previous section to obtain Theorem 3.1.

3.1 Properties of the pessimistic estimator Recall the definition of Ek
i (a1, · · · , ai); we now

construct an upper bound
Uk

i (a1, · · · , ai) for this expected value. Fix a parameter t = 3
√

r, where r = maxh
k=1 |Image(τk)| is

an upper bound on the length of each partial permutation. Define Sk
i (a1, · · · , ai) to be the expected

: Tight Bounds for Permutation Flow Shop Scheduling
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 7

number of t-length increasing subsequences in 〈a1, · · · , ai, τ〉, when τ is u.a.r. permutation on Image(τk)\
{a1, · · · , ai}. We can now upper bound Ek

i (a1, · · · , ai), the expected length of the longest increasing
subsequence in 〈a1, · · · , ai, τ〉, as follows:

Ek
i (a1, · · · , ai) ≤ t · Prτ [〈a1, · · · , ai, τ〉 has no t-length increasing subsequence]

+ r · Prτ [〈a1, · · · , ai, τ〉 contains a t-length increasing subsequence]
≤ t + r · Prτ [〈a1, · · · , ai, τ〉 contains a t-length increasing subsequence]
≤ t + r · Sk

i (a1, · · · , ai)

Define the upper bound Uk
i on the expected value Ek

i as:

Uk
i (a1, · · · , ai)

.= t + r · Sk
i (a1, · · · , ai) ∀1 ≤ k ≤ h

Let Nk
i = Image(τk) \ {a1, · · · , ai} ⊆ [m]; and for any set T , let P(T) denote the set of all permutations

of the elements of T . We first show that each Uk
i can be efficiently computed, which implies the same for

the functions {Ui}n
i=0.

Lemma 3.1 For any 1 ≤ k ≤ h, i ∈ {0, · · · , n} and a1, · · · , ai ∈ Image(τk)∪{φ}, the value Uk
i (a1, · · · , ai)

can be computed exactly in polynomial time.

Proof. Fix any values of 1 ≤ k ≤ h, 0 ≤ i ≤ n and a1, · · · , ai ∈ Image(τk) ∪ {φ}. Clearly
it suffices to show that Sk

i (a1, · · · , ai) can be computed in polynomial time. We say that a t-length
increasing subsequence s is feasible if there is some permutation τ ∈ P(Nk

i) such that s is a subsequence
in 〈a1, · · · , ai, τ〉. Let I denote the set of all such feasible t-length increasing subsequences. Then we can
partition I as

(t {Ij,q | 1 ≤ j ≤ i & 1 ≤ q ≤ t}) t I0,0 where:

I0,0 = {τ0 | τ0 is a t-length increasing sequence of numbers from Nk
i }

Ij,q =
{
〈τ ′, τ ′′〉

∣∣∣∣
τ ′ is a q length increasing subsequence in 〈a1, · · · , aj〉
ending at aj 6= φ, and τ ′′ is a t− q length increasing
sequence of numbers from {e ∈ Nk

i : e > aj}

}

Note that given any j ∈ {1, · · · , i} and q ∈ {1, · · · , t}, one can compute in polynomial time, the
number of q-length increasing subsequences in 〈a1, · · · , aj〉 that end at aj ; we denote this quantity by
#I(j, q). The computation of #I(j, q) is based on a dynamic program using the following recurrence:

#I(j, q) =

∑{#I(j′, q − 1) | 1 ≤ j′ < j, aj′ < aj} aj 6= φ, q ≥ 2
1 aj 6= φ, q = 1
0 aj = φ

For ease of notation in the following, let #I(0, 0) = 1. For every 1 ≤ j ≤ i, denote the set {e ∈
Nk

i : e > aj} by Lj , and also let L0 = Nk
i . Note that, for each part Ij,q (in the partition of I), its size

|Ij,q| = #I(j, q) · (|Lj |
t−q

)
(the first term corresponds to a q length increasing subsequence of 〈a1, · · · , aj〉,

and the second term corresponds to a t − q length increasing sequence from Lj). When τ ∈ P(Nk
i)

is picked u.a.r., the induced permutation on each set Lj (for 0 ≤ j ≤ i) is also u.a.r. Hence for each
part Ij,q, the probability that any particular subsequence s ∈ Ij,q appears in 〈a1, · · · , ai, τ〉 is exactly
1/(t− q)!. (the last t− q entries of s come from the random permutation τ). So we have:

Eτ

[|{s ∈ Ij,q : s is subsequence of 〈a1, · · · , ai, τ〉}|
]

=
∑

s∈Ij,q
Prτ

[
s is subsequence of 〈a1, · · · , ai, τ〉

]

= |Ij,q| · 1
(t−q)!

= #I(j, q) · (|Lj |
t−q

) · 1
(t−q)!

Thus, we can write Sk
i (a1, · · · , ai) as

Eτ∈P(Nk
i)

[|{s ∈ I : s is subsequence of 〈a1, · · · , ai, τ〉}|
]

=
∑

j,q Eτ∈P(Nk
i)

[|{s ∈ Ij,q : s is subsequence of 〈a1, · · · , ai, τ〉}|
]

=
∑

j,q #I(j, q) · (|Lj |
t−q

) · 1
(t−q)!

The lemma follows. ¤

8 : Tight Bounds for Permutation Flow Shop Scheduling
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

Lemma 3.2 For any 0 ≤ i ≤ n and any prefix (possibly empty) σ(1), · · · , σ(i) ∈ [n] of a permutation σ,

min
σ(i+1)∈[n]\{σ(1),··· ,σ(i)}

Ui+1(σ(1), · · · , σ(i), σ(i + 1)) ≤ Ui(σ(1), · · · , σ(i))

Proof. Fix any i and a prefix σ(1), · · · , σ(i) of a permutation σ, and let M = [n] \ {σ(1), · · · , σ(i)}.
We first prove the following for an arbitrary 1 ≤ k ≤ h:

Sk
i (τk ◦ σ(1), · · · , τk ◦ σ(i)) =

1
n− i

∑

x∈M

Sk
i+1(τk ◦ σ(1), · · · , τk ◦ σ(i), τk(x)) (1)

For ease of notation, let ak
j = τk ◦ σ(j) for all 1 ≤ j ≤ i. Let Nk

i = Image(τk) \ {ak
1 , · · · , ak

i } ⊆ [m] denote
the remaining elements of Image(τk), and nk

i = |Nk
i |. Recall that,

Sk
i (ak

1 , · · · , ak
i) = Eτ [number of t-length increasing subsequences in 〈ak

1 · · · ak
i , τ〉]

where τ ∈ P(Nk
i) is picked u.a.r. So multiplying both sides of 1 by nk

i ! = |P(Nk
i)|, we can rewrite its left

hand side as:

LHS′ = nk
i ! × Sk

i (ak
1 , · · · , ak

i) =
∑

τ∈P(Nk
i)

#It(ak
1 , · · · , ak

i , τ) (2)

Above, for any sequence s, #It(s) denotes the number of t-length increasing subsequences in s. To
compute the right hand side of 1, we split the summation into M (k) = {x ∈ M | τk(x) 6= φ} and
M \M (k) = {x ∈ M | τk(x) = φ}. Note that |M | = n− i and |M (k)| = nk

i . For any x ∈ M \M (k), it is
easy to see that Sk

i+1(a
k
1 , · · · , ak

i , τk(x)) = Sk
i (ak

1 , · · · , ak
i). Now the right hand side of 1 (scaled by nk

i !)
can be written as:

nk
i ! × n− i− nk

i

n− i
Sk

i (ak
1 , · · · , ak

i) + nk
i ! × 1

n− i

∑

x∈M(k)

Sk
i+1(a

k
1 , · · · , ak

i , τk(x))

= (1− nk
i

n− i
)LHS′ + nk

i ! × 1
n− i

∑

x∈M(k)

Sk
i+1(a

k
1 , · · · , ak

i , τk(x))

Thus in order to prove 1, it suffices to show:

LHS′ = (nk
i − 1)! ×

∑

x∈M(k)

Sk
i+1(a

k
1 , · · · , ak

i , τk(x)) (3)

Note that τk induces a bijection between M (k) and Nk
i : |M (k)| = |Nk

i | and τk(M (k)) = Nk
i . Thus we can

rewrite the right hand side in 3 as:

(nk
i − 1)!

∑

y∈Nk
i

Sk
i+1(a

k
1 , · · · , ak

i , y) =
∑

y∈Nk
i

∑

τ ′∈P(Nk
i \y)

#It(ak
1 , · · · , ak

i , y, τ ′)

To prove 3, using the expression for LHS′ from 2, it suffices to show that:

∑

τ∈P(Nk
i)

#It(ak
1 , · · · , ak

i , τ) =
∑

y∈Nk
i

∑

τ ′∈P(Nk
i \y)

#It(ak
1 , · · · , ak

i , y, τ ′)

Now observe that P(Nk
i) = ty∈Nk

i
{〈y, τ ′〉 | τ ′ ∈ P(Nk

i \y)}. Thus the summations in the two expressions
above run over exactly the same set of sequences, and this implies equality 3 which in turn gives equation

: Tight Bounds for Permutation Flow Shop Scheduling
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 9

1. We are now ready to complete the proof of the lemma.

min
σ(i+1)∈M

Ui+1(σ(1), · · · , σ(i), σ(i + 1)) ≤ 1

n− i

∑
x∈M

Ui+1(σ(1), · · · , σ(i), x)

=
1

n− i

∑
x∈M

h∑

k=1

wk

[
t + r · Sk

i+1(τk ◦ σ(1), · · · , τk ◦ σ(i), τk(x))
]

=
|M |
n− i

· t
h∑

k=1

wk +
1

n− i

∑
x∈M

r ·
h∑

k=1

wk · Sk
i+1(τk ◦ σ(1), · · · , τk ◦ σ(i), τk(x))

= t

h∑

k=1

wk + r ·
h∑

k=1

wk · 1

n− i

∑
x∈M

Sk
i+1(τk ◦ σ(1), · · · , τk ◦ σ(i), τk(x))

= t

h∑

k=1

wk + r ·
h∑

k=1

wk · Sk
i (τk ◦ σ(1), · · · , τk ◦ σ(i))

(
Using equation 1

)

=

h∑

k=1

wk · Uk
i (τk ◦ σ(1), · · · , τk ◦ σ(i))

= Ui(σ(1), · · · , σ(i))

Thus we have the lemma. ¤

3.2 Applying the pessimistic estimators We now use the upper-bound functions Ui for i =
1, . . . , n described in the previous subsection to obtain a deterministic approximation algorithm for the
permutation flow shop problem. This algorithm follows the general framework of the method of pessimistic
estimators.

Theorem 3.1 There is a deterministic polynomial time 3
√

min{m,n} approximation algorithm for the
permutation flow shop scheduling problem with makespan objective.

Proof. We now describe our final deterministic algorithm:

(i) Decompose the matrix P of processing times according to Lemma 2.1, to obtain h ≤ mn

permutation-matrices with corresponding weights {Πk, wk}h
k=1, such that P =

∑h
k=1 wk · Πk

and
∑h

k=1 wk equals the trivial lower-bound for the permutation flow shop instance.
(ii) For each 1 ≤ k ≤ h, τk denotes the partial permutation corresponding to permutation-matrix

Πk.
(iii) For each i = 1, · · · , n: set σ(i) ← x for the value x ∈ [n] \ {σ(1), · · · , σ(i − 1)} that minimizes

the function value Ui(σ(1), · · · , σ(i− 1), x).

As mentioned earlier, the decomposition in step (i) can be carried out in polynomial time using an
edge-coloring algorithm. In step (iii), the algorithm uses the efficiently computable functions {Ui}n

i=0

(see Lemma 3.1) to fix the solution σ step by step. Hence the above algorithm runs in polynomial time.
The rest of this proof shows that it achieves the desired approximation guarantee.

We claim that for each i ∈ {0, · · · , n}, Ui(σ(1), · · · , σ(i)) ≤ W · (t + 2) where W =
∑h

k=1 wk is the
trivial lower-bound (recall that t = 3

√
r ≤ 3

√
min{m,n}). Assuming that the base case (i.e. i = 0)

for this claim holds, using Lemma 3.2 and induction, we obtain that the claim is true for all values
of i ≥ 1. It remains to prove the claim for i = 0: here U0 takes no arguments and is a fixed value
U0 = tW + r

∑h
k=1 wk ·Sk

0 . From the definition of the Sk
i s, we have that each Sk

0 is the expected number
of t-length increasing subsequences in a u.a.r. permutation of Image(τk). Since Image(τk) has at most r
elements, using linearity of expectation, it follows that Sk

0 ≤
(
r
t

) · 1
t! for every k = 1, · · · , h. We have,

U0 ≤ tW + rW

(
r

t

)
1
t!

= tW + rW
r!

(r − t)!t!
1
t!
≤ tW + rW

rt

(t!)2

≤ tW + rW

(
re2

t2

)t

= tW + rW

(
e2

9

)t

= tW + rW
(e

3

)6
√

r

≤ W · (t + 2)

Now observe that after the last step, En(σ(1), · · · , σ(n)) is exactly the value C∗(σ) (at this point all
positions have been fixed, so there is no randomness left in the expected value En). Since the function

10 : Tight Bounds for Permutation Flow Shop Scheduling
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

Un upper bounds En, we have C∗(σ) = En(σ(1), · · · , σ(n)) ≤ Un(σ(1), · · · , σ(n)) ≤ W · (t + 2). Now
the theorem follows from the fact that W equals the trivial lower-bound for the permutation flow shop
instance and r ≤ min{m, n}. ¤

4. Weighted sum of completion times In this section, we consider the permutation flow shop
problem with the objective being the weighted sum of completion times. We show that our algorithm
for the makespan objective can be used within an LP-based approach to obtain an O(

√
min{m,n}) ap-

proximation algorithm for weighted completion time. This approach is similar to that used in Queyranne
and Sviridenko [23] (and many other papers on scheduling with the weighted completion time objective
[11, 1, 10]), where the authors considered a class of job shop problems (these do not have the permu-
tation constraint). We consider the following linear relaxation for the permutation flow shop problem
with weighted completion time as objective. In fact this LP is a relaxation for even the usual flow shop
problem (without the permutation constraint).

min
n∑

j=1

wj · Cj , (4)

z1,j ≥ p1,j , ∀1 ≤ j ≤ n (5)
zi,j ≥ zi−1,j + pi,j , ∀2 ≤ i ≤ m, 1 ≤ j ≤ n (6)

∑

j∈A

pi,j · zi,j ≥ 1
2
(
∑

j∈A

pi,j)2 +
1
2

∑

j∈A

p2
i,j , ∀A ⊆ [n], 1 ≤ i ≤ m, (7)

Cj = zm,j , ∀1 ≤ j ≤ n (8)
zi,j ≥ 0, ∀1 ≤ i ≤ m, 1 ≤ j ≤ n (9)

Here each variable zi,j denotes the time when job j’s operation on machine i is completed; and
Cj = zm,j is the completion time of job j. Constraints (6) ensure that the operations of each job are
performed in the flow shop order. Constraints (7) are a relaxation of the machine resource constraints.
The weighted completion time objective is captured in (4). As shown in Queyranne [22], this LP can
be solved in polynomial time using the Ellipsoid algorithm (the separation oracle for the exponential-
sized constraints (7) reduces to a submodular function minimization). The algorithm first obtains an
optimal solution (z, C) to the above LP. Then it reduces the weighted completion time problem to one
of minimizing makespan as outlined below.

(i) Group the jobs [n] based on their fractional completion times Cj . For each integer a ≥ 0, group
Ga consists of all jobs 1 ≤ j ≤ n such that Cj ∈ (2a, 2a+1]. Note that there are at most n
non-empty groups.

(ii) For each non-empty group Ga, run the O(
√

min{m, n}) approximation algorithm for minimizing
makespan, to obtain a permutation πa of Ga.

(iii) Output the permutation of jobs [n] given by π0, π1, · · · .
The remaining analysis is identical to the one in Queyranne and Sviridenko [23]; however it is presented

here in the context of permutation flowshop, for the sake of completeness. For any group Ga, let la =
max{∑m

i=1 pi,j | j ∈ Ga} denote the maximum job length, and La = max{∑j∈Ga
pi,j | 1 ≤ i ≤ m} the

maximum machine load. We first prove the following auxiliary lemma.

Lemma 4.1 For each group Ga, max{la, La} ≤ 2a+2

Proof. For any job j, constraints (6) imply Cj = zm,j ≥ zm−1,j + pm,j ≥ · · · ≥ ∑m
i=1 pi,j . Hence

la = max{∑m
i=1 pi,j | j ∈ Ga} ≤ max{Cj | j ∈ Ga} ≤ 2a+1.

For any machine i, constraint (7) applied to subset A = Ga implies
∑

j∈Ga
pi,j · zi,j ≥ 1

2 (
∑

j∈Ga
pi,j)2.

Furthermore, constraints (6) imply zi,j ≤ Cj for all machines i and jobs j. Hence, 1
2 (

∑
j∈Ga

pi,j)2 ≤∑
j∈Ga

pi,j ·Cj ≤ 2a+1
∑

j∈Ga
pi,j . In other words,

∑
j∈Ga

pi,j ≤ 2a+2 for all machines i. Thus La ≤ 2a+2,
and the lemma follows. ¤

Theorem 4.1 There is a polynomial time O(
√

min{m,n}) approximation algorithm for minimizing
weighted completion time in the permutation flow shop problem.

: Tight Bounds for Permutation Flow Shop Scheduling
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 11

Proof. Recall that the approximation guarantee of our algorithm for minimizing makespan (Sec-
tion 3) is relative to the trivial lower bound. Along with the Lemma 4.1, we obtain that for each group
Ga, the resulting makespan Cmax(πa) ≤ ρ · max{la, La} ≤ ρ · 2a+2, where ρ = O(

√
min{m,n}) is the

approximation guarantee for the makespan problem. Under the final permutation 〈π0, π1, · · · 〉, the com-
pletion time of each job in group Ga is at most

∑a
b=0 Cmax(πb) ≤ 4ρ

∑a
b=0 2b ≤ 8ρ · 2a. But in the LP

solution, Cj ≥ 2a for all j ∈ Ga and groups Ga. This implies that the weighted completion time of the
final permutation is at most 8ρ times the optimal LP value. ¤
Integrality gap of the linear program (4)-(9). We observe that the example of Potts et al. [21]
(comparing permutation and non-permutation schedules) also gives an Ω(

√
min{m,n}) lower bound on

the integrality gap of the linear program (4)-(9). So our algorithm is the best possible approximation
algorithm based on this linear programming relaxation. For any n ∈ N, let In denote the following
instance of permutation flow shop: there are n jobs and 2n machines; for each j = 1, · · · , n, job j has
processing time 1 on machines j and 2n + 1− j, and 0 elsewhere. It was shown in [21] that the optimal
makespan C∗max(In) ≥ √

2n for all n ≥ 1. Consider the objective of minimizing the total completion
time for instance In; i.e. the weighted completion time objective with all weights wj = 1 (1 ≤ j ≤ n).
Note that for any 1 ≤ k ≤ n, any set of k jobs in the instance In is equivalent to the instance Ik.
Hence, for any permutation of the jobs, the completion time of the k-th job in the permutation is at
least C∗max(Ik) ≥

√
2k, for all 1 ≤ k ≤ n. Thus the optimal total completion time of instance In is at

least
∑n

k=1

√
2k = Ω(n3/2). We now construct a fractional feasible solution (z, C) to the linear program

(4)-(9) having objective value O(n), which would establish the claimed integrality gap. The z-variables
of each job j ∈ [n] are set as follows: zi,j = 0 for 1 ≤ i < j, zi,j = 1 for j ≤ i < 2n− j + 1, and zi,j = 2
for 2n− j + 1 ≤ i ≤ 2n. This fixes the fractional completion-time Cj = z2n,j = 2 for all jobs j, and the
objective value is 2n. The only non-trivial constraints to check are (6) and (7). From the construction of
solution (z, C), it follows that constraints (6) are satisfied. To see that constraints are (7) are satisfied,
consider any machine i: for every A ⊆ [n], the right-hand-side of (7) is either 0 or 1; moreover whenever
it is 1, the left-hand-side of (7) is 1 as well.

Acknowledgments. The work of the first author was supported in part by NSF grant CCF-
0728841.

References

[1] S. Chakrabarti, C. Phillips, A. Schulz, D. Shmoys, C. Stein and J. Wein, Improved Scheduling Algorithms
for Minsum Criteria, In Proceedings of the 23rd International Colloquium on Automata, Languages, and
Programming (ICALP’96), 646–657.

[2] B. Chazelle, The discrepancy method. Randomness and complexity. Cambridge University Press, Cambridge,
2000.

[3] B. Chen, C. Potts and G. Woeginger, A review of machine scheduling: complexity, algorithms and approx-
imability, in Handbook of combinatorial optimization, Vol. 3, Edited by Ding-Zhu Du and Panos M. Pardalos,
Kluwer Academic Publishers, Boston, MA, (1998), 21-169.

[4] R. Conway, W. Maxwell and L. Miller, Theory of scheduling, Addison-Wesley Publishing Co., Reading, Mass.-
London-Don Mills, Ont., 1967.

[5] A. Czumaj and C. Scheideler, A New Algorithmic Approach to the General Lovasz Local Lemma with Ap-
plications to Schedulung and Satisfiability Problems, Proc. 32 ACM Symposium on Theory of Computing
(STOC) , 2000.

[6] U. Feige and C. Scheideler, “Improved bounds for acyclic job shop scheduling.” In: Proceedings of the 30th
Annual ACM Symposium on Theory of Computing (STOC’98, 1998), ACM Press, New York, NY, 624-633.

[7] A. Fishkin, K. Jansen and M. Mastrolilli, On minimizing average weighted completion time: a PTAS for the
job shop problem with release dates. Algorithms and computation, 319–328, Lecture Notes in Comput. Sci.,
2906, Springer, Berlin, 2003.

[8] J. Framinan, J. Gupta and R. Leisten, A review and classification of heuristics for permutation flow-shop
scheduling with makespan objective, Journal of the Operational Research Society (2004) 55, 1243-1255.

[9] A. Frieze, On the length of the longest monotone subsequence of a random permutation, The Annals of Applied
Probability 1(2), 301-305, 1991.

[10] L.A. Hall, D.B. Shmoys, and J. Wein, Scheduling to Minimize Average Completion Time: Off–line and
On–line Algorithms, Proceedings of the 7th Symposium on Discrete Algorithms (1996) 142–151.

[11] L.A. Hall, A.S. Schulz, D.B. Shmoys, and J. Wein, Scheduling to Minimize Average Completion Time:
Off–Line and On–Line Approximation Algorithms, Mathematics of Operations Research 22 (1997) 513–544.

[12] K.Jansen, R.Solis-Oba and M. Sviridenko, Makespan Minimization in Job Shops: a Linear Time Approxi-
mation Scheme, SIAM Journal of Discrete Mathematics 16 (2003), 288-300.

12 : Tight Bounds for Permutation Flow Shop Scheduling
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

[13] S. Johnson, Optimal two- and three-stage production schedules with setup times included, Naval Research
Logistics Quartely 1 (1954), pp. 61-68.

[14] M. Hofri, Probabilistic Analisys of Algorithms: On Computing Metodologies for Computing Algorithms
Performance Evaluation, Springer Verlag, 1987.

[15] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, Sequencing and scheduling: Algorithms
and complexity, in: Handbook in Operations Research and Management Science, Vol. 4, North-Holland, 1993,
445-522.

[16] B.F. Logan and L.A. Shepp, A Variational Problem for Random Young Tableaux, Advances in Mathematics
26 (1977), 206-222.

[17] M. Nawaz, E. Enscore Jr. and I. Ham, A heuristic algorithm for the m-machine n-job flow-shop sequencing
problem, OMEGA International J. Management Sci. 11 (1983), 91-95.

[18] E. Nowicki and C. Smutnicki, New results in the worst-case analysis for flow-shop scheduling, Discrete Appl.
Math. 46 (1993), pp. 21–41.

[19] E. Nowicki and C. Smutnicki, Worst-case analysis of an approximation algorithm for flow-shop scheduling,
Oper. Res. Lett. 8 (1989), pp.171–177.

[20] E. Nowicki and C. Smutnicki, Worst-case analysis of Dannenbring’s algorithm for flow-shop scheduling, Oper.
Res. Lett. 10 (1991), pp.473–480.

[21] C. Potts, D. Shmoys and D. Williamson, Permutation vs. nonpermutation flow shop schedules, Operations
Research Letters 10 (1991), 281-284.

[22] M. Queyranne, Structure of a simple scheduling polyhedron. Math. Programming 58 (1993), no. 2, Ser. A,
263–285.

[23] M. Queyranne and M. Sviridenko, Approximation Algorithms for Shop Scheduling Problems with Minsum
Objective, Journal of Scheduling 5 (2002), pp. 287–305.

[24] P. Raghavan, Probabilistic construction of deterministic algorithms: approximating packing integer pro-
grams, J. Comput. System Sci. 37 (1988), 130-143.

[25] H. Röck and G. Schmidt, Machine aggregation heuristics in shop-scheduling, Methods of Operations Research
45 (1983), 303-314.

[26] S. Sevast’janov, On some geometric methods in scheduling theory: a survey, Discrete Applied Mathematics
55 (1994), 59-82.

[27] A. Schrijver, Combinatorial optimization. Polyhedra and efficiency. Algorithms and Combinatorics, 24,B.
Springer-Verlag, Berlin, 2003.

[28] D. Shmoys, C. Stein, and J. Wein. Improved Approximation Algorithms for Shop Scheduling Problems.
SIAM Journal on Computing 23:3, 617-632, 1994.

[29] D. Sotelo and M. Poggi de Aragao, An Approximation Algorithm for the Permutation Flow Shop Scheduling
Problem via Erdos-Szekeres Theorem Extensions, manuscript, 2008.

[30] M. Sviridenko, A Note on Permutation Flow Shop Problem, Annals of Operations Research 129 (2004),
247-252.

[31] C. Smutnicki, Some results of the worst-case analysis for flow shop scheduling, European Journal of Opera-
tional Research 109 (1998), 6687.

[32] A.M. Vershik and S.V. Kerov, Asymptotics of the Plancherel measure of the symmetric group and the limit
form of Young tableaux, Dokl. Akad. Nauk SSSR 233 (1977), 1024-1027.

