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Abstract

We consider the vehicle routing problem with stochastic demands (VRPSD). We give randomized ap-

proximation algorithms achieving approximation guarantees of 1 + α for split-delivery VRPSD, and 2 + α

for unsplit-delivery VRPSD; here α is the best approximation guarantee for the traveling salesman problem.

These bounds match the best known for even the respective deterministic problems [1, 2]. We also show that

the ‘cyclic heuristic’ for split-delivery VRPSD achieves a constant approximation ratio, as conjectured in [4].

Subject classifications: Analysis of algorithms: suboptimal algorithms. Transportation: vehicle routing.

Networks/Graphs: stochastic.

Area of review: Optimization.

1 Introduction

The capacitated vehicle routing problem (VRP) is defined on a finite metric space (V,d), where V is a finite set of

locations/vertices and d : V ×V → R+ a distance function that is symmetric and satisfies the triangle inequality.

There is a specified depot location r ∈ V , and the problem involves distributing (identical) items from the depot

to other locations. Specifically, the depot r has an infinite supply of items, and a single vehicle of capacity Q≥ 0

(initially located at the depot r) is used to distribute the items. There are qi ∈ {0,1, · · · ,Q} units of the item

demanded at each location i ∈ V . The objective is to find a minimum length tour of the vehicle that satisfies

demands at all locations subject to the constraint that the vehicle carries at most Q units at any time. In the

split-delivery version of the problem, the demand at a location may be satisfied by multiple visits of the vehicle.

In the unsplit-delivery version, the entire demand at a location must be satisfied in a single visit by the vehicle.

The vehicle routing problem with stochastic demands (VRPSD) involves demands that are random variables

with known distributions: in particular, the demand at each location i ∈ V is specified by random variable ξi
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(assumed to be in the range [0,Q]). The random variables {ξi}i∈V are independent of each other and of the

vehicle routing algorithm. The exact demand at any location i (i.e., the instantiation of the random variable ξi

is known only when the vehicle visits location i. A feasible policy for the vehicle is any strategy of visiting

locations such that all demands are satisfied. The goal is to design a policy that minimizes the expected length

of the vehicle route. Again there are two variants of the problem, allowing for split and unsplit deliveries; we

consider both of them. VRPSD has extensively been studied in the literature, and several heuristics have been

proposed. For surveys on VRPSD, see eg. [15, 14, 11, 5, 10].

Related Work. Throughout this paper, we let α ≥ 1 denote the best approximation guarantee for the Traveling

Salesman Problem. We have α = 3
2 for general metrics [8], and α = 1+ ε (for any constant ε > 0) for constant

dimensional Euclidean metrics [3, 13]. The best known approximation guarantees for split-delivery VRP is

1+α · (1− 1
Q) [12, 2], and for unsplit-delivery VRP is 2+α · (1− 2

Q) [1]; recall that Q is an upper bound on the

demand at any vertex. These bounds have been improved slightly to 1+α ·(1− 1
Q)− 1

3Q3 and 2+α ·(1− 2
Q)− 1

3Q3

respectively (when Q ≥ 3) [6]. Recently, some improved bounds have been obtained for unit-demand VRP on

the Euclidean plane: Bompadre et al. [7] showed that the algorithm of [12] achieves an approximation ratio 2−c

for random instances (here c > 0 is an absolute constant). Also, Das and Mathieu [9] gave a quasi-polynomial

time approximation scheme (i.e., an algorithm, that for any constant ε > 0, achieves an (1 + ε)-approximation

with running time 2(logn)O(1/ε)
) for worst-case instances of points in the Euclidean plane.

Moving to stochastic demands, a (1+α +o(1))-approximation algorithm is known for split-delivery VRPSD

in the special case of identical demand distributions [4]. For the case of general distributions, the algorithm in [4]

was shown to be a Q+α approximation, and obtaining tighter bounds was left open.

Our Results. In this note, we present a simple randomized approximation algorithm for VRPSD achieving

the following worst-case guarantees: (1 + α) for split-delivery VRPSD (Theorem 3.1), and (2 + α) for unsplit-

delivery VRPSD (Theorem 4.1). This matches (up to an additive O(α/Q) term) the corresponding best known

guarantees for deterministic VRP. We also show in Theorem 3.2 that the ‘cyclic heuristic’ for VRPSD suggested

in [4] achieves a constant approximation guarantee, as conjectured.

We note that our algorithms for VRPSD yield a priori strategies, that involve visiting vertices in some fixed

order (in fact, according to any α-approximate TSP tour). Furthermore, the algorithms do not even require

knowledge of the demand distributions at different vertices: it suffices to know just which vertices have a demand

distribution which is not identically zero. The idea of visiting vertices in the order given by an approximate

TSP tour is a natural strategy (this was also used in [4]). The key idea in our analysis is to condition on the

demand realization—this allows us to bound the total length of refill-trips in terms of known lower bounds for the
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problem. Furthermore, we use randomization to obtain tighter approximation guarantees: the randomness permits

an averaging argument similar to [12, 2, 1] in spite of having stochastic demands. Due to the randomization, our

solutions have the somewhat counter-intuitive property that while refilling items at the depot, they fill up to a

level strictly below the maximum capacity Q. We note that for both split and unsplit deliveries, the natural

strategy of always refilling to maximum capacity Q also achieves a constant approximation guarantee. However

the constants are weaker than those for the randomized strategies (compare Theorem 3.2 to Theorem 3.1).

2 Preliminaries

The following discussion holds for both split and unsplit delivery versions of VRPSD.

Without loss of generality, we may assume that none of the demand random variables is identically zero,

since such locations can just be ignored. Under this assumption, any feasible policy must visit every location

with probability 1, otherwise, since demands are independent, there is a non-zero probability that some demand

is not satisfied, implying that the policy is infeasible. Consequently, the minimum length traveling salesman tour

on all locations in metric (V,d) is a lower bound for VRPSD.

Conditioned on the demand realization qi at each location i ∈ V \ {r}, LB(q) := 2
Q ∑i 6=r qi · d(r, i) is a lower

bound on the optimal solution length (see, e.g. [12]). Hence the expected value E[LB(q)] = 2
Q ∑i6=r E[ξi] ·d(r, i)

is a lower bound for VRPSD. These lower bounds were also used in Bertsimas [4].

3 Split-delivery VRPSD

In this section we consider the split-delivery problem, where the demand at any location may be satisfied over

multiple visits to that location. We first present the randomized approximation algorithm. The vehicle visits

vertices in the order given by any α-approximate TSP tour. The main idea in our algorithm is to initially fill the

vehicle with a random number of items (and later whenever the vehicle is empty, perform refills to maximum

capacity Q). This might seem wasteful compared to the more natural strategy of deterministically filling upto

maximum capacity Q; however, as shown in the following example, the expected vehicle route under our algo-

rithm can be much shorter. Indeed, this is precisely the reason why we can obtain a better approximation ratio

for our randomized algorithm (Theorem 3.1) than the deterministic algorithm (Theorem 3.2).

Example. Consider a VRP instance on four locations {r,a,b,c} with r being the depot. There is a demand of

Q−1 at each of a and c, and demand of 2 at b; recall that Q is the vehicle capacity. The TSP tour is τ = (r,a,b,c,r)

with distances d(r,a) = d(c,r) = 1 and d(a,b) = d(b,c) = L where L À 1 is a large value. The metric is given

by shortest-path distances on τ . See also Figure 1.
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Figure 1: VRP instance with TSP tour τ = (r,a,b,c,r).

If the vehicle starts with being filled deterministically to Q, it needs to refill from b and the route followed is

σd := (r,a,b,r,b,c,r). This has length d(σd) = d(τ)+2 ·d(r,b) = 4(L+1).

On the other hand, suppose the vehicle is initialized with a uniformly random quantity ` ∈ {0, · · · ,Q}. In

this case, there are four possible vehicle routes shown below (since demands at some vertices may be zero, the

vehicle performs a refill-trip only when it is empty and at a vertex of positive residual demand).

1. ` = Q. The vehicle route is just σd , of length 4(L+1).

2. ` = Q−1. The vehicle refills from b and c; so the route is σ1
r := (r,a,b,r,b,c,r,c,r), of length 4L+6.

3. 1≤ `≤ Q−2. The vehicle refills from a and c; so the route is σ2
r := (r,a,r,a,b,c,r,c,r), of length 2L+6.

4. ` = 0. The vehicle refills from a and b, and the route is σ3
r := (r,a,r,a,b,r,b,c,r), of length 4L+6.

Now, the expected length of the vehicle route equals:

1
Q+1

·d(σd)+
1

Q+1
·d(σ 1

r )+
Q−2
Q+1

·d(σ2
r )+

1
Q+1

·d(σ 3
r ) = 2L+6+

6L−2
Q+1

.

As Q→ ∞, this expectation tends to 2L+6, which is smaller than the deterministic route length of 4L+4.

Theorem 3.1 There is a randomized (1+α)-approximation algorithm for VRPSD with split-deliveries.

Proof: The algorithm SplitALG proceeds as follows.

1. Compute an α-approximate TSP tour τ on all vertices.

2. Number the vertices such that r is numbered 0 and tour τ visits vertices in the order 0,1,2, · · · , |V |−1.

3. Choose a uniformly random value ` ∈ [0,Q], and initialize the vehicle to carry ` units.
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4. The vehicle starts from vertex 0 (the depot), and for each i = 1, · · · , |V |−1 does the following:

(a) Let Q̃i be the units (of the item) carried by the vehicle when it visits vertex i (note that Q̃1 = `).

(b) Let qi be the demand observed at vertex i.

(c) If qi ≤ Q̃i then serve the demand at i and move on to vertex i+1 (with Q̃i+1 ← Q̃i−qi).

(d) If qi > Q̃i then serve Q̃i units of demand at i and make a refill-visit to and from r:

• The vehicle fills up Q units at r, returns to i and serves the remaining qi− Q̃i demand at i.

Then continue on to vertex i+1 with Q̃i+1 ← Q− (qi− Q̃i).

We will bound the expected length of the solution obtained by the above algorithm. In the analysis, we first

condition on the realization qi of demands at all vertices i ∈ V \ {r}. The initial vehicle load ` at the depot r

remains uniformly random in [0,Q]. A vertex i ∈ V is called a break-point if the vehicle executes a refill trip

to r from i (i.e. Step 4d applies at vertex i). This happens precisely when the vehicle becomes empty at vertex

i while there is still unserved demand at i. Observe that vertex i is a break-point iff there is p ∈ Z≥0 such that

∑i−1
j=1 q j ≤ `+ p ·Q < qi +∑i−1

j=1 q j. Since ` is the only random variable, and it is is uniform in [0,Q], we have:

Pr[i is break-point] =
qi

Q

The solution length conditioned on demands {qi}i∈V\{r} equals d(τ)+2∑i6=r d(r, i) · I(i break-point), where d(τ)

is the length of the tour τ under the length function d, and I(i break-point) is the indicator random variable for

the event that i is a break-point (for each i 6= r). Hence the expected solution length (conditioned on the demands

{qi}i∈V\{r}) is:

d(τ)+2∑
i 6=r

Pr[i is break-point] ·d(r, i) = d(τ)+
2
Q ∑

i 6=r
qi ·d(r, i) = d(τ)+LB(q)

Recall that this expectation is only over the choice of `. Now taking expectations over the demands, the expected

solution length equals d(τ)+E[LB(q)]. Since τ is an α-approximate minimum TSP tour and E[LB(q)] is a lower

bound for VRPSD, the expected length of this solution is at most (1+α) times the optimal value of the VRPSD

instance. ¥

We now consider the algorithm SplitALG if we start with deterministic value ` = Q (vehicle is initially filled

to capacity). We show next that even this algorithm achieves a constant approximation guarantee. This algorithm

performs no better than the cyclic heuristic suggested in [4], and hence we establish the same upper bound for

the cyclic heuristic. It was shown [4] that the cyclic heuristic achieves a worst case guarantee of α + 1 + o(1)

in the case of identical demand distributions at all vertices, and a Q + α guarantee for general demands ([4],
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Theorem 4). Moreover it was conjectured that the worst case guarantee of the cyclic heuristic is a constant

(independent of Q) even with general demand distributions. The following theorem shows that this is indeed the

case.

Theorem 3.2 The cyclic heuristic is a (1+2α)-approximation algorithm for VRPSD.

Proof: Let τ denote an α-approximate TSP tour. 0,1,2, · · · , |V |− 1 where r is numbered 0. The cyclic heuris-

tic [4] considers |V |−1 different strategies: obtained by visiting vertices in the order 〈0, i, i + 1, · · · , i + |V |−1〉
modulo |V | for each 1 ≤ i ≤ |V |− 1, and returns the strategy with least objective value. We prove the claimed

upper bound for even the (possibly weaker) algorithm that only considers the vertex ordering 0,1,2, · · · , |V |−1

(as in τ). The vehicle starts from 0, being filled with Q units, and traverses τ while performing refill trips to the

depot whenever it is empty (ie. algorithm SplitALG with ` = Q). As in the proof of Theorem 3.1, we first condi-

tion on the demand realization qi at each vertex i ∈ V \{r}. A vertex i ∈V is called a break-point if the vehicle

executes a refill trip to r from i. Let U be the set of all break-points and |U | = u; for notational uniformity, we

also include r as a breakpoint. Then the length of the vehicle’s route is d(τ)+2∑w∈U d(r,w). We now establish

the following key claim.

Claim 3.3 We have 2 ·∑w∈U d(r,w)≤ d(τ)+ 2
Q ∑v∈V qv ·d(r,v).

Proof: Let the break-points U consist of r = β0,β1, · · · ,βu−1 in that order along τ . For any l ∈ {0,1, · · · ,u−1} :=

[u], let τl denote the portion of tour τ between vertices βl and βl+1 inclusively (the indices are modulo u). Note

that τ is the concatenation τ0 ·τ1 · · ·τu−1, i.e. ∑u−1
l=0 d(τl) = d(τ). For each l ∈ [u], define a subtour originating and

ending at r as πl := (r,βl) ·τl ·(βl+1,r). Observe that the route traced by the vehicle is precisely the concatenation

π0 ·π1 ·π2 · · ·πu−1. Since the vehicle capacity is Q and it makes refill-trips only when it runs out of items, the

vehicle delivers exactly Q units in each segment πl (for 0 ≤ l ≤ u− 2), and Q′ ≤ Q units in the last segment

πu−1. For each l ∈ [u] and vertex i ∈ τl , let Cl(i) denote the number of units delivered at vertex i by the vehicle in

segment πl . For technical reasons, set Cu−1(r) := Q−Q′. From the preceding discussion, we obtain:

∑
i∈τl

Cl(i) = Q, ∀l ∈ [u], and ∑
l|i∈τl

Cl(i) = qi, ∀i ∈V \{r} (1)

Consider any fixed segment πl (for l ∈ [u]). For any vertex i∈ τl , let t(i,βl) (resp. t(i,βl+1)) denote the length

along τl , from βl to i (resp. i to βl+1). It follows that t(i,βl)+ t(i,βl+1) = d(τl) for all vertices i ∈ τl . By the

triangle inequality, we have:

d(βl,r) ≤ d(βl, i)+d(i,r) ≤ t(βl, i)+d(i,r)

d(βl+1,r) ≤ d(βl+1, i)+d(i,r) ≤ t(βl+1, i)+d(i,r)



 for all vertices i ∈ τl
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Taking a convex combination of the first (resp. second) set of inequalities, with multiplier Cl(i)/Q for each i∈ τl ,

we obtain the following. (Equation (1) implies that these are indeed convex multipliers.)

d(βl,r)≤ ∑
i∈τl

Cl(i)
Q

· (t (βl, i)+d (i,r)) ; d(βl+1,r)≤ ∑
i∈τl

Cl(i)
Q

· (t (βl+1, i)+d (i,r))

Adding these two inequalities (using properties of t(·) and Cl(·) from above),

d(βl,r)+d(βl+1,r) ≤ ∑
i∈τl

Cl(i)
Q

· (t (βl, i)+ t (βl+1, i))+2 ∑
i∈τl

Cl(i)
Q

·d (i,r)

= d(τl) ∑
i∈τl

Cl(i)
Q

+
2
Q ∑

i∈τl

Cl(i) ·d(i,r)

= d(τl)+
2
Q ∑

i∈τl

Cl(i) ·d(i,r)

Finally adding the above inequality over l ∈ [u], where the indices l are modulo u,

2 · ∑
w∈U

d(w,r) =
u−1

∑
l=0

(d(βl,r)+d(βl+1,r)) ≤
u−1

∑
l=0

d(τl)+
2
Q ∑

i∈V
∑

l|i∈τl

Cl(i) ·d(i,r)

≤ d(τ)+
2
Q ∑

i∈V\r
qi ·d(i,r)

The last inequality uses Equation (1). Thus we obtain the claim. ¥

Claim 3.3 gives 2 ·∑w∈U d(r,w) ≤ d(τ) + LB(q), which implies that conditioned on demands {qi}i∈V , the

solution length is at most 2 · d(τ) + LB(q). Taking expectations, we obtain the desired bound on the cyclic

heuristic. ¥

Remark: We note that Theorems 3.1 and 3.2 hold even if the range of demand random variables is unbounded.

The only difference in the proof of Theorem 3.1 would be to use E[number of refill trips from i] in place of Pr[i

is break-point]. For Theorem 3.2, we can treat the breakpoints as a multiset and the same analysis holds.

4 Unsplit-delivery VRPSD

We now consider the unsplit-delivery problem, where the demand at any location has to be satisfied in a single

visit to it, and prove a constant approximation guarantee. This algorithm has one notable difference from the

split-delivery algorithm– The vehicle does not necessarily refill to full capacity Q every time it revisits the depot;

this aspect seems crucial to proving the performance guarantee.

Theorem 4.1 There is a randomized (2+α)-approximation algorithm for VRPSD with unsplit-deliveries.

Proof: The algorithm UnsplitALG is very similar to the split-delivery case and is given below.
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1. Compute an α-approximate TSP tour τ on all locations.

2. Number the locations such that r is numbered 0 and the tour τ visits locations in the order 0,1,2, · · · , |V |−1.

3. Choose a uniformly random value ` ∈ [0,Q], and initialize the vehicle to carry ` units.

4. The vehicle starts at location 0, and for each i = 1, · · · , |V |−1 does:

(a) Let Ũi be the units (of the item) carried by the vehicle when it visits vertex i.

(b) Let qi be the demand observed at vertex i.

(c) If qi ≤ Ũi then serve the demand at i and move on to vertex i+1 (with Ũi+1 ← Ũi−qi).

(d) If qi > Ũi then make two visits to and from the depot:

• In the first visit, the vehicle fills up qi units at r and serves the demand at i.

• In the second visit, the vehicle fills up Q+Ũi−qi units at r, and returns to i.

Then move on to vertex i+1 with Ũi+1 ← Q+Ũi−qi.

Just as in Theorem 3.1, we first condition on the realization qi of demands at all locations i ∈ V \ {r}. Again,

location i ∈V is called a break-point if the vehicle executes a refill trip to r from i (i.e. Step 4d applies at location

i). We claim that, for the same realization of demands, the breakpoints encountered by Algorithms SplitALG

and UnsplitALG are identical. This follows from the observation that for all locations i ∈ V \ {r}, the value Q̃i

(in SplitALG) equals Ũi (in UnsplitALG). Thus (from proof of Theorem 3.1) we have Pr[i is break-point] = qi
Q

for algorithm UnsplitALG as well. Note that the solution length in UnsplitALG equals d(τ) + 4∑i6=r d(r, i) ·
I(i break-point), where I(i break-point) is the indicator random variable for i being a break-point (for each i 6= r).

Hence the expected solution length (conditioned on {qi}i∈V\{r}) is:

d(τ)+4∑
i6=r

Pr[i is break-point] ·d(r, i) = d(τ)+2 · 2
Q ∑

i 6=r
qi ·d(r, i) = d(τ)+2 ·LB(q)

Unconditionally, the expected solution length from UnsplitALG is d(τ)+ 2 ·E[LB(q)]. Noting that τ is an α-

approximate TSP tour, and E[LB(q)] is a lower bound for even split-delivery VRPSD, we obtain that UnsplitALG

achieves a (2+α) approximation for unsplit-delivery VRPSD. ¥

Remark: A more natural strategy than the randomized one above would be to always refill to capacity Q. We

note that this algorithm also achieves a constant approximation guarantee: this can be proved along the lines of

Theorem 3.2. However the resulting bound is again weaker than what is achievable using randomization.
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5 Conclusions

In this paper, we presented an (1 + α)-approximation algorithm for the split-delivery VRP with stochastic de-

mands (where α is the approximation ratio for TSP), and a (2+α)-approximation for the unsplit-delivery version

of the problem. The natural open question is to improve these guarantees: since the presented bounds match those

for the deterministic versions, the first step in this direction would be to improve the approximation ratio for de-

terministic VRP, which has not seen any real improvement since [12].
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