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1 Degree-bounded minimum spanning tree (MST) problem

In the last lecture, we discussed the algorithm and constraints for solving bounded degree minimum
spanning tree (MST) problem. In this lecture we prove its approximation and validity. The input
graph is G = (V,E0) with edge-costs {c≥0 : e ∈ E0} and degree bounds {bv : v ∈ V }. The goal is
to find a minimum cost spanning tree that satisfies all degree bounds.

The algorithm is iterative and it maintains the following:

• E ⊆ E0 the set of floating or undecided edges,

• F ⊆ E0 \ E the set of edges in the current solution and

• W the set of vertices with degree bound.

The LP solved in each iteration LP (E,F,W ) is given below.

min
∑
e∈E0

cexe

s.t.
∑

e∈E(S)

xe ≤ |S| − 1, ∀S ⊆ V

∑
e∈E(V )

xe = |V | − 1

x(δ(v)) ≤ bv, ∀v ∈W
xe ≥ 0, ∀e ∈ E
xe = 1, ∀e ∈ F
xe = 0, ∀e ∈ E0 \ (F ∪ E).

The first and second set of constraints are the spanning tree constraints; the third set of constraints
are the degree constraints. The last two constraints enforce the fixed values (either 0 or 1) of the
edges E0 \ E. We use δ(v) to denote the set of edges of E0 incident to vertex v.

The algorithm is given as Algorithm 1, which gives Theorem 1.1 as the main result.

Theorem 1.1 Algorithm 1 generates a solution with cost ≤ OPT and degu ≤ bu + 1 for all u ∈ V .
Here OPT denotes the optimal cost of a spanning tree that satisfies all the degree bounds.

Proof: By Lemma 1.1, the algorithm terminates. It is easy to see that the solution F is a
spanning tree as the final LP has E = ∅: so each variable fixed to zero (for E0 \ F ) or one (for F ).
This corresponds to an (integral) spanning tree F .

We now prove the desired guarantee. In the first iteration, we start with E = E0 and W = V ,
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Algorithm 1

1: Start with E = E0, F = ∅, W = V .
2: while E 6= ∅ do
3: Solve LP(E,F ,W ) to get extreme point x
4: if xe = 0 for e ∈ E then
5: E ← E \ e
6: if xe = 1 for e ∈ E then
7: E ← E \ e
8: F ← F ∪ e
9: if |δE(u)|+ |δF (u)| ≤ bu + 1 for some u ∈W then

10: W ←W \ u
11: Output solution F .

therefore the LP cost is at most OPT . Moreover, in each iteration we only relax constraints in the
current LP or fix variables to their optimal (LP) values: so the final LP cost will also be at most
OPT . Note that the final LP has cost exactly c(F ). So c(F ) ≤ OPT .

For the degree bounds, consider any u ∈ V . If u ∈ W at the end of the algorithm, it is clear that
degu ≤ bu as this must be satisfied in the final LP. If u 6∈W at the end, consider the iteration when
u was dropped from W . If E and F denote the corresponding sets at this point, it is clear that
|δE(u)| + |δF (u)| ≤ bu + 1 (see Step 9). Since none of the other edges E0 \ (F ∪ E) can be in the
final solution, it follows that degu ≤ bu + 1.

Theorem 1.2 For any extreme point x to LP (E,F,W ), there is a laminar family L ⊆ 2V and
U ⊆W such that:

1.
∑

e∈E(S) xe = |S| − 1 for all S ∈ L (tight spanning tree constraints).

2. x(δ(v)) = bv for all v ∈ U (tight degree constraints).

3. All constraints in L and U are linearly independent.

4. |E| = |L|+ |U |.

Proof: Proved in the last lecture

See Fig. 1(a) for an example L with sets Ai ∈ L

Lemma 1.1 Algorithm 1 terminates in at most |E0|+ |V | iterations.

Proof: It suffices to show that one of Step 4, 6 or 9 applies in every iteration. Then the algorithm
must terminate in |E0|+ |V | iterations because each iteration decreases either W or E.

Consider any iteration (E,F,W ). We show by contradiction that one of Step 4, 6 or 9 applies. We
use a “token distribution and collection” approach to get the contradiction.

Assign one token to each edge (u, v) ∈ E and distribute the token as xe units to the edge and
(1−xe)/2 units to u and v each (shown in Fig. 1(b)). Note that all these units are strictly positive
as 0 < xe < 1 for all e ∈ E (recall steps 4,6 do not apply).

Now we re-collect tokens from vertices and edges.
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Figure 1: Figure 1. (a) An example of Laminar family with domains representing sets in the family
(b) Distribution of the token of an edge u, v.

1. For each vertex w ∈ U with a tight degree constraint, we get∑
v:(w,v)∈E

1− xwv

2
=

1

2
|δE(w)| − 1

2
x(δE(w))

tokens. Now since w has tight degree constraint, x(δE(w)) + |δF (w)| = bw. Also, if Step 9
does not apply then |δE(w)|+ |δF (w)| ≥ bw + 2. Hence, combining both equations we obtain
at least 1/2(bw + 2− δF (w))− 1/2(bw − |δF (w)|) = 1 token at w.

2. For any subset Ai ∈ L, we collect all the “edge tokens” xe from all edges e = (u, v) such
that Ai is the minimal set containing both u and v. As L is a laminar family, for any edge e
there is at most one minimal set Ai ∈ L containing both its end points. So each edge token
is assigned to at most one subset in L.

Consider any Ai ∈ L with children B1, · · ·Bk ∈ L. The number of children k may be 0 (leaf

nodes in L). The edge tokens from E(Ai) \
(
∪kj=1E(Bj)

)
will be assigned to Ai. As Ai and

the Bjs are tight constraints, x(E(Ai)) = |Ai|−1−|F (Ai)| and x(E(Bj)) = |Bj |−1−|F (Bj)|
for j ∈ [k]. The number of tokens assigned to Ai is

Q =
∑

e∈E(Ai)\(∪kj=1E(Bj))

xe = x(E(Ai))−
k∑

j=1

x(E(Bj)).

This quantity Q is an integer because all terms in the right hand side are integers (due to the

tight constraints). Note that E(Ai) \
(
∪kj=1E(Bj)

)
6= ∅ as the constraints corresponding to

Ai and Bjs are linearly independent (Theorem 1.2). Moreover, xe > 0 for each e ∈ E. So Q
is also positive. So the amount of tokens we collect for Ai is Q ≥ 1.

Note that the total number of tokens collected so far is at least |U |+ |L| = |E| (Theorem 1.2).

We now show that we can collect some extra tokens, which leads to a contradiction as only |E|
tokens were distributed.
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If any edge e ∈ E is incident to any v ∈ V \ U , we get (1 − xe)/2 token at v which has not been
used above- a contradiction. So all floating edges (E) must be incident to vertices with tight degree
constraint (U). So we have

1(E) =
1

2

∑
v∈U

1(δE(v))

where 1(E′) is the indicator vector of any subset E′ ⊆ E.

Now consider if any edge e ∈ E is not contained in any maximal set in L. Then we get xe amount
of extra token that is not used- a contradiction. This implies that E = ∪ti=1E(Mi), where Mi’s are
maximal sets in L. Naturally, Mi’s are disjoint. So

1(E) =
t∑

i=1

1(E(Mi)).

Using the above two equations, we obtain that the constraints in {Mi}ti=1 and U are linearly
dependent, which contradicts Theorem 1.2.


