
TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13

Minimum Latency Submodular Cover 1

SUNGJIN IM, University of California, Merced 2
VISWANATH NAGARAJAN, University of Michigan 3
RUBEN VAN DER ZWAAN, Maastricht University 4

We study the Minimum Latency Submodular Cover (MLSC) problem, which consists of a metric (V, d) with 5
source r ∈ V and m monotone submodular functions f1, f2, . . . , fm : 2V → [0, 1]. The goal is to find a path 6
originating at r that minimizes the total “cover time” of all functions. This generalizes well-studied problems, 7
such as Submodular Ranking [Azar and Gamzu 2011] and the Group Steiner Tree [Garg et al. 2000]. We 8
give a polynomial time O(log 1

ε
· log2+δ |V |)-approximation algorithm for MLSC, where ε > 0 is the smallest 9

non-zero marginal increase of any { fi}m
i=1 and δ > 0 is any constant. 10

We also consider the Latency Covering Steiner Tree (LCST) problem, which is the special case of MLSC 11
where the fis are multi-coverage functions. This is a common generalization of the Latency Group Steiner 12
Tree [Gupta et al. 2010; Chakrabarty and Swamy 2011] and Generalized Min-sum Set Cover [Azar et al. 13
2009; Bansal et al. 2010] problems. We obtain an O(log2 |V |)-approximation algorithm for LCST. 14

Finally, we study a natural stochastic extension of the Submodular Ranking problem and obtain an 15
adaptive algorithm with an O(log 1/ε)-approximation ratio, which is best possible. This result also generalizes 16
some previously studied stochastic optimization problems, such as Stochastic Set Cover [Goemans and 17
Vondrák 2006] and Shared Filter Evaluation [Munagala et al. 2007; Liu et al. 2008]. 18

CCS Concepts: � Theory of computation → Approximation algorithms analysis; Scheduling algo- 19
rithms; Packing and covering problems 20

Additional Key Words and Phrases: Approximation, sequencing and scheduling, submodular, stochastic 21
optimization, covering Steiner tree 22

ACM Reference Format: 23
Sungjin Im, Viswanath Nagarajan, and Ruben van der Zwaan. 2016. Minimum latency submodular cover. 24
ACM Trans. Algorithms 13, 1, Article 13 (November 2016), 28 pages. 25
DOI: http://dx.doi.org/10.1145/2987751 26

1. INTRODUCTION 27

Ordering a set of elements to be simultaneously good for several valuations is an 28
important issue in web-search ranking and broadcast scheduling. A formal model for 29
this is the Multiple Intents Re-ranking problem [Azar et al. 2009]; this is also knownQ1

Q2

30
as Generalized Min-Sum Set Cover [Bansal et al. 2010]. In this problem, a set of 31
elements is to be displayed to m different users, each of whom wants to see some 32
threshold number of elements from its particular subset of interest. The objective is 33
to compute an ordering that minimizes the total overhead of the users, where the 34
overhead corresponds to the position in the ordering when the user is satisfied. 35

S. Im was supported in part by NSF Grant No. CCF-1409130.
Authors’ addresses: S. Im, Electrical Engineering and Computer Science, University of California, Merced,
USA; V. Nagarajan, Department of Industrial and Operations Engineering, University of Michigan, USA;
R. van der Zwaan, Maastricht University, The Netherlands.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1549-6325/2016/11-ART13 $15.00

DOI: http://dx.doi.org/10.1145/2987751

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

http://dx.doi.org/10.1145/2987751
http://dx.doi.org/10.1145/2987751

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13:2 S. Im et al.

Fig. 1. An arrow from X to Y means X is a special case of Y .

A more general model that has been studied is the Submodular Ranking prob-36
lem [Azar and Gamzu 2011], where the interests of users are represented by arbitrary37
(monotone) submodular functions. Again, the objective is to order the elements to min-38
imize the total overhead, where now the overhead of a user is the position when its39
utility function is “covered.”40

In this article, we extend both of these models to the setting of metric switching costs41
between elements. This allows us to handle additional issues such as:42

• Data locality: It takes d(i, j) time to read or transmit data j after data i.43
• Context switching: It takes d(i, j) time for a user to parse data j when scheduled44

after data i.45

From a theoretical point of view, these problems generalize a number of previously46
studied problems, and our results unify/extend techniques used in different settings.47

We introduce and study the Minimum Latency Submodular Cover (MLSC) problem,48
which is the metric version of Submodular Ranking [Azar and Gamzu 2011] and its49
interesting special case, the Latency Covering Steiner Tree (LCST) problem, which50
extends Generalized Min-Sum Set Cover [Azar et al. 2009; Bansal et al. 2010]. The51
formal definitions follow shortly, in the next subsection. We obtain poly-logarithmic52
approximation guarantees for both problems. We remark that, due to a relation to53
the well-known Group Steiner Tree problem [Garg et al. 2000], any significant im-54
provement on our results would lead to a similar improvement for the Group Steiner55
Tree. The MLSC problem is a common generalization of several previously studied56
problems [Garg et al. 2000; Konjevod et al. 2002; Feige et al. 2004; Gupta et al. 2010;57
Chakrabarty and Swamy 2011; Azar et al. 2009; Azar and Gamzu 2011]; see also58
Figure 1.59

In a somewhat different direction, we also study the Weighted Stochastic Submod-60
ular Ranking problem, where elements are stochastic and the goal is to adaptively61
schedule elements to minimize the expected total cover time. We obtain an O(log 1

ε
)-62

approximation algorithm for this problem, which is known to be best possible even in63
the deterministic setting [Azar and Gamzu 2011]. This result also generalizes many64
previously studied stochastic optimization problems [Goemans and Vondrák 2006;65
Munagala et al. 2007; Liu et al. 2008].66

1.1. Problem Definitions67

We now give formal definitions of the problems considered in this article. The problems68
followed by ∗ are those for which we obtain the first non-trivial results; these are also69

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

Minimum Latency Submodular Cover 13:3

shown in bold font in Figure 1. Several other problems are discussed below since those 70
are important special cases of our main problems. The relationships between these 71
problems are also shown pictorially in Figure 1. 72

A function f : 2V → R+ is submodular if, for any A, B ⊆ V , f (A) + f (B) ≥ f (A∪ B) + 73
f (A∩ B), and it is monotone if for any A ⊆ B, f (A) ≤ f (B). We assume some familiarity 74
with submodular functions [Schrijver 2003]. 75

Minimum Latency Submodular Cover∗. There is a ground set V of ele- 76

ments/vertices and d :
(V

2

) → R+ is a distance function. We assume that d is symmetric 77
and satisfies the triangle inequality. In addition, there is a specified root vertex r ∈ V . 78
There are m monotone submodular functions f1, . . . , fm : 2V → R+ representing the 79
valuations of different users. We assume, without loss of generality by truncation, that 80
fi(V) = 1 for all i ∈ [m].1 Function fi is said to be covered (or satisfied) by set S ⊆ V if 81
fi(S) = 1 = fi(V). The cover time of function fi in a path π is the length of the shortest 82
prefix of π that has fi value one, that is, 83

min {t : fi ({v ∈ V : v appears within distance t on π}) = 1}.
The objective in the Minimum Latency Submodular Cover problem is to compute a 84
path originating at r that minimizes the sum of cover times of all functions. A technical 85
parameter that we use to measure performance (which also appears in Azar and Gamzu 86
[2011] and Wolsey [1982]) is ε, which is defined to be the smallest non-zero marginal 87
increase of any function { fi}m

i=1. 88

Generalized Min-Sum Set Cover (GMSSC) [Azar et al. 2009; Bansal et al. 2010]. 89
Given a ground set V and m subsets {gi ⊆ V }m

i=1 with respective requirements {ki}m
i=1, 90

the goal is to find a linear ordering of V that minimizes the sum of cover times. A subset 91
gi is said to be covered when at least ki elements from gi have appeared. Min-Sum Set 92
Cover (MSSC) is the special case when maxi ki = 1. 93

Submodular Ranking (SR) [Azar and Gamzu 2011]. Given a ground set V and m 94
monotone submodular functions f1, . . . , fm : 2V → R+, the goal is to compute a linear 95
ordering of V that minimizes the sum of cover times of all functions. The cover time 96
of a function here is the minimum number of elements in a prefix that has function 97
value at least 1. This is a special case of MLSC when metric d is uniform. The set cover 98
problem is a special case of SR when there is a single submodular function (which is 99
also a coverage function). GMSSC is another special case of SR, where each subset gi 100
corresponds to the submodular function fi(S) = min{|gi ∩ S|/ki, 1}. 101

Group Steiner Tree (GST) [Garg et al. 2000]. Given a metric (V, d) with root r ∈ 102
V and N groups of vertices {gi ⊆ V }N

i=1, the goal is to find a minimum length tree 103
containing r and at least one vertex from each of the N groups. Observe that an r- 104
rooted tree can be converted into a path starting from r with at most a factor two loss 105
in the total length and vice versa. Thus GST is a special case of MLSC when there is 106
only a single submodular function, 107

f1(S) = 1
N

N∑
i=1

min{|gi ∩ S|, 1}.

Note that f1(S′) = 1 if and only if S′ ⋂ gi is nonempty for all i ∈ [N]. 108

Covering Steiner Tree (CST) [Konjevod et al. 2002; Gupta and Srinivasan 109
2006]. This is a generalization of GST with the same input as above, where each 110

1Throughout the article, for any integer � ≥ 1, we denote [�] := {1, 2, . . . , �}.

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13:4 S. Im et al.

group gi is also associated with a requirement ki. The goal here is to find a minimum111
length tree that contains r and at least ki vertices from group gi, for all i ∈ [N]. We112
recover CST as a special case of MLSC by setting113

f1(S) = 1
N

N∑
i=1

min
{ |gi ∩ S|

ki
, 1

}
.

Note that now f1(S′) = 1 if and only if |S′ ⋂ gi| ≥ ki for all i ∈ [N].114

Latency Group Steiner Tree (LGST) [Gupta et al. 2010; Chakrabarty and115
Swamy 2011]. This is a variant of the group Steiner tree problem. Given a metric116
(V, d) with root r and N groups of vertices {gi ⊆ V }N

i=1, the goal is to find a path π117
originating from r that minimizes the sum of cover times of the groups. (A group gi is118
covered at the shortest prefix of π that contains at least one vertex from gi.) Note that119
MSSC is the special case when the metric is uniform.120

Latency Covering Steiner Tree∗. The input to this problem is the same as for LGST121
with additional requirements {ki}N

i=1 corresponding to each group. The objective is again122
a path π originating from r that minimizes the sum of cover times, where group gi is123
covered at the shortest prefix of π that contains at least ki vertices from gi. Clearly,124
LGST is the special case of LCST where all requirements ki = 1. GMSSC is also a125
special case when the metric is uniform. We obtain LCST as a special case of MLSC126
with m = N functions and fi(S) = min{|gi ∩ S|/ki, 1} for all i ∈ [N].127

Weighted Stochastic Submodular Ranking∗ (WSSR). This is a stochastic gen-128
eralization of the Submodular Ranking problem. We are given a set V of stochastic129
elements (random variables), each having an independent distribution over a certain130
domain �. The submodular functions are also defined on the ground set �, that is,131
f1, . . . , fm : 2� → [0, 1]. In addition, each element i ∈ V has a deterministic time �i132
to be scheduled. The realization (from �) of any element is known immediately after133
scheduling it. The goal is to find an adaptive ordering of V that minimizes the total134
expected cover time of the m functions. Since elements are stochastic, it is possible135
that a function is never covered: In such cases, we just fix the cover time to be

∑
i∈V �i136

(which is the total duration of any schedule).137
We will be concerned with adaptive algorithms. Such an algorithm is allowed to138

decide the next element to schedule based on the instantiations of the previously139
scheduled elements. This models the setting where the algorithm can benefit from user140
feedback.141

WSSR generalizes the Stochastic Set Cover studied in Goemans and Vondrák [2006].142
Interestingly, it also captures some variants of Stochastic Set Cover that have appli-143
cations in query processing with probabilistic information [Munagala et al. 2007; Liu144
et al. 2008]. Various applications of WSSR are discussed in more detail in Section 5.145

1.2. Our Results and Techniques146

Our first result is on the MLSC problem.147

THEOREM 1.1. For any constant δ > 0, there is an O(log 1
ε

· log2+δ |V |)-approximation148
algorithm for the Minimum Latency Submodular Cover problem. Here ε > 0 is a value149
such that. for any i ∈ [m] and S′ ⊆ S, if f (S) > f (S′), then f (S) ≥ f (S′) + ε.150

Note that in the special case of the Group Steiner Tree, this result is larger only151

by a factor of O(logδ |V |) than its best-known approximation ratio of O(log N log2 |V |),152
due to Garg et al. [2000]. Our algorithm uses the framework of Azar and Gamzu153
[2011] and the Submodular Orienteering problem (SOP) [Chekuri and Pál 2005] as a154

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

Minimum Latency Submodular Cover 13:5

sub-routine. The input to SOP consists of metric (V, d), root r, monotone submodular 155
function f : 2V → R+, and length bound B. The goal is to find a path originating at r 156
having length at most B that maximizes f (S), where S ⊆ V is the set of vertices visited 157
in the path. Specifically, we show that a (ρ, σ)-bicriteria approximation algorithm2 for 158
SOP can be used to obtain an O(ρ σ · log 1

ε
)-approximation algorithm for MLSC. To 159

obtain Theorem 1.1, we use an (O(1), O(log2+δ |V |))-bicriteria approximation for SOP 160
that follows from Calinescu and Zelikovsky [2005] and Chekuri et al. [2006]. 161

Our algorithm for MLSC is an extension of the elegant “adaptive residual updates 162
scheme” of Azar and Gamzu [2011] for Submodular Ranking (i.e., uniform metric 163
MLSC). As shown in Azar and Gamzu [2011], an interesting aspect of this problem 164
is that the natural greedy algorithm, based on absolute contribution of elements, per- 165
forms very poorly. Instead, they used a modified greedy algorithm that selects one 166
element at a time according to residual coverage. In the MLSC setting of general met- 167
rics, our algorithm uses a similar residual coverage function to repeatedly augment the 168
solution. However our augmentations are paths of geometrically increasing lengths, 169
instead of just one element. A crucial point in our algorithm is that the residual cover- 170
age functions are always submodular, and hence we can use SOP in the augmentation 171
step. 172

We note that the approach of covering the maximum number of functions within 173
geometrically increasing lengths fails because the residual coverage function here is 174
non-submodular; in fact, as noted in Bansal et al. [2010], this subproblem contains the 175
difficult dense-k-subgraph problem even for the special case of Generalized Min-Sum 176
Set Cover with requirement two. We also note that the choice of our (submodular) resid- 177
ual coverage function ultimately draws on the Submodular Ranking algorithm [Azar 178
and Gamzu 2011]. 179

The analysis in Azar and Gamzu [2011] was based on viewing the optimal and 180
approximate solutions as histograms. This approach was first used in this line of work 181
by Feige et al. [2004] for the Min-Sum Set Cover problem (see also Bar-Noy et al. [1998]). 182
This was also the main framework of analysis in Azar et al. [2009] for Generalized Min- 183
Sum Set Cover and then for Submodular Ranking [Azar and Gamzu 2011]. However, 184
these proofs have been increasingly difficult, as the problem in consideration adds more 185
generality. Instead, we follow a different and more direct approach that is similar to the 186
analysis of the Minimum Latency problem, see, for example, Chaudhuri et al. [2003] 187
and Fakcharoenphol et al. [2007]. In fact, the proof of Theorem 1.1 is enabled by a new 188
simpler analysis of the Submodular Ranking algorithm [Azar and Gamzu 2011]. 189

Our second result is a better approximation ratio for the LCST problem. Note that 190

Theorem 1.1 implies directly an O(log kmax · log2+δ |V |)-approximation algorithm for 191
LCST, where kmax = maxN

i=1 ki. 192

THEOREM 1.2. There is an O(log2 |V |)-approximation algorithm for Latency Covering 193
Steiner Tree. 194

The main idea in this result is a new LP relaxation for Covering Steiner Tree (using 195
Knapsack Cover type inequalities [Carr et al. 2000]) having a poly-logarithmic inte- 196
grality gap. This new LP might also be of some independent interest. The previous 197
algorithms [Konjevod et al. 2002; Gupta and Srinivasan 2006] for covering Steiner tree 198
were based on iteratively solving an LP with large integrality gap. However, the pre- 199
vious approach does not seem suitable to the latency version we consider. Our new LP 200
relaxation for Covering Steiner Tree (CST) is crucial for obtaining the approximation 201

2Given any instance of SOP, such an algorithm returns a path of length at most σ · B and function value at
least OPT/ρ.

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13:6 S. Im et al.

stated in Theorem 1.2. Given this new LP and rounding algorithm for CST, we obtain202
the LCST algorithm using a time-indexed LP relaxation, which is a direct extension of203
a similar LP for the LGST in Chakrabarty and Swamy [2011]. Furthermore, as shown204
in Nagarajan [2009] and Chakrabarty and Swamy [2011], any improvement over The-205
orem 1.2, even in the kmax = 1 special case (i.e., LGST), would yield an improved ap-206
proximation ratio for the Group Steiner Tree, which is a long-standing open question.207

Our final result is for the Weighted Stochastic Submodular Ranking problem. As208
shown in Goemans and Vondrák [2006] and Golovin and Krause [2010], even special209
cases of this problem have a polynomially large adaptivity gap (ratio between the210
optimal non-adaptive and adaptive solutions).3 This motivates adaptive algorithms,211
and we obtain the following result in Section 5.212

THEOREM 1.3. There is an adaptive O(log 1
ε
)-approximation algorithm for the Weighted213

Stochastic Submodular Ranking problem.214

In particular, we show that the natural stochastic extension of the algorithm215
from Azar and Gamzu [2011] achieves this approximation factor. We remark that216
the analysis in Azar and Gamzu [2011] of deterministic submodular ranking required217
unit costs, whereas Theorem 1.3 holds for the stochastic setting even with non-uniform218
costs {�i}.219

As mentioned, our results generalize the results in Goemans and Vondrák [2006],220
Munagala et al. [2007], and Liu et al. [2008] that study (some variants of) Stochastic221
Set Cover. Our analysis is arguably simpler and more transparent than that in Liu222
et al. [2008], which gave the first tight analysis of these problems. We note that Liu223
et al. [2008] used an intricate charging scheme with “dual prices,” and it does not seem224
directly applicable to general submodular functions.225

We note that our techniques do not extend directly to the stochastic MLSC problem226
(on general metrics), and obtaining a poly-logarithmic approximation here seems to227
require additional ideas.228

1.3. Previous Work229

The first poly-logarithmic approximation for the Group Steiner Tree was230

O(log N log2 |V |), obtained by Garg et al. [2000]. This is still the best-known bound.231
Chekuri et al. [2006] gave a combinatorial algorithm that achieved a slightly weaker232
approximation ratio (the algorithm in Garg et al. [2000] was LP based). This combi-233
natorial approach was extended in Calinescu and Zelikovsky [2005] to the problem of234
covering any submodular function in a metric space. We use this algorithm in the SOP235
subroutine for our MLSC result. For SOP an O(log |V |) approximation is known from236
Chekuri and Pál [2005] but with a quasi-polynomial running time. We note that an237

	(log2−δ |V |) hardness of approximation is known for the Group Steiner Tree (even on238
tree metrics) from Halperin and Krauthgamer [2003].239

The Covering Steiner Tree problem was introduced by Konjevod et al. [2002],240
which can be viewed as the multicover version of the Group Steiner Tree. They gave241

an O(log(Nkmax) log2 |V |) approximation using an LP relaxation. However, the LP242
used in Konjevod et al. [2002] has a large 	(kmax) integrality gap; they got around243
this issue by iteratively solving a suitable sequence of LPs. They also extended the244
randomized rounding analysis from Garg et al. [2000] to this context. Later, Gupta and245

Srinivasan [2006] improved the approximation bound to O(log N log2 |V |), removing246
the dependence on the covering requirements. This algorithm was also based on solving247

3A non-adaptive solution is just a fixed linear ordering of the elements, whereas an adaptive solution can
select the next element based on previous instantiations.

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

Minimum Latency Submodular Cover 13:7

a similar sequence of LPs; the improvement was due to a combination of threshold 248
rounding and randomized rounding. In this article, we give a stronger LP relaxation 249
for the Covering Steiner Tree based on so-called Knapsack-Covering inequalities 250

(abbreviated to KC inequalities), which has an O(log N log2 |V |) integrality gap. 251
The Stochastic Set Cover problem (which is a special case of Weighted Stochastic 252

Submodular Ranking) was introduced by Goemans and Vondrák [2006]. Here each set 253
covers a random subset of items, and the goal is to minimize the expected cost of a set 254
cover. Goemans and Vondrák [2006] showed a large adaptivity gap for Stochastic Set 255
Cover, and gave a logarithmic approximation for a relaxed version where each stochas- 256
tic set can be added multiple times. A related problem in the context of fast query 257
evaluation was studied in Munagala et al. [2007], where the authors gave a triple 258
logarithmic approximation. This bound was improved to the best-possible logarithmic 259
ratio by Liu et al. [2008]; this result was also applicable to stochastic set cover (where 260
each set can be added at most once). Another related article is Golovin and Krause 261
[2010], where the authors defined a general property “adaptive submodularity” and 262
showed nearly optimal approximation guarantees for several objectives (max coverage, 263
min-cost cover, and min-sum cover). The most relevant result in Golovin and Krause 264
[2010] to WSSR is the 4-approximation for Stochastic Min Sum Set Cover. This ap- 265
proach required a fixed submodular function f such that the objective is to minimize 266

E[
∑

t≥0 f (V) − f (π t)], where π t is the realization of elements scheduled within time t 267

and V denotes the realization of all elements. However, this assumption is not satisfied 268
even for the special case of Generalized Min-Sum Set Cover with requirements 2. So an 269
extension of Golovin and Krause [2010] to our setting is unclear. Recently, Guillory and 270
Bilmes [2011] studied the Submodular Ranking problem in an online regret setting, 271
which differs from the adaptive model we consider. 272

1.4. Organization 273

In Section 2 we revisit the Submodular Ranking problem and give an easier and per- 274
haps more intuitive analysis of the algorithm from Azar and Gamzu [2011]. This sim- 275
pler analysis is then used in the algorithms for Minimum Latency Submodular Cover 276
(Theorem 1.1) and Weighted Stochastic Submodular Ranking (Theorem 1.3), which ap- 277
pear in Sections 3 and 5, respectively. Section 4 contains the improved approximation 278
algorithm for Latency Covering Steiner Tree (Theorem 1.2), which makes use of a new 279
linear programming relaxation for Covering Steiner Tree. The section on LCST can be 280
read independently of the other three sections. 281

2. SIMPLER ANALYSIS OF THE SUBMODULAR RANKING ALGORITHM 282

In this section, we revisit the Submodular Ranking problem [Azar and Gamzu 2011]. 283
Recall that the input consists of a ground set V := [n] of elements and monotone 284
submodular functions f1, f2, . . . , fm : 2[n] → [0, 1] with fi(V) = 1, ∀i ∈ [m]. The goal 285
is to find a complete linear ordering of the elements that minimizes the total cover 286
time of all functions. The cover time cov(fi) of fi is defined as the smallest index t 287
such that the function fi has value 1 for the first t elements in the ordering. We also 288
say that an element e is scheduled at time t if it is the tth element in the ordering. 289
It is assumed that each function fi satisfies the following property: For any S ⊇ S′, if 290
fi(S) − fi(S′) > 0, then it must be the case that fi(S) − fi(S′) ≥ ε, where ε > 0 is a 291
value that is uniform for all functions fi. This is a useful parameter in describing the 292
performance guarantee. 293

Azar and Gamzu [2011] gave a modified greedy-style algorithm with an approxima- 294
tion factor of O(log 1

ε
) for Submodular Ranking. Their analysis was fairly involved. In 295

this section, we give an alternate shorter proof of their result. Our analysis also extends 296

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13:8 S. Im et al.

to the more general MLSC problem which we study in the next section. The algorithm297
ALG-AG from Azar and Gamzu [2011] is given below. In the output, π (t) denotes the298
element that appears in the tth time slot.299

ALGORITHM 1: Algorithm for Submodular Ranking (ALG-AG).
INPUT: Ground set [n]; monotone submodular functions fi : 2[n] → [0, 1], i ∈ [m]

1: S ← ∅
2: for t = 1 to n do
3: Let f S(e) := ∑

i∈[m], fi (S)<1
fi (S∪{e})− fi (S)

1− fi (S)

4: e = arg maxe∈[n]\S f S(e)
5: S ← S

⋃{e}
6: π (t) ← e
7: end for

OUTPUT: A linear ordering 〈π (1), π (2), . . . , π (n)〉 of [n].

THEOREM 2.1 (AZAR AND GAMZU [2011]). ALG-AG is an O(ln(1
ε
))-approximation algo-300

rithm for Submodular Ranking.301

Let α := 1+ln(1
ε
). To simplify notation, without loss of generality, we assume that α is302

an integer. Let R(t) denote the set of functions that are not satisfied by ALG-AG earlier303
than time t; R(t) includes the functions that are satisfied exactly at time t. For notational304
convenience, we use i ∈ R(t) interchangeably with fi ∈ R(t). Analogously, R∗(t) is the305
set of functions that are not satisfied in the optimal solution before time t. Note that306
algorithm’s objective ALG = ∑

t≥1 |R(t)| and the optimal value OPT = ∑
t≥1 |R∗(t)|. We307

will be interested in the number of unsatisfied functions at times {8α2 j : j ∈ Z+} by308
ALG-AG and the number of unsatisfied functions at times {2 j : j ∈ Z+} by the optimal309
solution. Let Rj := R(8α2 j) and R∗

j = R∗(2 j) for all integer j ≥ 0. It is important to310

note that Rj and R∗
j are concerned with different times. For notational simplicity, we311

let R−1 := ∅.312
We show the following key lemma. Roughly speaking, it says that the number of313

unsatisfied functions by ALG-AG diminishes quickly unless it is comparable to the314
number of unsatisfied functions in OPT.315

LEMMA 2.2. For any j ≥ 0, we have |Rj | ≤ 1
4 |Rj−1| + |R∗

j |.316

PROOF. When j = 0 the lemma holds trivially. Now consider any integer j ≥ 1 and317
time step t ∈ [8α2 j−1, 8α2 j). Let St−1 denote the set of elements that ALG-AG schedules318
before time t and let et denote the element that ALG-AG schedules exactly at time t. Let319
Ej denote the set of elements that ALG-AG schedules until time 8α2 j . Let E∗

j denote320

the set of elements that OPT schedules until time 2 j . Recall that ALG-AG picks et as321
an element e that maximizes322

f St−1 (e) :=
∑

i∈[m]: fi (St−1)<1

fi(St−1 ∪ {e}) − fi(St−1)
1 − fi(St−1)

.

This leads us to the following proposition.323

PROPOSITION 2.3. For any j ≥ 1, time step t ∈ [8α2 j−1, 8α2 j) and e ∈ E∗
j , we have324

f St−1 (et) ≥ f St−1 (e).325

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

Minimum Latency Submodular Cover 13:9

PROOF. Since ALG-AG has chosen to schedule element et over all elements e ∈ 326
E∗

j\St−1, we know that the claimed inequality holds for any e ∈ E∗
j\St−1. Further, the 327

inequality holds for any element e in St−1, since f St−1 (e) = 0 for such an element e. 328

By taking an average over all elements in E∗
j , we derive 329

f St−1 (et) ≥ 1
|E∗

j |
∑
e∈E∗

j

f St−1 (e)

≥ 1
|E∗

j |
∑
e∈E∗

j

∑
i∈Rj\R∗

j

fi(St−1 ∪ {e}) − fi(St−1)
1 − fi(St−1)

. (1)

Observe that in Equation (1), the inner summation only involves functions fi for 330
which fi(St−1) < 1. This is because for any i ∈ Rj , function fi is not covered before time 331

8α2 j and t < 8α2 j . Due to submodularity of each function fi, we have that 332

(1) ≥ 1
|E∗

j |
∑

i∈Rj\R∗
j

fi(St−1 ∪ E∗
j) − fi(St−1)

1 − fi(St−1)
= 1

|E∗
j |

∑
i∈Rj\R∗

j

1 ≥ |Rj | − |R∗
j |

|E∗
j |

.

The equality is due to the fact that for any i /∈ R∗
j , fi(E∗

j) = 1 and each function fi is 333

monotone. Hence: 334∑
8α·2 j−1≤t<8α·2 j

f St−1 (et) ≥ 8α(2 j − 2 j−1)
|E∗

j |
(|Rj | − |R∗

j |) = 4α(|Rj | − |R∗
j |), (2)

where we used |E∗
j | = 2 j . We now upper bound the left-hand side of Equation (2). To 335

this end, we need the following claim from Azar and Gamzu [2011]. 336

CLAIM 2.4 (CLAIM 2.3 IN AZAR AND GAMZU [2011]). Given a monotone function f : 337
2[n] → [0, 1] with f ([n]) = 1 and sets ∅ = S0 ⊆ S1 ⊆ · · · ⊆ S� ⊆ [n], we have (using the 338
convention 0/0 = 0) 339

�∑
k=1

f (Sk) − f (Sk−1)
1 − f (Sk−1)

≤ 1 + ln
1
δ
.

Here δ > 0 is such that for any A ⊆ B, if f (B) − f (A) > 0, then f (B) − f (A) ≥ δ. 340

PROOF. We give a proof for completeness. We can assume, without loss of generality, 341
that S� = [n]. Order the values in the set { f (Sk) | 0 ≤ k ≤ �}\{1} in increasing order 342
to obtain β0 < β1 < . . . < βH . By the assumption, we have β0 ≥ 0 and βH ≤ 1 − δ 343
(moreover, βh − βh−1 ≥ δ, ∀h ∈ [H]). We will show that 344

H∑
h=1

βh − βh−1

1 − βh−1
≤ ln

1
δ
.

Since f (S�) = 1, the summation we want to bound has an additional term of 1−βH
1−βH

= 1. 345

Knowing that the function u(x) = 1
1−x is increasing for x ∈ [0, 1), we derive 346

H∑
h=1

βh − βh−1

1 − βh−1
=

H∑
h=1

∫ βh

x=βh−1

1
1 − βh−1

dx ≤
H∑

h=1

∫ βh

x=βh−1

1
1 − x

dx =
∫ βH

x=0

1
1 − x

dx

= ln
(

1 − β0

1 − βH

)
≤ ln

1
δ
.

This proves the claim. 347

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13:10 S. Im et al.

Note that any function fi not in Rj−1 does not contribute to the left-hand side of348

Equation (2) since any such function fi was already covered before time 8α 2 j−1 ≤ t.349
Further, knowing by Claim 2.4 that each function fi ∈ Rj−1 can add at most α := 1+ln 1

ε
,350

we can upper bound the left-hand side of Equation (2) by α|Rj−1|. Formally,351

∑
8α·2 j−1<t≤8α·2 j

f St−1 (et) =
∑

8α·2 j−1<t≤8α·2 j

∑
i∈Rj−1: fi (St−1)<1

fi(St−1 ∪ {et}) − fi(St−1)
1 − fi(St−1)

≤
∑

i∈Rj−1

∑
t≥1: fi (St−1)<1

fi(St−1 ∪ {et}) − fi(St−1)
1 − fi(St−1)

≤ α|Rj−1|. (3)

From Equations (2) and (3) we obtain 4α(|Rj | − |R∗
j |) ≤ α|Rj−1|, which completes the352

proof of Lemma 2.2.353

Now we can prove Theorem 2.1 using Lemma 2.2.354

PROOF OF THEOREM 2.1.355

ALG =
∑
j≥0

∑
8α2 j≤t<8α2 j+1

|R(t)| +
∑

1≤t<8α

|R(t)|

≤
∑
j≥0

8α(2 j+1 − 2 j)|Rj | + 8αOPT [Since |R(t)| is non-increasing, and |R(1)| ≤ m ≤ OPT]

= 8α
∑
j≥0

2 j+1
(

|Rj | − 1
4

|Rj−1|
)

+ 8αOPT [Using R−1 = ∅]

≤ 8α
∑
j≥0

2 j+1|R∗
j | + 8αOPT [By Lemma 2.2]

≤ 8α
∑
j≥1

4
∑

2 j−1≤t<2 j

|R∗(t)| + 16α|R∗
0| + 8αOPT [Since |R∗(t)| is non-increasing]

≤ 32αOPT + 24αOPT.

Thus we obtain ALG ≤ 56α OPT, which proves Theorem 2.1.356

3. MINIMUM LATENCY SUBMODULAR COVER357

Recall that in the MLSC problem, we are given a metric (V, d) with root r ∈ V and m358
monotone submodular functions f1, f2, . . . , fm : 2V → [0, 1]. Without loss of generality,359
by scaling, we assume that all distances d(·, ·) are integers. The objective in MLSC is to360
find a path starting at r that minimizes the total cover time of all functions.361

As mentioned earlier, our algorithm for MLSC uses as a subroutine an algorithm for362
the SOP. In this problem, given metric (V, d), root r, monotone submodular function363
g : 2V → R+ and bound B, the goal is to compute a path P originating at r that has364
length at most B and maximizes g(V (P)) where V (P) is the set of vertices covered by365
P. We assume that we have a (ρ, σ)-bicriteria approximation algorithm ALG-SOP for366
SOP. That is, on any SOP instance, ALG-SOP returns a path P of length at most σ · B367
and g(V (P)) ≥ OPT/ρ, where OPT is the optimal value obtained by any length B path.368
We recall the following known results on SOP.369

THEOREM 3.1 (CALINESCU AND ZELIKOVSKY [2005]). For any constant δ > 0 there is a370

polynomial time (O(1), O(log2+δ |V |)) bicriteria approximation algorithm for the Sub-371
modular Orienteering problem.372

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

Minimum Latency Submodular Cover 13:11

THEOREM 3.2 (CHEKURI AND PÁL [2005]). There is a quasi-polynomial time O(log |V |) 373
approximation algorithm for the Submodular Orienteering problem. 374

We note that Theorem 3.1 is implicit in Calinescu and Zelikovsky [2005]; for com- 375
pleteness, we provide additional detail in Appendix A. 376

We describe below our algorithm ALG-MLSC for MLSC. Here α = 1 + ln 1
ε
. Note 377

the difference from the Submodular Ranking algorithm [Azar and Gamzu 2011]: Here 378
each augmentation is a path possibly covering several vertices. Despite the similar- 379
ity of ALG-MLSC to the min-latency TSP-type algorithms [Chaudhuri et al. 2003; 380
Fakcharoenphol et al. 2007], an important difference is that we do not try to directly 381
maximize the number of covered functions in each augmentation: As noted, this sub- 382
problem is at least as hard as dense-k-subgraph, for which the best approximation ratio 383
known is only polynomial [Bhaskara et al. 2010]. Instead, we maximize in each step 384
some proxy residual coverage function f S that suffices to eventually cover all functions 385
quickly. This function is a natural extension of the single-element coverage values used 386
in ALG-AG [Azar and Gamzu 2011]. It is important to note that in Line (4), f S(·) is 387
defined adaptively based on the current set S of visited vertices in each iteration. More- 388
over, since each function fi is monotone and submodular, so is f S for any S ⊆ V . In 389
Step 6, π · P denotes the concatenation of paths π and P. 390

ALGORITHM 2: Algorithm for Min-Latency Submodular Cover (ALG-MLSC).
INPUT: (V, d), r ∈ V ; { fi : 2V → [0, 1]}m

i=1.
1: S ← ∅, π ← ∅.
2: for k = 0, 1, 2, . . . do
3: for u = 1, 2, . . . , 4αρ do
4: Define the submodular function

f S(T) :=
∑

i∈[m], fi (S)<1

fi(S ∪ T) − fi(S)
1 − fi(S)

, for all T ⊆ V .

5: Use ALG-SOP to approximately solve the SOP instance on metric (V, d) with
root r, submodular function f S and length bound 2k. Let P denote the solution
path; note d(P) ≤ σ · 2k.

6: S ← S ∪ V (P) and π ← π · P.
7: end for
8: end for

OUTPUT: Output solution π .

We prove the following theorem, which implies Theorem 1.1. 391

THEOREM 3.3. ALG-MLSC is an O(αρσ)-approximation algorithm for Minimum La- 392
tency Submodular Cover. 393

We now analyze ALG-MLSC. We say that the algorithm is in the jth phase when the 394
variable k of the for loop in Step 2 has value j. Note that there are 4αρ iterations of 395
Steps 4–6 in each phase. 396

PROPOSITION 3.4. The length of π at the end of phase j is at most 16αρσ · 2 j . Hence 397
any vertex added to S in the jth phase is visited by π within 16αρσ · 2 j . 398

PROOF. The final solution is a concatenation of the paths that were found in Step 6. 399
Since all these paths are stitched at the root r, the length of π at the end of phase j is 400

at most
∑ j

k=0 2 · 4αρ · σ2k ≤ 16αρσ · 2 j . 401

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13:12 S. Im et al.

For the sake of analysis, we now make the following modification. We artificially402
increase the length of path π at certain points so403

For each phase j ≥ 0, the length of π at the end of phase- j is exactly 16αρσ · 2 j . (4)

This modification is valid due to Proposition 3.4.404
Let R(t) denote the set of (indices of) the functions that are not covered by ALG-MLSC405

earlier than time t; R(t) includes the functions that are covered exactly at time t as well.406
We interchangeably use i ∈ R(t) and fi ∈ R(t). For any j ≥ 0, let Rj := R(16αρσ 2 j) be407
the set of uncovered functions at the end of phase j. Similarly, we let R∗(t) denote the408
set of functions that are not covered by OPT earlier than time t and let R∗

j = R∗(2 j).409

Let R−1 := ∅.410
We show the following key lemma. It shows that the number of uncovered functions411

by ALG-MLSC must decrease fast as j grows, unless the corresponding number in the412
optimal solution is comparable.413

LEMMA 3.5. For any j ≥ 0, we have |Rj | ≤ 1
4 |Rj−1| + |R∗

j |.414

PROOF. The lemma holds trivially when j = 0. Now consider any fixed phase j ≥ 1.415
Let S0 denote the set of vertices that were added to S up to the end of phase j − 1. Let416
H = 4αρ and T1, T2, . . . , TH be the sets of vertices that were added in Line (6) in the417
jth phase. Let Sh = S0 ∪ T1 ∪ T2 ∪ . . . ∪ Th, ∀1 ≤ h ≤ H. We prove Lemma 3.5 by lower418
and upper bounding the quantity419

� j :=
H∑

h=1

f Sh−1 (Th) =
H∑

h=1

∑
i∈[m]: fi (Sh−1)<1

fi(Sh) − fi(Sh−1)
1 − fi(Sh−1)

,

which is intuitively the total amount of “residual requirement” that is covered by the420
algorithm in phase j.421

We first lower bound � j . Let T ∗ denote the set of vertices that OPT visited within422

time 2 j . Observe that a feasible solution to the SOP instance in Step 5 is OPT’s prefix423
of length 2 j that covers vertices T ∗. So by the approximation guarantee of ALG-SOP,424
we obtain425

PROPOSITION 3.6. For any h ∈ [H], we have f Sh−1 (Th) ≥ 1
ρ

· f Sh−1 (T ∗).426

We restrict our concern to the functions in Rj\R∗
j . Observe that for any i ∈ Rj and427

h ∈ [H], fi(Sh−1) < 1 and that for any i /∈ R∗
j , fi(T ∗) = 1. Hence by summing the428

inequality in the above proposition over all functions fi in Rj\R∗
j , we have429

� j ≥ 1
ρ

H∑
h=1

f Sh−1 (T ∗) ≥ 1
ρ

H∑
h=1

∑
i∈Rj\R∗

j

fi(T ∗ ∪ Sh−1) − fi(Sh−1)
1 − fi(Sh−1)

≥ 1
ρ

H∑
h=1

∑
i∈Rj\R∗

j

1 ≥ H
ρ

(|Rj | − |R∗
j |)

= 4α(|Rj | − |R∗
j |). (5)

We now upper bound � j . Note that for any i /∈ Rj−1, fi(S0) = 1, and therefore fi does430
not contribute to � j . For any i ∈ Rj−1, the total contribution of fi to � j is at most α by431
Claim 2.4. Hence,432

� j ≤ α|Rj−1|. (6)

Combining Equations (5) and (6) completes the proof of Lemma 3.5.433

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

Minimum Latency Submodular Cover 13:13

Finally, we can use Lemma 3.5 to prove Theorem 3.3 exactly as we proved Theo- 434
rem 2.1 in the previous section using Lemma 2.2. We omit repeating the calculations 435
here. 436

4. LATENCY COVERING STEINER TREE 437

In this section, we consider the LCST problem, which is an interesting special case of 438
MLSC. Recall that the input to LCST consists of a symmetric metric (V, d), root r ∈ V , 439
and a collection G of groups, where each group g ∈ G is a subset of vertices with an 440
associated requirement kg. The goal is to find a path starting from r that minimizes the 441
total cover time of all groups. We say that group g is covered at the earliest time t when 442
the path within distance t visits at least kg vertices in g. We give an O(log gmax · log |V |)- 443
approximation algorithm for this problem where gmax := maxg∈G |g| is the maximum 444
group size. This would prove Theorem 1.2. 445

Simplifying Assumptions. Following Konjevod et al. [2002] and Gupta and Srinivasan 446
[2006], without loss of generality, we assume that: 447

(1) The metric is induced by a tree T = (V, E) with root r and weight we on each edge 448
e ∈ E. 449

(2) Every vertex in a group is a leaf, that is, has degree one in T . 450
(3) The groups in G are disjoint. 451
(4) Every vertex of degree one lies in some group. 452

The only non-trivial assumption is the first one, which uses tree embedding 453
[Fakcharoenphol et al. 2004] to reduce general metrics to trees at the loss of an 454
O(log |V |) approximation factor. In the rest of this section, we work with such instances 455
of LCST and obtain an O(log gmax)-approximation algorithm. 456

We first discuss a new LP relaxation for the Covering Steiner Tree problem in Sec- 457
tion 4.1, which is shown to have a poly-logarithmic integrality gap in Section 4.2. Next, 458
in Section 4.3, we provide an LP relaxation for Latency Covering Steiner Tree: Given 459
our new LP relaxation for CST, the LCST LP is a natural extension of a previously 460
known LP for a special case [Chakrabarty and Swamy 2011]. Finally, in Section 4.4, 461
we present the rounding algorithm for Latency Covering Steiner Tree. 462

4.1. New LP Relaxation for CST 463

Recall that the input to Covering Steiner Tree consists of a metric (V, d) with root 464
r and a collection of m groups G ⊆ 2V where each group g ∈ G is associated with a 465
requirement kg. The goal is to find a minimum cost r-rooted tree that includes r and at 466
least kg vertices from each group g. Although an O(log m· log gmax · log n) approximation 467
is known for CST [Gupta and Srinivasan 2006], there was no (single) linear program 468
known to have a poly-logarithmic integrality gap. Previous results on CST relied on an 469
LP with a large 	(kmax) integrality gap [Konjevod et al. 2002]. 470

We introduce stronger constraints that yield an LP for CST with the integrality gap 471
O(log m · log gmax · log n). This new LP is an important ingredient in our algorithm for 472
LCST and might also be useful in other contexts. 473

Let L denote the set of leaves in V . Because of the above simplifying assumptions, 474
we can label each vertex v in a group with a unique leaf edge incident on it and vice 475
versa. We abuse notation by allowing j ∈ L to denote both the leaf vertex and its unique 476
incident edge. For any edge e ∈ E, let pe(e) denote its unique parent edge; if e is incident 477
to the root, then pe(e) = NIL. For any subset of leaves L′ ⊆ L, let cut(r, L′) denote the 478
family of all edge subsets whose removal separates the root r from all vertices in L′. 479

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13:14 S. Im et al.

We formulate the following linear programming relaxation for CST on tree instances:480
481

min
∑
e∈E

wexe LPCST

482 s.t. xpe(e) ≥ xe ∀e ∈ E, (7)

483 (kg − |A|)
∑

j∈B\L

xj +
∑

j∈B∩(L\A)

xj ≥ kg − |A| ∀g ∈ G,∀A ⊆ g,∀B ∈ cut(r, g\A) (8)

xe ∈ [0, 1]. ∀e ∈ E

To reduce notation, we use the convention xNIL = 1, so constraint (7) is always trivially484
satisfied for edges e incident to the root. We note that constraint (8) can be seen as an485
extension of knapsack covering inequalities, which was first introduced in Carr et al.486
[2000]. In the analysis, in each iteration, A will be set to the leaf edges in each group g487
that are already covered. Then, no subtree induced by edge j can contribute to covering488
the group g by more than the “residual” demand kg−|A|, conditioned on the edge j being489
chosen. This constraint will be used to show that the KRS properties (see Definition 4.4)490
are satisfied, which play a crucial role in the analysis of the iterative rounding.491

Validity of LPCST. We first argue that this is a valid relaxation. Consider any instance492
of CST on trees and a fixed feasible solution (tree) τ ∗, which gives a natural integral493
solution: xe = 1 if and only if e ∈ τ ∗. We focus on constraints (8), since the other494
constraints are obviously satisfied. Consider any g ∈ G, A ⊆ g, and B ∈ cut(r, g\A).495
Let τ ∗(E\A) denote the subtree induced by the edges in τ ∗ ⋂

(E\A). Note that τ ∗(E\A)496
is connected, since A consists only of leaf edges. Let C = τ ∗(E\A) ∩ g denote the leaf497
edges of group g in τ ∗(E\A). Since τ ∗ has at least kg edges from g (it is a feasible CST498
solution), we must have |C| ≥ kg −|A|. Note also that the edge set B separates all leaves499
C from r.500

—Suppose that there exists j ∈ τ ∗(E\A) ∩ B such that j /∈ L. Then, since j ∈ B\L, it501
follows that (kg − |A|) ∑

j∈B\L xj ≥ kg − |A|, and hence the constraint is satisfied.502

—The remaining case has τ ∗(E\A) ∩ B ⊆ L, that is, B separates C from r using only503
leaf edges. So B ⊇ C and

∑
j∈B∩(L\A) xj ≥ |C| ≥ kg − |A|.504

In both the above cases, constraint (8) is satisfied.505

Solving LPCST. Since LPCST has exponentially many constraints, in order to solve it506
in polynomial time, we need a separation oracle. Again we focus on constraints (8),507
since other constraints are only polynomially many. We observe that this separation508
oracle reduces to the following problem.509

Problem MinCutWithExceptions: Given as input a tree T rooted at r with leaves L and510
cost �(e) on each edge e and an integer D ≥ 0, the goal is to find a minimum cost cut511
that separates r from any D leaves.512

We first show why this suffices to separate constraints (9). Consider any fixed g ∈ G513
and all A ⊆ g with |A| = η (for some fixed value 0 ≤ η ≤ n). We will show that the514
constraints in Equation (8) corresponding to group g and A ⊆ g with |A| = η (and any cut515
B) can be verified by solving one instance of MinCutWithExceptions. Note that all such516
constraints have the same right-hand side kg−η. In order to verify these constraints, we517
would like to find A ⊆ g with |A| = η and B ∈ cut(r, g\A) that minimizes the left-hand518
side of Equation (8) and check if this value is smaller than kg − η. This test can be cast519
as the following MinCutWithExceptions instance:520

Remove all edges from E that are not on any path from the root r to a vertex in g,521
and let T ′ be the resulting tree. T ′ is the input tree to the MinCutWithExceptions522

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

Minimum Latency Submodular Cover 13:15

instance. Note that leaves of T ′ are precisely g. For all leaf edges j ∈ g, let �(j) := xj ; 523
and for all non-leaf e ∈ T ′\g, �(e) := (kg − η) · xe. Also set bound D := |g| − η. 524

Finally, we iterate over all g ∈ G and 0 ≤ η ≤ n in order to verify all constraints 525
in Equation (8). 526

We next show that MinCutWithExceptions can be solved via a dynamic programming. 527

LEMMA 4.1. The problem MinCutWithExceptions can be solved in polynomial time. 528

PROOF. To formally describe our dynamic program, we make some simplifying as- 529
sumptions. By introducing dummy edges of infinite cost, we assume without loss of 530
generality that the tree T is binary and the root r is incident to exactly one edge 531
er. Hence every non-leaf edge e has exactly two child edges, e1 and e2. For any edge 532
e ∈ T , let Te denote the subtree of T rooted at e, that is, Te contains edge e and all its 533
descendants. 534

We define a recurrence for C[e, k] that denotes the minimum cost cut that separates 535
the root of Te from exactly k leaves in Te. Note that C[er, D] gives the optimal value. 536

For any leaf edge f set: 537

C[f, k] =
{ 0 if k = 0,

�(f) if k = 1, and
∞ otherwise.

For any non-leaf edge e with children e1 and e2 set: 538

C[e, k] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if k = 0;
min

k1+k2=k
{C[e1, k1] + C[e2, k2]} if 1 ≤ k < |L ∩ Te|;

min

{
�(e),
min

k1+k2=k
{C[e1, k1] + C[e2, k2]} if k = |L ∩ Te|;

∞ otherwise.

It can be checked directly that this recurrence computes the desired values in polyno- 539
mial time. 540

4.2. Rounding Algorithm for CST 541

In this section, we prove the following LP rounding result. 542

THEOREM 4.2. Let z be any feasible solution to LPCST. There is a randomized polyno- 543
mial time algorithm that returns a random tour P (on tree T) originating from r such 544
that 545

E[w(P)] ≤ 12(3 + log gmax)
∑

e

we · ze and Pr[|P ∩ g| < kg] < e−3 ∀g ∈ G.

Hence, for any g ∈ G, Pr[w(P) > 96(3 + log gmax)
∑

e we · ze or |P ∩ g| < kg] < 1
4 . 546

Before presenting the algorithm for this, we discuss the basic rounding scheme 547
from Konjevod et al. [2002] (which is an extension of Garg et al. [2000]) and some of its 548
useful properties. We call the rounding scheme ALG-KRS. 549

PROPOSITION 4.3 (KONJEVOD ET AL. [2002]). Each edge e is included in the final solution 550
of ALG-KRS with probability ze. 551

PROOF. We prove this by induction on the depth of edge e from r. The base case in- 552
volves edges incident to the root r, where this property is clearly true. For the inductive 553
step, assume that the parent edge pe(e) of e is included with probability zpe(e); then, by 554
the algorithm description, edge e is included with probability zpe(e) · ze

zpe(e)
= ze. 555

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13:16 S. Im et al.

ALGORITHM 3: The Rounding Procedure ALG-KRS
INPUT: Undirected tree T = (V, E) rooted at r; ze ∈ [0, 1], such that for all e ∈ E,
zpe(e) ≥ ze.

1: S ← ∅.
2: For each e ∈ E incident to the root r, add e to S with probability ze.
3: For each e ∈ E such that pe(e) ∈ S, add e to S with probability ze

zpe(e)
.

OUTPUT: The connected component (tree) S.

Definition 4.4 (KRS properties). Consider any z ∈ [0, 1]E, g ∈ G, R(g) ⊆ g, and556
0 ≤ rg ≤ |R(g)|. We say that (z, R(g), rg) satisfies the KRS properties if it satisfies the557
following:558

zpe(e) ≥ ze ∀e ∈ E, (9)

559
∑

j∈T (e)∩R(g)

zj ≤ rg · ze ∀e ∈ E, (10)

where T (e) is the subtree below (and including) edge e.560

The first property (Equation (9)) is the same as the constraints of Equation (7).561
The second property (Equation (10)) is a Lipschitz-type condition, which implies that,562
conditional on any edge e being chosen, its subtree T (e) can contribute at most rg to563
the requirement of R(g).564

LEMMA 4.5 (KONJEVOD ET AL. [2002]). Suppose that (z, R(g), rg) satisfies the KRS565
properties for all groups g. Let Lkrs denote the set of leaves that are covered by ALG-KRS566
with input {ze : e ∈ E}. Consider any constant δ ∈ [0, 1]. Then, for any g ∈ G,567

Pr[|Lkrs ∩ R(g)| ≤ (1 − δ)μg] ≤ exp
(

− δ2 · μg

2 + rg(1 + ln |R(g)|)
)
,

where μg := E[|Lkrs ∩ R(g)|] = ∑
j∈R(g) zj .568

PROOF. We only give a sketch of the proof, since this is implicit in Konjevod et al.569
[2002]. For any j, j ′ ∈ R(g), we say that j ∼ j ′ if and only if (1) j �= j ′ and (2) the least570
common ancestor lca(j, j ′) of j and j ′ is not r. Define571

�g :=
∑

j, j ′∈R(g): j∼ j ′,zlca(j, j′)>0

zj · zj ′

zlca(j, j ′)
.

In Theorem 3.2 in Konjevod et al. [2002], Konjevod et al. showed using the KRS572
properties that573

�g ≤ μg(rg − 1 + rg ln |R(g)|),
where μg = E[|Lkrs ∩ R(g)|] = ∑

j∈R(g) Pr[j ∈ Lkrs] = ∑
j∈R(g) zj by Proposition 4.3.574

We note that the proof of Theorem 3.2 implies this, although it is stated only for575
μg = rg. Further, they used this bound in Jansen’s inequality to obtain, for any δ ∈ [0, 1],576

Pr[|Lkrs ∩ R(g)| ≤ (1 − δ)μg] ≤ exp
(

− δ2μg

2 + �g/μg

)
.

Combining the above two inequalities yields the lemma.577

PROOF OF THEOREM 4.2. The rounding algorithm is given as Algorithm 4.578
The preprocessing of x to obtain x̃ (Line 3) is done as described in the next lemma.579

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

Minimum Latency Submodular Cover 13:17

ALGORITHM 4: Rounding Algorithm for Covering Steiner Tree.
INPUT: Tree T with edge lengths, root r, groups G, requirements {kg}g∈G , and solution
x ∈ LPCST.

1: E ← {e ∈ E | xe ≥ 1/2}, R(g) ← g\E and rg ← kg − |g ∩ E|.
2: Shrink all edges in E in T and let T̃ be the resulting tree with the edge set Ẽ := E\E.
3: Obtain solution x̃ from x using Lemma 4.6.
4: For each e ∈ Ẽ, ze ← 2x̃e; note that ze ∈ [0, 1].
5: S ← ∅.
6: repeat the following 6(3 + log gmax) times:
7: τ ← the tree produced by ALG-KRS with fractional solution z on tree T̃
8: Add τ to S
9: Combine all trees in S with E and take an Euler tour P of the resulting tree.

OUTPUT: Path P originating from r.

LEMMA 4.6. We can find in polynomial time x̃e ∈ [0, xe], ∀e ∈ E\E such that ∀g ∈ G: 580

(1) (x̃, R(g), rg) satisfies the KRS properties in tree T̃ . 581
(2)

∑
j∈R(g) x̃ j ≥ rg (coverage property). 582

PROOF. Consider constraints (8) of LPCST. Fix a group g ∈ G and let A := g ∩ E. 583
Consider tree T̃ as a flow network with each leaf edge f having capacity x f and each 584
non-leaf edge e having capacity rg · xe. The root r is the source and leaves R(g) = g\A 585
are the sinks. Then constraints (8) imply that the min cut separating r from R(g) has 586
value at least rg: Note that although these constraints are for the original tree T , they 587

imply similar constraints for T̃ since T̃ is obtained from T by edge contraction.4 Hence 588
there must exist a max-flow of volume at least rg from r to R(g) in the above network. 589
Let x̃ f denote the volume of this flow into each leaf edge f ∈ R(g); clearly, we have that 590
x̃ f ≤ x f (due to capacity on leaves) and 591∑

j∈R(g)

x̃ j ≥ rg. (11)

Moreover, by the capacities on non-leaves, 592∑
j∈T (e)∩R(g)

x̃ j ≤ rg · xe, ∀e ∈ E\E. (12)

We can use the above procedure on each group g ∈ G separately to compute x̃ f for 593

all leaf edges f ∈ E\E; this is well defined since groups are disjoint. For each non-leaf 594

edge e ∈ E\E set x̃e := xe. Thus we have 0 ≤ x̃e ≤ xe for all e ∈ E\E. Observe that this 595
computation can easily be done in polynomial time. 596

Now, Equation (12) implies the second KRS property (10). Property (9) follows, since 597

for each e ∈ E\E, we have x̃pe(e) = xpe(e) ≥ xe ≥ x̃e; the first inequality is due to 598
constraint (7) of LPCST. Finally, Equation (11) implies the coverage property claimed 599
in the lemma. 600

Consider any group g ∈ G. Since all edges in E are included in P with probability 601
1, group g is covered by P if and only if at least rg vertices in its residual set R(g) are 602
covered by the union of trees τ in Line (7) of Algorithm 4. This motivates us to derive 603
the following. 604

4In particular, every cut B′ separating r from g\A in T̃ is also a cut separating r from g\A in T .

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13:18 S. Im et al.

LEMMA 4.7. For any g ∈ G,605

Pr[|τ ∩ R(g)| < rg] ≤ exp
(

− 1
2(3 + ln gmax)

)
.

PROOF. From Lemma 4.6 it follows that (x̃, R(g), rg) satisfies the KRS properties on606

tree T̃ . Since z = 2 · x̃, (z, R(g), rg) also satisfies the KRS properties. Furthermore, using607
the coverage property in Lemma 4.6,608

μg := E[|τ ∩ R(g)|] =
∑

j∈R(g)

zj = 2 ·
∑

j∈R(g)

x̃ j ≥ 2rg.

Here we also used Proposition 4.3 that Pr[j ∈ τ] = zj . By applying Lemma 4.5 with609
δ = 1/2, we have610

Pr[|τ ∩ R(g)| < rg] ≤ exp
(

− rg

2(2 + rg(1 + ln |R(g)|))
)

≤ exp
(

− 1
2(3 + ln gmax)

)
.

This proves Lemma 4.7.611

CLAIM 4.8. The expected length E[w(P)] ≤ 12(3 + log gmax)
∑

e we · xe.612

PROOF. Consider the tree τ in any iteration of Line (7) of Algorithm 4. By Proposi-613
tion 4.3, we know that each edge e ∈ Ẽ is included in τ with probability ze = 2x̃e ≤ 2xe.614

Since for all e ∈ E, xe ≥ 1/2, the expected total weight of the edges in E and τ is upper615
bounded by616 ∑

e∈E

we +
∑
e∈Ẽ

we · 2x̃ ≤ 2
∑
e∈E

we · xe.

Since P contains 6(3 + log gmax) independent “copies” of tree τ , the claim follows.617

CLAIM 4.9. Consider any group g ∈ G. The probability that P does not cover g is618
Pr[|P ∩ g| < kg] < e−3.619

PROOF. Since P contains 6(3 + log gmax) independent samples of trees τ from Line (7)620
of Algorithm 4, by Lemma 4.7 it follows that group g is not covered by P with probability621
at most 1/e3.622

The first part of Theorem 4.2 now follows from Claims 4.8 and 4.9. The second part623
then follows using Markov’s inequality and a union bound.624

4.3. LP Relaxation for LCST625

We formulate the following linear relaxation for tree instances of the Latency Covering626
Steiner Tree,627

min
1
2

·
∑
�≥0

2�
∑
g∈G

(1 − y�
g) (LPLCST)

s.t. x�
pe(e) ≥ x�

e ∀� ≥ 0, e ∈ E, (13)∑
j∈E

wex�
e ≤ 2� ∀� ≥ 0, (14)

(kg − |A|)
∑

j∈B\L

x�
j +

∑
j∈B∩L\A

x�
j ≥ (kg − |A|) · y�

g ∀� ≥ 0, g ∈ G, A ⊆ g, B ∈ cut(r, g\A),

(15)

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

Minimum Latency Submodular Cover 13:19

628y�+1
g ≥ y�

g ∀� ≥ 0, g ∈ G (16)

x�
e ∈ [0, 1] ∀� ≥ 0, e ∈ E

y�
g ∈ [0, 1] ∀� ≥ 0, g ∈ G,

To see that this is a valid relaxation, let OPT denote the optimal path. For any � ≥ 0, 629
let OPT(2�) denote the prefix of length 2� in OPT. We construct a feasible integral 630
solution to LPLCST as follows. The variable x�

e indicates if edge e lies in OPT(2�). The 631
indicator variable y�

g has value 1 if and only if group g is covered by OPT(2�), that is, at 632

least kg vertices of g are contained in OPT(2�). Constraints (13) follow from the fact that 633

OPT(2�) is a path starting at r. Constraints (14) say that the edges in OPT(2�) have a 634
total weight of at most 2�, which is clearly true. Note that for each � ≥ 0, there is a set 635
of constraints (15) that is similar to the constraints (8) in LPCST; the validity of these 636
constraints (15) can be shown exactly as for (8). Constraints (16) enforce the fact that 637
if group g is covered by OPT(2�), then it must be covered by OPT(2�+1) as well, which 638
is trivially true. Now consider the objective value: The total contribution of a group g 639

that is covered by OPT at some time t ∈ (2k, 2k+1] is 1
2 ·∑k

�=0 2� ≤ 2k. Thus the objective 640
value of this integral solution is at most OPT. 641

We can ensure by standard scaling arguments, at the loss of a 1 + o(1) factor in the 642
objective, that all distances are polynomially bounded. This implies that the length of 643
any optimal path is also polynomial, and so it suffices to consider O(log n) many values 644
of �. Thus, the number of variables in LPLCST is polynomial. Note that constraints (15) 645
are exponentially many. However, for each fixed � and g, we can use the same separation 646
oracle that we used for the constraints (8) of LPCST. 647

4.4. Rounding Algorithm for LCST 648

We are now ready to present our algorithm to round LPLCST, described formally as 649
ALG-LCST below. Let (x, y) denote a fixed optimal solution to LPLCST. The algorithm 650
proceeds in phases � = 0, 1, 2, · · · where the �th phase rounding uses variables with 651
superscript � in LPLCST. 652

ALGORITHM 5: Rounding Algorithm for Latency Covering Steiner Tree (ALG-LCST).
INPUT: Tree T with edge lengths, root r, groups G, and requirements {kg}g∈G .

1: π ← ∅.
2: Let (x, y) be an optimal solution to LPLCST.
3: for � = 0, 1, 2, . . . do
4: Run Algorithm 4 on solution x� := min{2x�, 1} to obtain tour P� originating

from r.
5: if P� has weight at most 192(3 + log gmax) · 2� then
6: π ← π · P�.
7: end for

OUTPUT: Path π originating from r.

We now prove that Algorithm 5 achieves an O(log gmax) approximation for LCST 653
on tree instances. Using probabilistic tree embedding [Fakcharoenphol et al. 2004], it 654
would follow that it yields an O(log gmax · log |V |) approximation for general metrics, 655
thereby proving Theorem 1.2. 656

For any group g ∈ G, define �(g) to be the smallest � ≥ 0 such that y�
g ≥ 1

2 . By 657

constraints (16), for any � ≥ �(g), we have y�
g ≥ 1

2 . Hence, solution x� in line 4 is feasible 658

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13:20 S. Im et al.

to LPLCST restricted to the groups {g ∈ G : �(g) ≤ �}. Applying Theorem 4.2 to solution659
x� ≤ 2x� we obtain (using

∑
e we · x�

e ≤ 2�)660

PROPOSITION 4.10. For any g ∈ G and � ≥ �(g),661

Pr
[
w(P�) > 192(3 + log gmax) · 2� or |P� ∩ g| < kg

]
<

1
4

.

Fix any group g ∈ G, and � ≥ �(g). Among P�(g), P�(g)+1, . . . , P�, consider the paths662
that are added to π . Clearly, the total weight of such paths is at most O(log gmax · 2�).663
By Proposition 4.10, the probability that none of these paths covers g is at most 1

4�−�(g)+1 .664

Hence the expected cover time of g is at most665 ∑
�≥�(g)

O(log gmax) · 2� · 1
4�−�(g)+1

= O(log gmax) · 2�(g).

So the expected total cover time is at most O(log gmax) · ∑
g∈G 2�(g).666

By definition of �(g) we know667

OPT ≥ 1
2

·
∑
�≥0

2�
∑
g∈G

(1 − y�
g) ≥ 1

2

∑
g∈G

2�(g)−1(1 − y�(g)−1
g

) ≥ 1
8

·
∑
g∈G

2�(g).

It follows that Algorithm 5 achieves an O(log gmax) approximation for LCST on tree668
instances, as desired.669

5. WEIGHTED STOCHASTIC SUBMODULAR RANKING670

In this section, we study the WSSR. The input consists of a set A = {X1, . . . , Xn} of n671
independent random variables (stochastic elements), each over domain �, with integer672
lengths {� j}n

j=1 (deterministic) and mmonotone submodular functions f1, . . . , fm : 2� →673

[0, 1] on ground set �. We are also given the distribution (over �) of each stochastic674
element {Xj}n

j=1. (We assume explicit probability distributions, that is, for each Xj and675

b ∈ � we are given Pr[Xj = b].) The realization xj ∈ � of the random variable Xj676
is known immediately after scheduling it. Here, Xj requires � j units of time to be677
scheduled; if Xj is started at time t, then it completes at time t + � j at which point its678
realization xj ∈ � is also known. A feasible solution/policy is an adaptive ordering of A,679
represented naturally by a decision tree with branches corresponding to the realization680
of the stochastic elements. We use 〈π (1), . . . , π (n)〉 to denote this ordering, where each681
π (k) is a random variable denoting the index of the kth scheduled element.682

The cover time cov(fi) of any function fi is defined as the earliest time t such that683
fi has value one for the realization of the elements that are completely scheduled684
within time t. More formally, cov(fi) is the earliest time t such that fi({xπ(1), . . . , xπ(kt)})685
is equal to 1 where kt is the maximum index such that �π(1) + �π(2) + . . . + �π(kt) ≤ t.686
If the function value never reaches 1 (due to the stochastic nature of elements), then687
cov(fi) = �1 + �2 + . . . + �n, which is the maximum time of any schedule. Note that the688
cover time is a random variable since the order π is random. The goal is to find a policy689
that (approximately) minimizes the expected total cover time E[

∑
i∈[m] cov(fi)].690

5.1. Applications691

Our stochastic extension of submodular ranking captures many interesting692
applications.693

Stochastic Set Cover. We are given as input a ground set � and a collection S ⊆ 2�694
of deterministic subsets. There are stochastic elements {Xj : j ∈ [n]}, each associated695

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

Minimum Latency Submodular Cover 13:21

with a probability distribution over � and having respective costs {� j : j ∈ [n]}. The 696
goal is to find an adaptive policy that hits all sets in S at the minimum expected cost. 697
This problem was studied in Goemans and Vondrák [2006], Munagala et al. [2007], 698
and Liu et al. [2008]. The problem can be shown to be an instance of WSSR with a 699
single monotone submodular function f1(A) := 1

|S|
∑

S∈S min{1, |A∩ S|} and parameter 700

ε = 1/|S|. 701

Shared Filter Evaluation. This problem was introduced by Munagala et al. [2007], 702
and the result was improved to an essentially optimal solution in Liu et al. [2008]. 703
In this problem, there is a collection of independent “filters” X1, X2, . . . , Xn, each of 704
which gets evaluated either to True or False. For each filter j ∈ [n], we are given 705
the “selectivity” pj = Pr[Xi is true] and the cost � j of running the filter. We are also 706
given a collection Q of queries, where each query Qi is a conjunction of a subset of 707
filters. We would like to determine each query in Q to be True or False by (adaptively) 708
testing filters of the minimum expected cost. In order to cast this problem as WSSR, 709
we use � = ⋃n

j=1{True j, False j}; for each j ∈ [n], Xj = True j with probability pj , and 710

Xj = False j with the remaining probability 1− pj . We create one monotone submodular 711
function: 712

f1(A) :=

∑
Qi∈Q

min
{

1, |A∩ {False j : j ∈ Qi}| + 1
|Qi| · |A∩ {True j : j ∈ Qi}|

}

|Q| .

(Note that a query Qi gets evaluated to False if any one of its filters is False and True 713
if all its filters are True.) Here the parameter ε = 1/(|Q| maxi |Qi|). 714

We note that the Shared Filter Evaluation problem also can be studied for a latency 715
type of objective. In this case, for each query Qi ∈ Q, we create a separate submodular 716
function: 717

fi(A) := min
{

1, |A∩ {False j : j ∈ Qi}| + 1
|Qi| · |A∩ {True j : j ∈ Qi}|

}
.

In this case, the WSSR problem corresponds precisely to filter evaluation that mini- 718
mizes the average time to answer queries in Q. The parameter ε = 1/(maxi |Qi|). 719

Stochastic Generalized Min-Sum Set Cover. We are given as input a ground set � 720
and a collection S ⊆ 2� of deterministic subsets with requirement k(S) for each S ∈ S. 721
There are stochastic elements {Xj : j ∈ [n]}, each defined over �. Set S ∈ S is said to 722
be completed when at least k(S) elements from S have been scheduled. The goal is to 723
find an adaptive ordering of [n] to minimize the expected total completion time. This 724
can be reduced to WSSR by defining function f S(A) := min{1, |A ∩ S|/k(S)} for each 725
S ∈ S; here ε = 1/kmax, where kmax denotes the maximum requirement. 726

For this problem, our result implies an O(log kmax) approximation to adaptive policies. 727
However, for non-adaptive policies (where the ordering of elements is fixed a priori), 728
one can obtain a better O(1)-approximation algorithm by combining the Sample Av- 729
erage Approximation method [Kleywegt et al. 2002; Charikar et al. 2005] with O(1) 730
approximations known for the non-stochastic version [Bansal et al. 2010; Skutella and 731
Williamson 2011]. 732

We also note that the analysis in Azar and Gamzu [2011] for deterministic submod- 733
ular ranking was only for elements having unit sizes. Our analysis also holds under 734
non-uniform sizes. 735

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13:22 S. Im et al.

5.2. Algorithm and Analysis736

We consider adaptive policies: This chooses at each time �π(1) + �π(2) + . . . + �π(k−1) the737
element738

Xπ(k) ∈ A\{Xπ(1), Xπ(2), Xπ(3), . . . , Xπ(k−1)},
after observing the realizations xπ(1), . . . , xπ(k−1). So it can be described as a decision tree.739

Our main result is an O(log 1
ε
)-approximate adaptive policy, which proves Theorem 1.3.740

This result is again inspired by our simpler analysis of the algorithm from Azar and741
Gamzu [2011].742

To formally describe our algorithm, we quickly define the probability spaces we are743
concerned with. We use 	 = �n to denote the outcome space of A. We use the same744
notation 	 to denote the probability space induced by this outcome space. For any745
S ⊆ A and its realization s, let 	(s) denote the outcome subspace that conforms to s.746
We can naturally define the probability space defined by 	(s) as follows: The probability747
that w ∈ 	(s) occurs is Pr	[w]/ Pr	[(s)]; we also use 	(s) to denote this probability748
space.749

The main algorithm is given below and is a natural extension of the deterministic750
algorithm [Azar and Gamzu 2011]. Let α := 1 + ln(1

ε
). In the output, π (k) denotes the751

kth element in A that is scheduled.752

ALGORITHM 6: Algorithm for Stochastic Submodular Cover (ALG-AG-STO).
1: INPUT: A = {X1, . . . , Xn} with {�1, . . . , �n}; fi : 2� → [0, 1], i ∈ [m].
2: S ← ∅. (S are the elements completely scheduled so far, and s their instantiation.)
3: while there exists function fi with fi(s) < 1 do
4: Choose element Xe as follows,

Xe = arg max
Xe∈A\S

E 	(s)

[∑
i∈[m], fi (s)<1

fi (s∪{Xe})− fi (s)
1− fi (s)

]
�e

5: S ← S
⋃{Xe}.

6: π (|S|) ← Xe. Schedule Xe and observe its realization.
7: end while
8: OUTPUT: An adaptive ordering π of A.

Observe that taking expectation over 	(s) in Step 4 is the same as expectation over753
the distribution of Xe since Xe �∈ S and the elements are independent. This value can754
be computed exactly since we have an explicit probability distribution of Xe. Also note755
that this algorithm implicitly defines a decision tree. We will show that ALG-AG-STO756
is an O(ln(1

ε
))-approximation algorithm for WSSR.757

To simplify notation, without loss of generality, we assume that α is an integer. Let758
R(t) denote the (random) set of functions that are not satisfied by ALG-AG-STO before759
time t. Note that the set R(t) includes the functions that are satisfied exactly at time t.760
Analogously, the set R∗(t) is defined for the optimal policy. For notational convenience,761
we use i ∈ R(t) interchangeably with fi ∈ R(t). Let C(t) := { f1, . . . , fm}\R(t) and762
C∗(t) := { f1, . . . , fm}\R∗(t). Note that all the sets C(·), C∗(·), R(·), and R∗(·) are stochastic.763
We have that ALG = ∑

t∈[n] |R(t)| and OPT = ∑
t∈[n] |R∗(t)| and hence ALG and OPT are764

stochastic quantities. We show that E[ALG] = O(α) · E[OPT], which suffices to prove765
the desired approximation ratio.766

We are interested in the number of unsatisfied functions at times {8α2 j : j ∈ Z+}767
by ALG-AG-STO and the number of unsatisfied functions at times {2 j : j ∈ Z+} by768

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

Minimum Latency Submodular Cover 13:23

the optimal policy. Let Rj := R(8α2 j) and R∗
j = R∗(2 j). It is important to note that 769

Rj and R∗
j are concerned with different times, and they are stochastic. For notational 770

simplicity, we let R−1 := ∅. 771
We show the following key lemma. Once we prove this lemma, we can complete the 772

proof similar to the proof of Theorem 2.1 via Lemma 2.2. 773

LEMMA 5.1. For any j ≥ 0, we have E[|Rj |] ≤ 1
4E[|Rj−1|] + E[|R∗

j |]. 774

PROOF. The lemma trivially holds for j = 0, so we consider any j ≥ 1. For any t ≥ 1, 775
we use st−1 to denote the set of elements completely scheduled by ALG-AG-STO by time 776
t−1 along with their instantiations; clearly this is a random variable. Also, for t ≥ 1 let 777
σ (t) ∈ [n] denote the (random) index of the element being scheduled by ALG-AG-STO 778
during time slot (t−1, t]. Since elements have different sizes, note that σ (t) differs from 779
π (t), which is the tth element scheduled by ALG-AG-STO. Observe that st−1 determines 780
σ (t) precisely but not the instantiation of Xσ (t). 781

Let E∗
j ⊆ A be the (stochastic) set of elements that are completely scheduled by 782

the optimal policy within time 2 j . For any stochastic set (or element) S, we denote its 783
realization under an outcome w as S(w). For example, Xi(w) ∈ � is the realization of 784
element Xi for outcome w; and E∗

j (w) is the set of elements completely scheduled by 785

time 2 j in OPT (under w) along with their realizations. 786
For any time t and corresponding outcome st−1, define a set function: 787

f st−1 (D) :=
∑

i∈[m], fi (st−1)<1

fi(st−1 ∪ D) − fi(st−1)
1 − fi(st−1)

, ∀D ⊆ �.

We also use f st−1
i (D) to denote the term inside the above summation. 788

The function f st−1 : 2� → R+ is monotone and submodular since it is a summation of 789
monotone and submodular functions. We also define 790

Fst−1 (Xe) := E w←	(st−1)
[

f st−1 (Xe(w))
]
, ∀Xe ∈ A. (17)

Observe that this is zero for elements Xe ∈ st−1. 791

PROPOSITION 5.2. Consider any time t and outcome st−1. Note that st−1 determines σ (t). 792
Then: 793

1
�σ (t)

· Fst−1 (Xσ (t)) ≥ 1
�i

· Fst−1 (Xi), ∀Xi ∈ A.

PROOF. At some time t′ ≤ t − 1 (right after st−1 is observed) ALG-AG-STO chose to 794
schedule element Xσ (t) over all elements Xi ∈ A\st−1. By the greedy rule, we know that 795
the claimed inequality holds for any Xi ∈ A\st−1. Furthermore, the inequality holds for 796
any element Xi ∈ st−1, since here Fst−1 (Xi) = 0. 797

We now define the expected gain by ALG-AG-STO in step t as 798

Gt := Est−1

[
1

�σ (t)
Fst−1 (Xσ (t))

]
(18)

and the expected total gain as 799

� j :=
8α2 j∑

t=8α2 j−1

Gt. (19)

We complete the proof of Lemma 5.1 by upper and lower bounding � j . 800

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13:24 S. Im et al.

Upper Bound for � j . Fix any outcome w ∈ 	. Below, all variables are conditioned801
on w, and hence they are all deterministic. (For ease of notation, we do not write w in802
front of the variables.)803

� j :=
8α2 j∑

t=8α2 j−1

1
�σ (t)

f st−1 (xσ (t)) =
8α2 j∑

t=8α2 j−1

1
�σ (t)

∑
i∈[m]: fi (st−1)<1

f st−1
i (xσ (t))

≤
8α2 j∑

t=8α2 j−1

1
�σ (t)

∑
i∈Rj−1

f st−1
i (xσ (t)) ≤

∑
t≥1

1
�σ (t)

∑
i∈Rj−1

f st−1
i (xσ (t))

=
∑

i∈Rj−1

n∑
k=1

fi(Tk) − fi(Tk−1)
1 − fi(Tk−1)

.

The first inequality uses the fact that any i �∈ Rj−1 has fi already covered before time804

8α 2 j−1, and so it never contributes to � j . In the last expression, Tk := {xπ(1), . . . , xπ(k)} ⊆805
�, the first k instantiations seen under w. The equality uses the fact that for each806 ∑k−1

j=1 �π(j) < t ≤ ∑k
j=1 �π(j) we have st−1 = Tk−1 and σ (t) = π (k). Finally, by Claim 2.4,807

the contribution of each function fi ∈ Rj−1 is at most α := 1 + ln 1
ε
. Thus, we obtain808

� j(w) ≤ α|Rj−1(w)|, and taking expectations,809

� j ≤ αE[|Rj−1|]. (20)

Lower Bound for � j . Consider any 8α2 j−1 ≤ t ≤ 8α2 j . We lower bound Gt. Condition810

on st−1; this determines σ (t) (but not xσ (t)). Note that
∑n

i=1 �i · Pr[Xi ∈ E∗
j |st−1] ≤ 2 j by811

definition of E∗
j being the elements that are completely scheduled by time 2 j in OPT.812

Hence, we have813 ∑
Xi∈A

�i

2 j · Pr[Xi ∈ E∗
j |st−1] ≤ 1.

By applying Proposition 5.2 with the convex multipliers (over i) given above,814

1
�σ (t)

Fst−1 (Xσ (t)) ≥
∑
Xi∈A

�i

2 j Pr[Xi ∈ E∗
j |st−1] · 1

�i
Fst−1 (Xi)

= 1
2 j

∑
Xi∈A

Pr[Xi ∈ E∗
j |st−1]

∑
xi∈�

Pr[Xi = xi|st−1] · f st−1 (xi)

= 1
2 j

∑
Xi∈A\st−1

Pr[Xi ∈ E∗
j |st−1]

∑
xi∈�

Pr[Xi = xi|st−1] · f st−1 (xi)

= 1
2 j

∑
Xi∈A\st−1

∑
xi∈�

Pr[Xi ∈ E∗
j ∧ Xi = xi|st−1] · f st−1 (xi)

815
= 1

2 j

∑
w∈	(st−1)

Pr[w|st−1]
∑

Xi∈E∗
j (w)\st−1

f st−1 (Xi(w))

= 1
2 j

∑
w∈	(st−1)

Pr[w|st−1]
∑

Xi∈E∗
j (w)

f st−1 (Xi(w)). (21)

The first equality is by definition of Fst−1 (·) from Equation (17). The second equality816
uses the fact that for any Xi ∈ st−1 and xi ∈ �, either Pr[Xi = xi|st−1] = 0 (if817

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

Minimum Latency Submodular Cover 13:25

Xi|st−1 �= xi) or f st−1 (xi) = 0 (if Xi|st−1 = xi). The third equality holds since the optimal 818
policy must decide whether to schedule Xi (by time 2 j) without knowing the realization 819
of Xi. The last equality uses f st−1 (Xi) = 0 for all Xi ∈ st−1. Now for each w ∈ 	(st−1), 820
due to submodularity of the function f st−1 (·), we get 821

∑
Xi∈E∗

j (w)

f st−1 (Xi(w)) ≥ f st−1 (E∗
j (w)) =

∑
i∈[m], fi (st−1)<1

fi(E∗
j (w) ∪ st−1) − fi(st−1)

1 − fi(st−1)

≥ |C∗
j (w)| − |C(t, w)|. (22)

Recall that E∗
j (w) denotes the set of elements scheduled by time 2 j in OPT (condi- 822

tional on w), as well as the realizations of these elements. The equality comes from the 823
definition of f st−1 . The last inequality holds because C(t, w) = {i ∈ [m] : fi(st−1) = 1} 824
and set E∗

j (w) covers functions C∗
j (w). Combining (21) and (22) gives 825

1
�σ (t)

Fst−1 (Xσ (t)) ≥
(
E

[|C∗
j | | st−1

] − E
[|C(t)| | st−1

])
2 j .

By deconditioning the above inequality (taking expectation over st−1) and using Equa- 826
tion (18), we derive: 827

Gt ≥ 1
2 j · (

E[|C∗
j |] − E[|C(t)|]) ≥ 1

2 j · (
E[|C∗

j |] − E[|Cj |]
)
,

where the last inequality uses E[C(t)] is non-decreasing and t ≤ 8α2 j . 828
Now summing over all t ∈ [8α2 j−1, 8α2 j) yields: 829

� j =
8α2 j∑

t=8α2 j−1

Gt ≥ 4α
(
E[|C∗

j |] − E[|Cj |]
) = 4α

(
E[|Rj |] − E[|R∗

j |]
)
. (23)

Combining Equations (23) and (20), we obtain: 830

4α(E[|Rj |] − E[|R∗
j |]) ≤ αE[|Rj−1|],

which simplifies to the desired inequality in Lemma 5.1. 831

Using exactly the same calculations as in the proof of Theorem 2.1 from Lemma 2.2, 832
Lemma 5.1 implies an O(α)-approximation ratio for ALG-AG-STO. This completes the 833
proof of Theorem 1.3. 834

6. CONCLUSION 835

In this article we considered the minimum latency submodular cover problem in gen- 836
eral metrics, which is a common generalization of many well-studied problems. We also 837
studied the stochastic Submodular Ranking problem, which generalizes a number of 838
stochastic optimization problems. Both results were based on a new analysis of the 839
algorithm for Submodular Ranking [Azar and Gamzu 2011]. Our result for stochastic 840

Submodular Ranking is tight, and any significant improvement (more than a logδ |V | 841
factor) of the result for minimum latency submodular cover would also improve the 842
approximation ratio for the Group Steiner Tree, which is a long-standing open prob- 843
lem. An interesting open question is to obtain a poly-logarithmic approximation for 844
stochastic minimum latency submodular cover (on general metrics), for which the 845
main difficulty lies in designing an algorithm for a stochastic version of submodular 846
orienteering. 847

848

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13:26 S. Im et al.

APPENDIX849

A. PROOF OF THEOREM 3.1850

In this section, we discuss how Theorem 3.1 follows from Calinescu and Zelikovsky851
[2005]. The Polymatroid Steiner Tree problem (PST) considered in Calinescu and852
Zelikovsky [2005] is a variant of SOP where, given metric (V, d) and monotone853
integer-valued submodular function f : 2V → R+, the goal is to find a minimum854
length tree that spans a “base” of the polymatroid associated with f . Recall that a855
subset S ⊆ V is said to be a base of the polymatroid of f if f (S) = f (V). Theorem 3856
in Calinescu and Zelikovsky [2005] provides an O((log |V |)2+δ · log f (V))-approximation857
algorithm for PST, where δ > 0 is any constant. The main difference from SOP is858
that one wants to cover the submodular function rather than maximizing the function859
value given a length bound. The other differences are very minor: finding a tree rather860
than a path, restricting to integer-valued f , and having no specified root vertex.861
The relation between PST and SOP is similar to that between the set-cover and862
maximum-coverage problems: This is why the approximation ratio in Theorem 3.1 is863
better by a log-factor compared to Theorem 3 in Calinescu and Zelikovsky [2005].864

The algorithm in Calinescu and Zelikovsky [2005] initially transforms the metric865

into a rooted tree with some additional properties at the loss of an O(log1+δ |V |) ap-866
proximation factor. The transformation allows the root to be specified arbitrarily. Then,867
“cost-efficient” trees are recursively found and concatenated until a certain condition is868
satisfied—the only change we need to make is when to stop. Let T1, T2, . . . be the trees869
in the order they are found. Let Si be the set of vertices that are covered by T1, . . . , Ti;870
for simplicity, let S0 = ∅. Lemma 4 in Section 3 of Calinescu and Zelikovsky [2005]871
states that the discovered trees have the following property:872

c(Ti)
f Si−1 (Si)

≤ O(log |V |) · c(T ∗)
f Si−1 (S∗)

for an arbitrary fixed tree T ∗ with S∗ being the vertices that T ∗ spans and any monotone873
submodular function f . We remind the reader that f S(X) = f (X ∪ S) − f (S), and c(T)874
denotes the metric length of tree T . Set T ∗ to a fixed optimal solution of the SOP875
instance: It has length c(T ∗) ≤ B and g(S∗) = OPT, where g is the input function to876
SOP. We assume, without loss of generality, that we know the value of OPT within877
an arbitrary small constant factor (via a simple binary search). We set f (the input878
function to PST) to be f (S) := min{g(S), OPT} for all S ⊆ V ; clearly, f is also monotone879
submodular.880

Let i∗ be the first i such that f (Si) ≥ f (S∗)/2. Note that f (Si∗−1) < f (S∗)/2; so, for881
any i ≤ i∗, we have f Si−1 (S∗) ≥ f (S∗) − f (Si−1) ≥ f (S∗) − f (Si∗−1) > f (S∗)/2. Then, it882
follows that883

i∗∑
i=1

c(Ti) ≤ O(log |V |)
i∗∑

i=1

f Si−1 (Si) · c(T ∗)
f Si−1 (S∗)

≤ O(log |V |)
i∗∑

i=1

f Si−1 (Si) · 2
c(T ∗)
f (S∗)

= O(log |V |) · f (Si∗) · 2
c(T ∗)
f (S∗)

≤ O(log |V |) · c(T ∗).

The last inequality uses the fact that f (Si∗) ≤ OPT by definition of f .884

Further, it is easy to see that one can obtain a tour with length at most 2
∑i∗

i=1 c(Ti) by885
concatenating trees T1, . . . , Ti∗ and doubling edges. Finally, recall that we capped the886
function f at OPT. The final solution quality can only be improved when the capping is887

removed. Hence we obtained a tour of length O(log2+ε |V |) · B that achieves a g-function888
value of at least OPT/2, proving Theorem 3.1.889

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

Minimum Latency Submodular Cover 13:27

ACKNOWLEDGMENTS 890

We thank an anonymous Transactions on Algorithms reviewer for helpful comments on improving the 891
presentation of Section 4. 892

REFERENCES 893

Y. Azar and I. Gamzu. 2011. Ranking with submodular valuations. In 22nd Annual ACM-SIAM Symposium 894
on Discrete Algorithms (SODA). 1070–1079. 895

Y. Azar, I. Gamzu, and X. Yin. 2009. Multiple intents re-ranking. In 41st Annual ACM Symposium on Theory 896
of Computing (STOC). 669–678. 897

N. Bansal, A. Gupta, and R. Krishnaswamy. 2010. A constant factor approximation algorithm for generalized 898
min-sum set cover. In 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1539–1545. 899

A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. 1998. On chromatic sums and 900
distributed resource allocation. Inform. Comput. 140, 2 (1998), 183–202. 901

A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. 2010. Detecting high log-densities: 902
An n1/4 approximation for densest k-subgraph. In 42nd ACM Symposium on Theory of Computing 903
(STOC). 201–210. 904

G. Calinescu and A. Zelikovsky. 2005. The polymatroid Steiner problems. J. Combin. Optimiz. 9, 3 (2005), 905
281–294. 906

R. D. Carr, L. Fleischer, V. J. Leung, and C. A. Phillips. 2000. Strengthening integrality gaps for capacitated 907
network design and covering problems. In 11th Annual ACM-SIAM Symposium on Discrete Algorithms 908
(SODA). 106–115. 909

D. Chakrabarty and C. Swamy. 2011. Facility location with client latencies: Linear programming based 910
techniques for minimum latency problems. In 15th International Conference on Integer Programming 911
and Combinatoral Optimization (IPCO). 92–103. 912

M. Charikar, C. Chekuri, and M. Pál. 2005. Sampling bounds for stochastic optimization. In 9th International 913
Workshop on Randomization and Computation (RANDOM). 257–269. 914

K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. 2003. Paths, trees, and minimum latency tours. In 44th 915
Symposium on Foundations of Computer Science (FOCS). 36–45. 916

C. Chekuri, G. Even, and G. Kortsarz. 2006. A greedy approximation algorithm for the group Steiner problem. 917
Discr. Appl. Math. 154, 1 (2006), 15–34. 918

C. Chekuri and M. Pál. 2005. A recursive greedy algorithm for walks in directed graphs. In 46th Annual 919
IEEE Symposium on Foundations of Computer Science (FOCS). 245–253. 920

J. Fakcharoenphol, C. Harrelson, and S. Rao. 2007. The k-traveling repairmen problem. ACM Trans. Algor. 921
3, 4 (2007). 922

J. Fakcharoenphol, S. Rao, and K. Talwar. 2004. A tight bound on approximating arbitrary metrics by tree 923
metrics. J. Comput. Syst. Sci. 69, 3 (2004), 485–497. 924

U. Feige, L. Lovász, and P. Tetali. 2004. Approximating min sum set cover. Algorithmica 40, 4 (2004), 219–234. 925
N. Garg, G. Konjevod, and R. Ravi. 2000. A polylogarithmic approximation algorithm for the group Steiner 926

tree problem. J. Algor. 37, 1 (2000), 66–84. 927
M. X. Goemans and J. Vondrák. 2006. Stochastic covering and adaptivity. In 7th Latin American Symposium 928

on Theoretical Informatics (LATIN). 532–543. 929
D. Golovin and A. Krause. 2010. Adaptive submodularity: A new approach to active learning and stochastic 930

optimization. In 23rd Conference on Learning Theory (COLT). 333–345. 931
A. Guillory and J. A. Bilmes. 2011. Online submodular set cover, ranking, and repeated active learning. In 932

25th Annual Conference on Neural Information Processing Systems (NIPS). 333–345. 933
A. Gupta, V. Nagarajan, and R. Ravi. 2010. Approximation algorithms for optimal decision trees and adaptive 934

TSP problems. In 37th International Colloquium on Automata, Languages and Programming (ICALP). 935
690–701. 936

A. Gupta and A. Srinivasan. 2006. An improved approximation ratio for the covering Steiner problem. Theor. 937
Comput. 2, 1 (2006), 53–64. 938

E. Halperin and R. Krauthgamer. 2003. Polylogarithmic inapproximability. In 35th Annual ACM Symposium 939
on Theory of Computing (STOC). 585–594. 940

A. J. Kleywegt, A. Shapiro, and T. Homem de Mello. 2002. The sample average approximation method for 941
stochastic discrete optimization. SIAM J. Optimiz. 12, 2 (2002), 479–502. 942

G. Konjevod, R. Ravi, and A. Srinivasan. 2002. Approximation algorithms for the covering Steiner problem. 943
Rand. Struct. Algor. 20, 3 (2002), 465–482. 944

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

13:28 S. Im et al.

Z. Liu, S. Parthasarathy, A. Ranganathan, and H. Yang. 2008. Near-optimal algorithms for shared filter945
evaluation in data stream systems. In ACM SIGMOD International Conference on Management of Data946
(SIGMOD). 133–146.947

K. Munagala, U. Srivastava, and J. Widom. 2007. Optimization of continuous queries with shared expensive948
filters. In 27th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS).949
215–224.950

V. Nagarajan. 2009. Approximation Algorithms for Sequencing Problems. Ph.D. Dissertation. Tepper School951
of Business, Carnegie Mellon University.952

A. Schrijver. 2003. Combinatorial Optimization: Polyhedra and Efficiency. Springer-Verlag, Berlin.953
M. Skutella and D. P. Williamson. 2011. A note on the generalized min-sum set cover problem. Operat. Res.954

Lett. 39, 6 (2011), 433–436.955
L. A. Wolsey. 1982. An analysis of the greedy algorithm for the submodular set covering problem. Combina-956

torica 2, 4 (1982), 385–393.957

Received February 2013; revised June 2015; accepted August 2016

ACM Transactions on Algorithms, Vol. 13, No. 1, Article 13, Publication date: November 2016.

TALG1301-13 ACM-TRANSACTION November 3, 2016 14:21

QUERIES

Q1: AU: Please spell out TSP; please spell out KRS at first occurrence in text.
Q2: AU: Please provide full mailing and email addresses for all authors.

