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A covering integer program (CIP) is a mathematical program of the form:

min{c>x | Ax ≥ 1, 0 ≤ x ≤ u, x ∈ Zn}

where A ∈ Rm×n
≥0 , c, u ∈ Rn

≥0. In the online setting, the constraints (i.e., the rows of the constraint matrix A) arrive
over time, and the algorithm can only increase the coordinates of x to maintain feasibility. As an intermediate step,
we consider solving the covering linear program (CLP) online, where the requirement x ∈ Zn is replaced by x ∈ Rn.

Our main results are (a) an O(log k)-competitive online algorithm for solving the CLP, and (b) an O(log k · log `)-
competitive randomized online algorithm for solving the CIP. Here k ≤ n and ` ≤ m respectively denote the maximum
number of non-zero entries in any row and column of the constraint matrix A. Our algorithm is based on the online
primal-dual paradigm, where a novel ingredient is to allow dual variables to increase and decrease throughout the
course of the algorithm. By a result of Feige and Korman, this result is the best possible for polynomial-time online
algorithms, even in the special case of set cover (where A ∈ {0, 1}m×n and c, u ∈ {0, 1}n).
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1. Introduction Covering Integer Programs (CIPs) have long been studied as a very general framework
which captures a wide variety of natural problems. CIPs are mathematical programs of the following form:

min
∑n
i=1 cixi (IP1)

subject to:
∑n
i=1 aijxi ≥ 1 ∀j ∈ [m], (1.1)

0 ≤ xi ≤ ui ∀i ∈ [n], (1.2)

x ∈ Zn. (1.3)

All the entries aij , ci, and ui are non-negative. Throughout the paper, we use the notation [n] := {1, 2, . . . , n}
and [m] := {1, 2, . . . ,m}. The constraint matrix is denoted A = (aij)i∈[n],j∈[m]. We define k to be the row
sparsity of A, i.e., the maximum number of non-zeroes in any constraint j ∈ [m]. For each row j ∈ [m] let
Tj ⊆ [n] denote its non-zero columns; we say that the variables indexed by Tj “appear in” constraint j. Let
` denote the column sparsity of A, i.e., the maximum number of constraints that any variable i ∈ [n] appears
in. Dropping the integrality constraint (1.3) gives us a covering linear program (CLP).

In this paper we study the online version of these problems, where the constraints j ∈ [m] arrive over time,
and we are required to maintain a monotone (i.e., non-decreasing) feasible solution x at each point in time.
Our main results are (a) an O(log k)-competitive algorithm for solving CLPs online, and (b) an O(log k ·log `)-
competitive randomized online algorithm for CIPs. In settings where k � n or ` � m our results give a
significant improvement over the previous best bounds of O(log n) for CLPs [8], and O(log n · logm) for
CIPs that can be inferred by rounding these LP solutions. Indeed, the underlying constraint matrix in many
applications is sparse, and hence it is of interest to obtain such stronger guarantees in terms of sparsity
parameters. Analyzing performance guarantees for covering/packing integer programs in terms of row (k)
and column (`) sparsity has received much attention in the offline setting, e.g. [15, 17, 11, 14, 6]. This paper
obtains tight bounds in terms of these parameters for online covering integer programs.

Our Techniques. Our algorithms use the online primal-dual framework of Buchbinder and Naor [7]. To
solve the covering LP, we give an algorithm which monotonically raises the primal, but both raises and lowers
the dual variables over the course of its execution. This is unlike typical applications of the online primal-dual
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approach, where both primal and dual variables are only increased. This approach of lowering duals is crucial
for our bound of O(log k), since otherwise there is an Ω(log n) primal-dual gap even for k = 1.

The algorithm for covering IP solves the LP relaxation and then rounds it. It is well-known that the natural
LP relaxation is too weak: so we extend our online CLP algorithm to also handle Knapsack Cover (KC)
inequalities from [9]. This step has an O(log k)-competitive ratio. Then, to obtain an integer solution,
we adapt the method of randomized rounding with alterations to the online setting. We note that direct
randomized rounding as in [1] results in a worse O(logm) overhead.

Related Work. The powerful online primal-dual framework has been used to give algorithms for set
cover [1], graph connectivity and cut problems [2], caching [19, 4, 5], packing/covering IPs [8], and many
more problems. This framework usually consists of two steps: obtaining a fractional solution (to an LP
relaxation) online, and rounding the fractional solution online to an integral solution. See the monograph of
Buchbinder and Naor [7] for a lucid survey of this area.

In most applications of this framework, the fractional online algorithm raises both primal and dual variables
monotonically, and the competitive ratio is given by the primal to dual ratio. For CLPs, Buchbinder and
Naor [8] showed that if we increase dual variables monotonically, the primal-dual gap can be Ω(log amax

amin
). In

order to obtain an O(log n)-competitive ratio, they used a guess-and-double framework [8, Theorem 4.1] that
changes duals in a partly non-monotone manner as follows:

The algorithm proceeds in phases, where each phase r corresponds to the primal value being
roughly 2r. Within a phase the primal and dual are raised monotonically. But the algorithm
resets duals to zero at the beginning of each phase—this is the only form of dual reduction.

For the special case of fractional set cover (where A ∈ {0, 1}m×n), they get an improved O(log k)-competitive
ratio using this guess-and-double framework [8, Section 5.1]. However, we show in Section 2.2 that such
dual update processes do not extend to obtain an o(log n) ratio for general CLPs. Our algorithm instead
reduces the dual variables in a more continuous manner throughout the algorithm, which leads to an O(log k)-
competitive ratio for general CLPs.

Other online algorithms: Koufogiannakis and Young [13] gave a k-competitive deterministic online algorithm
for CIPs based on a greedy approach; their result holds for a more general class of constraints and for sub-
modular objectives. Our O(log k log `) approximation is incomparable to this result. Feige and Korman [12]
showed that no randomized polynomial-time online algorithm can achieve a competitive ratio better than
O(log k log `), even for set cover (where all entries are in {0, 1}).

Offline algorithms. CLPs can be solved optimally offline in polynomial time. For CIPs in the absence of
variable upper bounds, randomized rounding gives an O(logm)-approximation ratio. Srinivasan [15] gave an
improved algorithm using the FKG inequality, where the approximation ratio depended on the optimal LP
value. Later, Srinivasan [16] also used the method of alterations in context of CIPs and gave an RNC algorithm
achieving the bounds of [15]. An O(log `)-approximation algorithm for CIPs (no upper bounds) was obtained
in [17] using the Lovász Local Lemma. Using KC-inequalities and the algorithm from [17], Kolliopoulos and
Young [11] gave an O(log `)-approximation algorithm for CIPs with variable upper bounds. Our algorithm
matches this O(log `) loss even in the online setting. Finally, the knapsack-cover (KC) inequalities were
introduced by Carr et al. [9] to reduce the integrality gap for CIPs. These were used in [11, 10], and also in
an online context by [5] for the generalized caching problem.

Outline. In Section 2 we provide a brief introduction to the online primal-dual approach, and discuss why
previously used updates are not adequate to obtain a competitive ratio for CLPs that is independent of n. In
Section 3 we present an O(log k)-competitive online algorithm for a special case of covering linear programs,
where there are no variable upper-bounds. This introduces the main ideas in our primal-dual updates. Then,
in Section 4.1 we extend this algorithm to general CLPs with additional knapsack-cover inequalities. Finally,
in Section 4.2 we give an online rounding algorithm that converts fractional solutions to integral solutions
for covering integer programs.

2. The Online Primal-Dual Approach In this section, we first recall the online primal-dual approach as
applied to the unweighted fractional set cover problem. Then we discuss why previously known primal-dual
updates are insufficient to obtain an O(log k) bound for general covering linear programs.
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2.1 Unweighted fractional set cover Consider the special case of CLPs where all entries aij are {0, 1},
all costs ci are unit and there are no variable upper-bounds. That is,

min
∑n
i=1 xi

subject to:
∑
i∈Tj

xi ≥ 1 ∀j ∈ [m],

x ≥ 0

Above, Tj ⊆ [n] is some subset for each constraint j ∈ [m]. Notice that this is precisely the fractional set
cover problem (sets correspond to variables and elements correspond to constraints) where all sets have unit
cost. The dual linear program is the following packing problem:

max
∑m
j=1 yj

subject to:
∑
j:i∈Tj

yj ≤ 1 ∀i ∈ [n],

y ≥ 0

We now apply the online primal-dual method to obtain an O(log n)-competitive online algorithm for the
fractional set cover problem, where constraints

∑
i∈Tj

xi ≥ 1 arrive over time and the variables x may only
be increased. We will maintain a solution pair consisting of primal x and dual y. Initially, each primal
variable xi = 1

n , and each dual variable yj = 0. When the jth constraint arrives, perform the following
updates repeatedly as long as

∑
i∈Tj

xi < 1:

xnewi ← 2 · xoldi , ∀i ∈ Tj and ynewj ← yoldj + 1.

Notice that the primal solution x is always feasible after the updates, and both primal and dual variables are
only increased. We will now show that:

P1. In each update step, the increase in the primal cost is at most the increase in the dual objective.

P2. The dual solution is β = 1 + log2 n approximately feasible, i.e. dual solution y/β is feasible.

For property (P1), note that the primal increase in any update is
∑
i∈Tj

(
xnewi − xoldi

)
=
∑
i∈Tj

xoldi < 1,
where the last inequality is the condition required to perform an update; and the dual increase in any update
is one. To see property (P2), notice that the updates ensure that

xi =
1

n
· 2

∑
j:i∈Tj

yj , ∀ i ∈ [n].

Moreover, no primal variable is increased once its value is at least one: this implies that maxi∈[n] xi ≤ 2.
Thus

∑
j:i∈Tj

yj ≤ 1 + log2 n = β for all i ∈ [n], which proves (P2).

We can now prove the O(log n)-competitive ratio. Let Opt denote the optimal primal cost; note that Opt ≥ 1.
Since the initial primal cost is one, using (P1), the final primal cost is

∑n
i=1 xi ≤ 1+

∑m
j=1 yj ≤ Opt+

∑m
j=1 yj .

By weak duality, any feasible dual solution provides a lower bound to Opt; so by (P2),
∑m
j=1 yj ≤ β · Opt.

Thus the cost of the online solution is at most (1 + β)Opt.

2.2 Limitations of existing primal-dual updates For general covering linear programs, Buchbinder
and Naor [8, Lemma 3.1] showed that if we maintain monotone duals (as in the above fractional set cover
example) then the primal-dual gap may be as large as Ω(log amax

amin
). In order to get around this issue and

obtain an O(log n) competitive ratio for general CLPs, [8, Theorem 4.1] used a guess-and-double framework
which uses duals in a partly non-monotone manner. However, as we show below, this scheme does not suffice
to obtain any primal-dual gap independent of n, even when k = 1.

The guess-and-double scheme proceeds in phases, and within each phase it maintains monotone primal as well
as dual variables. But when the phase changes, the scheme resets all dual values to zero and starts afresh;
this is the only allowed dual reduction. To maintain an approximately feasible dual and bounded primal-dual
ratio, this scheme is allowed to change phases (and reset duals) only when the primal cost increases by (say)
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a factor of two. Upon arrival of the first constraint (
∑
i∈T1

ai1xi ≥ 1), the scheme produces a lower bound

α1 = mini∈T1
ci/ai1 on the optimal value and begins its first phase. In the rth phase it is assumed that αr

is the optimal value until the primal cost exceeds αr; at this point the scheme sets αr+1 = 2 · αr and enters
phase r + 1. A competitive ratio of O(β) is proven via this scheme by showing that after each phase r, the
total primal cost is at most β times the total dual value (added over all phases up to r).

Lemma 2.1 Any online algorithm using the guess-and-double framework for covering LPs (even with k = 1)
incurs an unbounded primal to dual ratio.

Proof. It suffices to show that for every ρ > 2, there exists an instance of the online covering LP with
k = 1 where any algorithm using the guess-and-double framework incurs a primal to dual ratio of Ω(ρ). Our
instances will have all costs being one, so the primal objective is just

∑n
i=1 xi. Since k = 1, each constraint

will be of the form xi ≥ b for some i ∈ [n] and b > 0. The first constraint is x1 ≥ ρρ+2. So α1 = ρρ+2

in the guess-and-double scheme. In each phase r, constraints appear for a completely new set of variables
xr,1, xr,2, . . . as follows. Initialize j ← 1.

Sequence I(r, j) : Constraints of the form xr,j ≥ ρh with dual variable yr,j(h) appear for
h = 1, 2, . . ., until the first time that the algorithm sets dual value yr,j(h) < ρh−1.

At this point we move on to the next variable xr,j+1, i.e. set j ← j + 1 and repeat the sequence I(r, j).
Also, the entire phase r ends when the sum of variables in this phase exceeds αr, at which point we abort
the current sequence I(r, j) and enter phase r + 1 with αr+1 = 2 · αr.

Suppose q variables are used in phase r. Let h1, . . . , hq denote the number of constraints produced in
I(r, 1), . . . , I(r, q) respectively. Note that the dual variables in this phase are

⋃
j∈[q]{yr,j(h) : 1 ≤ h ≤ hj},

dual constraints are
∑
h yr,j(h)/ρh ≤ 1 for all j ∈ [q], and dual objective is

∑
j∈[q]

∑
h yr,j(h).

Claim 2.1 For all j ∈ [q], hj ≤ ρ+ 1.

Proof. Fix any j ∈ [q]; the dual constraint corresponding to variable xr,j reads
∑
h yr,j(h)/ρh ≤ 1. By

definition of the sequence I(r, j), for all 1 ≤ h < hj the dual value yr,j(h) ≥ ρh−1. Note that duals in a single
phase are monotone– so at the end of sequence I(r, j) we have:

1 ≥
∑
h

yr,j(h)/ρh ≥
hj−1∑
h=1

ρh−1/ρh =
hj − 1

ρ

The first inequality is the dual constraint for xr,j and the second uses the lower bound on the first hj − 1
dual values. 2

Note that the primal increase in any completed phase r is:

P (r) ≥ max

∑
j∈[q]

ρhj , αr

 (2.4)

The first term above is due to the fact that we see new variables {xr,1, · · · , xr,q} in phase r, and constraints
xr,j ≥ ρhj for j ∈ [q]. The second term is by the definition of when a phase ends.

The next claim shows that the dual increase can only be a small fraction of the primal.

Claim 2.2 The total dual increase in any completed phase r is at most 4
ρ · P (r).

Proof. Consider any primal variable xr,j , and its dual constraint
∑hj

h=1 yr,j(h)/ρh ≤ 1. Clearly the

maximum dual value achievable from these dual variables
∑hj

h=1 yr,j(h) ≤ ρhj .

Now consider j ≤ q− 1; the sequence I(r, j) was ended due to yr,j(hj) < ρhj−1. Also by the dual constraint,
yr,j(h) ≤ ρh for all 1 ≤ h ≤ hj − 1. Thus:

hj∑
h=1

yr,j(h) ≤ ρhj−1 +

hj−1∑
h=1

ρh ≤ ρhj−1 ·
(

1 +
1

1− 1/ρ

)
≤ 3 · ρhj−1,
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where the last inequality uses ρ ≥ 2. We now obtain that the total dual value in phase r:

q∑
j=1

hj∑
h=1

yr,j(h) ≤ ρhq +

q−1∑
j=1

hj∑
h=1

yr,j(h) ≤ ρhq +

q−1∑
j=1

3 · ρhj−1

≤(2.4) ρhq +
3

ρ
· P (r) ≤Claim 2.1 ρρ+1 +

3

ρ
· P (r)

≤ αr
ρ

+
3

ρ
· P (r) ≤(2.4)

4

ρ
· P (r).

The second-last inequality is because αr ≥ α1 = ρρ+2. This completes the proof. 2

Using Claim 2.2, it follows that for the input sequence constructed above, the total dual value accrued∑
r

(∑
j,h yr,j(h)

)
is at most 4/ρ times the primal cost

∑
r P (r). 2

This lemma shows that using just the dual reductions allowed within a guess-and-double framework is insuffi-
cient to prove a primal-dual ratio independent of n. Instead, the online algorithms presented in the following
sections perform more sophisticated dual reduction steps to get O(log k)-competitiveness.

3. An Algorithm for a Special Class for Covering LPs In this section, we consider CLPs without
upper bounds on the variables:

min
∑n
i=1 cixi

subject to:
∑n
i=1 aijxi ≥ 1 ∀j ∈ [m],

x ≥ 0

and give an O(log k)-competitive deterministic online algorithm for solving such LPs, where k is an upper
bound on the row-sparsity of A = (aij). The constraints are indexed in the order in which they arrive. The
dual is the packing linear program:

max
∑m
j=1 yj

subject to:
∑m
j=1 aijyj ≤ ci ∀i ∈ [n],

y ≥ 0

We assume that ci’s are strictly positive for all i, else we can drop all constraints containing variable i.

In the online algorithm, we want a solution pair (x, y), where we monotonically increase the value of x, but
the dual variables (that are only used in the analysis) can move up or down as needed. We want a feasible
primal, and an approximately feasible dual. The primal update step is the following:

Algorithm 3.1 Online CLP without box constraints.

When constraint h (i.e.,
∑
i aihxi ≥ 1) arrives,

1: define dih = ci
aih

for all i ∈ [n], and dm(h) = mini dih = mini∈Th
dih.

2: while
∑
i aihxi < 1 do

3: update the x’s by

xnewi ←
(

1 +
dm(h)

dih

)
xoldi +

1

k · aih
dm(h)

dih
, ∀i ∈ Th.

4: end while
5: let th be the number of times the update step is performed for constraint h.

As stated, the algorithm assumes we know k, but this is not required. We can start with the estimate k = 2
and increase it any time we see a constraint with more variables than our current estimate. Since this estimate
for k only increases over time, the analysis below will go through unchanged. (We can assume that k is a
power of 2, which makes log k an integer. Moreover, we assume that k ≥ 2.)

Lemma 3.1 Upon arrival of primal constraint h, the number of primal updates th ≤ 2 log k.
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Proof. Fix some h, and consider the value i∗ for which di∗h = dm(h). In each iteration of the while-loop,
the variable xi∗ ← 2xi∗ + 1/(k · ai∗h); hence after t iterations, its value will be at least (2t − 1)/(k · ai∗h). So
if we do 2 log k updates, this variable alone will satisfy the hth constraint. 2

Lemma 3.2 Upon arrival of primal constraint h, the total increase in the primal cost is at most 2 th dm(h).

Proof. Consider a single update step that modifies primal variables from xold to xnew. In this step, the

increase in each variable i ∈ Th is
dm(h)

dih
· xoldi + 1

k·aih
dm(h)

dih
. So the increase in the primal objective is:∑

i∈Th

ci ·
[
dm(h)

dih
· xoldi +

1

k · aih
dm(h)

dih

]
= dm(h)

∑
i∈Th

aih · xoldi + dm(h) ·
|Th|
k
≤ 2 · dm(h)

The inequality uses |Th| ≤ k and
∑
i∈Th

aih · xoldi ≤ 1 which is the reason an update was performed. The
lemma now follows since th is the number of update steps. 2

To show approximate optimality, we want to change the dual variables so that the dual increase is (approxi-
mately) the primal increase, and so that the dual remains (approximately) feasible.

As noted in Section 2.2, we cannot achieve an O(log k)-competitive ratio for CLPs using previous approaches
of maintaining monotone duals or via the guess-and-double framework. The difficult case (as in the instances
of Lemma 2.1) is when variables have exponentially increasing coefficients in different constraints. Indeed,
[8] showed that monotone duals suffice to obtain an O(log amax

amin
)-competitive ratio, and the guess-and-double

framework leads to an O(log k)-competitive ratio for the special case of CLP when all aij ∈ {0, 1}.

Upon arrival of a primal constraint, to ensure adequate dual increase we raise the newly arriving dual
variable; and to maintain approximate dual feasibility we also decrease the “first few” dual variables in each
dual constraint where the new dual variable appears.

For the hth primal constraint, let dih, dm(h), th be given by the primal update process.

(a) Set yh ← dm(h) · th.

(b) For each i ∈ Th, do the following for dual constraint
∑
j aijyj ≤ ci:

(i) If
∑
j<h aijyj ≤ (10 log k) ci, do nothing; else

(ii) Let ki < h be the largest index such that
∑
j≤ki aijyj ≤ (5 log k) ci.

Let Pi = {j ≤ ki | Tj 3 i} be the indices of these first few dual variables that are
active in the ith dual constraint. For all j ∈ Pi,

ynewj ←
(

1−
dm(h)

dih

)
· yoldj .

Observe that the dual update process starts each dual variable yj off at some value dm(j)tj and subsequently
only decreases this dual variable, and that the dual variables remain non-negative.

Lemma 3.3 When primal constraint h arrives, the left-hand-side of each dual constraint i increases due to
the variable yh by aih · dm(h) · th ≤ (2 log k) ci.

Proof. We set the initial value of the dual variable yh to dm(h) · th. By Lemma 3.1, th ≤ 2 log k. By
definition, dm(h) ≤ ci/aih. Hence, for any i ∈ Th, the increase in the left-hand-side of dual constraint i is at
most aih ·(2 log k) (ci/aih) = (2 log k) ci. For the remaining i′ ∈ [n]\Th, there is no increase in dual constraint
i′. This proves the lemma. 2

Lemma 3.4 When primal constraint h arrives, if the dual update reaches step b(ii) for some i ∈ Th, then ki

is well-defined and the set Pi is non-empty; moreover,
∑

j∈Pi
aijyj

ci log k ∈ [3, 5].

Proof. For each j < h we have yj ≤ 2 log k · dm(j), since dual variable yj was initialized to tjdm(j) ≤
2 log k · dm(j) (by Lemma 3.1) and subsequently never increased. So aij · yj ≤ 2 log k · dm(j) · aij ≤ 2 log k · ci,
using dm(j) ≤ dij = ci/aij . If the dual update reaches step b(ii) then we have

∑
j<h aijyj > (10 log k) ci, but

each term j < h contributes at most 2 log k · ci. So ki is well-defined, and Pi is non-empty. Moreover, by the
choice of ki, we have

∑
j≤ki+1 aijyj > (5 log k) ci, so

∑
j≤ki aijyj > (5 log k) ci − ai,ki+1 · yki+1 ≥ (3 log k) · ci.

Thus 3 log k · ci ≤
∑
j∈Pi

aijyj ≤ 5 log k · ci as claimed. 2
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Lemma 3.5 When primal constraint h arrives, after any dual update step, each dual constraint i satisfies∑
j aijyj ≤ (12 log k) ci. Hence the dual solution is always (12 log k)-approximately feasible.

Proof. Consider the dual update process when the primal constraint h arrives, and look at any dual
constraint i ∈ Th (the other dual constraints are unaffected). If case b(i) happens, then by Lemma 3.3 the
left-hand-side of the constraint will be at most (12 log k) ci. Else, case b(ii) happens. Each yj for j ∈ Pi
decreases by yj · dm(h)/dih, and so the decrease in

∑
j∈Pi

aijyj is at least
∑
j∈Pi

aijyj · (dm(h)/dih). Using
Lemma 3.4, this is at least

dm(h)

dih
· ci (3 log k) =

dm(h)

ci/aih
· ci (3 log k) = dm(h) · aih · (3 log k).

But since the increase due to yh is at most aih · dm(h) th ≤ aih · dm(h) · (2 log k), there is no net increase in
the left-hand-side, so it remains at most (12 log k) ci. 2

Lemma 3.6 When primal constraint h arrives, the net increase in the dual value is at least 1
2 dm(h) · th.

Proof. The increase in the dual value due to yh itself is dm(h) · th. What about the decrease in the other
yj ’s? These decreases could happen due to any of the k dual constraints i ∈ Th, so let us focus on one such
dual constraint i, which reads

∑
j:Tj3i aijyj ≤ ci. Now for j < h, define γij :=

yj
tj dij

. Since yj was initially

set to tj dm(j) ≤ tj dij and subsequently never increased, we know that at this point in time,

γij ≤
dm(j)

dij
≤ 1. (3.5)

The following claim, whose proof appears after this lemma, helps us bound the total dual decrease.

Claim 3.1 If we are in case b(ii) of the dual update, then
∑
j∈Pi

γijtj
aij
≤ 1

2k ·
1
aih

.

Using this claim, we bound the loss in dual value caused by dual constraint i:∑
j∈Pi

dm(h)

dih
· yj =

dm(h)

dih
·
∑
j∈Pi

γij · tj dij =
dm(h)

ci/aih
·
∑
j∈Pi

γij · tj (ci/aij)

= dm(h) aih ·
∑
j∈Pi

γij ·
tj
aij

≤(Claim 3.1) dm(h) aih ·
1

2k
· 1

aih
=

dm(h)

2k
.

Summing over the |Tj | ≤ k dual constraints affected, the total decrease is at most 1
2dm(h) ≤ 1

2dm(h)th (since
there is no decrease when th = 0). Subtracting from the increase of dm(h) · th gives a net increase of at least
1
2dm(h)th, proving the lemma. 2

Proof of Claim 3.1. Consider the primal constraints j such that Tj 3 i: when they arrived, the value of
primal variable xi may have increased. The first few among the constraints j such that Tj 3 i lie in the set

Pi: when j ∈ Pi arrived, we added at least 1
k·aij

dm(j)

dij
to xi’s value1, and did so tj times. Hence the value of

xi after seeing the constraints in Pi is at least
∑
j∈Pi

dm(j)tj
k·aij ·dij ≥

∑
j∈Pi

γijtj
k·aij , using (3.5).

If χi is the value of xi after seeing the constraints in Pi, and χ′i is its value after seeing the rest of the
constraints in Qi := ({j < h | Tj 3 i} \ Pi). Then, by the multiplicative part of the primal update,

χ′i
χi
≥

∏
j∈Qi

(
1 +

dm(j)

dij

)tj
≥(3.5)

∏
j∈Qi

(1 + γij)
tj ≥(γij≤1) e

1
2

∑
j∈Qi

γijtj ≥ 2k2. (3.6)

The last inequality uses the fact that k ≥ 2, and that:∑
j∈Qi

γijtj =
∑
j∈Qi

yj/dij =
∑
j∈Qi

yj · aij
ci

=
1

ci

∑
j<h

aijyj −
∑
j∈Pi

aijyj

 > 5 log k,

where the inequality is because we are in case b(ii) and
∑
j∈Pi

aijyj ≤ (5 log k) · ci by Lemma 3.4.

1More precisely, xi increased by at least 1
kj ·aij

dm(j)

dij
where kj ≤ k was the estimate of the row-sparsity at the arrival of

constraint j, and k is the current row-sparsity estimate.
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Finally, when doing the primal/dual update steps for constraint h, the value of xi just before this must have
been χ′i < 1/aih (otherwise constraint h would have already been satisfied just by variable xi). Note that χi
is at least

∑
j∈Pi

γijtj
k·aij , by the first calculations. And χ′i/χi ≥ 2k2 by (3.6). Putting these together gives∑

j∈Pi

γijtj
k · aij

≤ 1

2k2
· 1

aih
,

and hence the claim. 2

Lemma 3.6 and Lemma 3.2 imply that the dual increase is at least 1/4 times the primal increase, and
Lemma 3.5 implies that we have an O(log k)-approximately feasible dual, implying the following theorem:

Theorem 3.1 Algorithm 3.1 is an O(log k)-competitive online algorithm for covering linear programs without
upper-bound constraints, where k is the row-sparsity of the constraint matrix.

4. The Online Algorithm for CIPs We now want to solve CLPs with variable upper bounds, en route
to solving general covering integer programs of the form (IP1). However, it is well-known that when we
have variable upper-bounds, the natural LP relaxation of CIPs has a large integrality gap.2 Hence, Carr
et al. [9] suggested adding the knapsack cover (KC) inequalities—defined below—to reduce the integrality
gap significantly. In this section, we first show how to extend Algorithm 3.1 to get an O(log k)-competitive
algorithm for the natural CLP relaxation (with upper bounds) where we also satisfy some suitable KC
inequalities. Next, we round (in an online fashion) such a fractional solution to get a randomized O(log ` ·
log k)-competitive online algorithm for general k-row-sparse and `-column-sparse CIPs.

Knapsack Cover Inequalities. Given a CIP of the form (IP1), the KC-inequalities for a particular covering
constraint

∑
i∈[n] aijxi ≥ 1 are defined as follows: for any subset H ⊆ [n] of variables, the maximum possible

contribution of the variables in H to the constraint is aj(H) :=
∑
i∈H aijui, and if aj(H) < 1 then at least a

contribution of 1− aj(H) must come from variables [n] \H. Moreover, in any integral solution x, since each
positive variable xi is at least one, we get the inequality:

∑
i∈[n]\H

min{aij , 1− aj(H)} · xi ≥ 1− aj(H) (4.7)

Since (4.7) is not necessarily true for fractional solutions satisfying
∑
i∈[n] aijxi ≥ 1, we add such additional

constraints to the LP, for each original constraint j and H ⊆ [n] where aj(H) < 1. There are exponentially
many such KC-inequalities, and it is not known how to separate exactly over these in poly-time3. But as
in previous works [9, 11, 5], the randomized rounding algorithm just needs us to enforce one specific KC-
inequality for each constraint j—namely for the set H := {i ∈ [n] | xi ≥ τ · ui} with some suitable threshold
τ > 0. We call this the “special” KC-inequality for constraint j.

4.1 Fractional Solution with Upper Bounds and KC-inequalities In extending Algorithm 3.1 from
the previous section to also handle “box constraints” (those of the form 0 ≤ xi ≤ ui), and the associated
KC-inequalities, the high-level idea is to create a “wrapper” procedure around Algorithm 3.1 which ensures
these new inequalities: when a constraint

∑
i∈Tj

aijxi ≥ 1 arrives, we start to apply the primal update step
from Algorithm 3.1. Now if some variable xp gets “close” to its upper bound up, we then set xp = up, and
feed the new inequality

∑
i∈Tj\p aijxi ≥ 1−apjup (or rather, a knapsack cover version of it) to Algorithm 3.1,

and continue. Implementing this idea needs a little more work. For the rest of the discussion, τ ∈ (0, 12 ) is a
threshold that will be fixed later.

Suppose we want a solution to:

(IP ) min


n∑
i=1

cixi |
∑
i∈Sj

aijxi ≥ 1 ∀j ∈ [m], 0 ≤ xi ≤ ui, xi ∈ Z ∀i ∈ [n],


2The trivial CIP min{x1 |Mx1 ≥ 1} has integrality gap M , no upper bounds needed. However, if we truncate the aijs to be

at most 1 (which is the right-hand-side value), and we have no upper bound constraints, this gap disappears. Introducing upper

bounds brings back large integrality gaps, e.g. min{x1|x1 + (1− ε)x2 ≥ 1, 0 ≤ x1, x2 ≤ 1} which has an integrality gap of 1/ε.
3KC-inequalities can be separated in pseudo-polynomial time via a dynamic program for the knapsack problem.
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where we use Sj ⊆ [n] to denote the non-zero columns of each constraint j ∈ [m]. Recall that the row-sparsity
maxj∈[m] |Sj | ≤ k. The natural LP relaxation is:

(P ) min


n∑
i=1

cixi |
∑
i∈Sj

aijxi ≥ 1 ∀j ∈ [m], 0 ≤ xi ≤ ui ∀i ∈ [n]


Algorithm 4.1 will find online a feasible fractional solution to this LP relaxation (P ), that also satisfies some
additional KC-inequalities. This algorithm maintains a vector x ∈ Rn that need not be feasible for the
covering constraints in (P ). However x implicitly defines the “real solution” x ∈ Rn as follows:

xi =

{
xi if xi < τui
ui otherwise

, ∀i ∈ [n]

The solution x to (P ) is constructed by solving a related covering linear program (P ′) without variable
upper-bounds, having row-sparsity at most k, where the constraints are defined by Algorithm 4.1.

(P ′) min

{
n∑
i=1

cixi |
∑
i∈Th

αihxi ≥ 1 ∀h ∈ [m′], xi ≥ 0 ∀i ∈ [n]

}
At the beginning of the algorithm, h = 0. When the jth constraint for (IP ), namely

∑
i∈Sj

aijxi ≥ 1, arrives

online, the algorithm generates (potentially several) constraints for (P ′) based on it. Claim 4.2 shows that
these constraints are all valid for (IP ), so the optimal solution to (P ′) is at most optIP .

Algorithm 4.1 Online covering with box constraints and KC-inequalities.

When constraint j (i.e.,
∑
i∈Sj

aij · xi ≥ 1) arrives for (P ),

1: set h← h+ 1, th ← 0, Fj ← {i ∈ Sj : xi ≥ τui}, Th ← Sj \ Fj .
2: set b← 1−

∑
i∈Fj

aijui, and αih ← min
{

1,
aij
b

}
, ∀i ∈ Th, and αih = 0, ∀i 6∈ Th.

3: if b > 0 then generate constraint
∑
i∈Th

αihxi ≥ 1 for (P ′); else halt.
// if b ≤ 0 then constraint j to (P ) is satisfied by x.

4: while (
∑
i∈Th

αih · xi < 1) do

5: // start primal-update process for hth constraint (
∑
i∈Th

αih · xi ≥ 1) to (P ′).
6: if Th = ∅, return infeasible.
7: define dih := ci

αih
for all i ∈ [n], and dm(h) := mini dih := mini∈Th

dih.
8: define δ ≤ 1 to be the maximum value in (0, 1] so that:

max
i∈Th

{
1

ui

[(
1 + δ ·

dm(h)

dih

)
xi +

δ

k · αih
dm(h)

dih

]}
≤ τ

9: perform an update step for constraint h as:

xnewi ←
(

1 + δ ·
dm(h)

dih

)
xoldi +

δ

k · αih
dm(h)

dih
, ∀i ∈ Th.

10: set th ← th + δ.
11: let F ′h ← {i ∈ Th : xi = τui} and Fj ← Fj

⋃
F ′h. //note that i ∈ Fj ⇐⇒ xi = ui and i ∈ Sj.

12: if (F ′h 6= ∅) then
13: // new constraint h+ 1 to (P ′) is generated; constraint h is deemed to be satisfied if h+ 1 is.
14: set h← h+ 1, th ← 0, and Th ← Sj \ Fj .
15: set b← 1−

∑
i∈Fj

aijui, αih = min
{

1,
aij
b

}
, ∀i ∈ Th and αih = 0, ∀i 6∈ Th.

16: if b > 0 generate constraint
∑
i∈Th

αihxi ≥ 1 for (P ′); else halt.
// if b ≤ 0 then constraint j to (P ) is satisfied by x.

17: end if
18: end while // constraint j to (P ) is now satisfied.

The following theorem summarizes Algorithm 4.1, and will be used to perform the online rounding in the
next subsection.

Theorem 4.1 Let x(j) and x(j) denote the solution vectors x and x immediately after the jth constraint to
(P ) has been satisfied in Algorithm 4.1. Then, the following conditions are satisfied.
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(i) The solutions x and x are non-decreasing over time.

(ii) Solution x(j) satisfies the first j constraints of (P ).

(iii) For each j ∈ [m] let Hj = {i ∈ [n] | x(j)i ≥ τ · ui} and aj(Hj) =
∑
r∈Hj

arjur. Then solution x(j)

satisfies the KC-inequality corresponding to constraint j with the set Hj, i.e., if aj(Hj) < 1 then:∑
i∈Sj\Hj

min {aij , 1− aj(Hj)} · x(j)i ≥ 1− aj(Hj).

(iv) The cost
∑n
i=1 ci · xi = O(log k) · optIP .

Again, the value of row-sparsity k is not required in advance—it suffices to use the current estimate as in
Algorithm 3.1. The rest of this subsection proves Theorem 4.1.

By construction, x and x are non-decreasing over the run of the algorithm, which is property (i).

Next we prove property (ii), that x is feasible to (P ). Clearly x ∈ [0,u]. Upon arrival of the jth constraint
to (P ), solution x is increased until the condition in line 4 of Algorithm 4.1 is satisfied. The following claim
then implies that x satisfies constraint j to (P ).

Claim 4.1 Consider Algorithm 4.1 after the arrival of constraint j to (P ). At any point in the while-loop,
let v denote the current fractional solution and h index the current constraint (

∑
i αih · xi ≥ 1) to (P ′). If∑

i αih · vi ≥ 1 then v satisfies constraint j to (P ), i.e.
∑
i aij · vi ≥ 1.

Proof. Recall that the jth constraint to (P ) is
∑
i∈Sj

aij · xi ≥ 1. At any point in the while-loop, the

current constraint h is of the form
∑
i αih · xi ≥ 1, where

αih =

{
min{1, aijb } i ∈ Sj \ Fj
0 otherwise

Above, Fj = {i ∈ Sj : wi ≥ τ ·ui} with w being the fractional solution at the time constraint h was generated;
and b = 1 −

∑
i∈Fj

aij · ui > 0. Since the solution is non-decreasing, the current fractional solution v ≥ w.
So vi = wi = ui for all i ∈ Fj . Hence:

∑
i∈Sj

aij · vi =
∑
i∈Fj

aij · ui +
∑

i∈Sj\Fj

aij · vi ≥ aj(Fj) +
∑

i∈Sj\Fj

aij · vi ≥ 1.

Above we use aj(Fj) =
∑
i∈Fj

aij · ui, and the last inequality is by:

∑
i∈Sj\Fj

aij · vi ≥ b ·
∑

i∈Sj\Fj

αih · vi = b ·
∑
i

αih · vi ≥ b = 1− aj(Fj).

The last inequality is because
∑
i αih · vi ≥ 1. 2

To see property (iii), note that the termination condition of the while loop captures this very KC inequality
since Th = {i ∈ Sj : xi < τ · ui} = Sj \ Fj and b = 1−

∑
i∈Fj

aijui = 1− aj(Fj) at all times.

Finally, for the main property (iv), we use a primal-dual analysis as in Section 3: we will show how to
maintain an O(log k)-approximately feasible dual y for (P ′), so that c · x is at most O(1) times the dual
objective

∑
h∈[m′] yh. This would imply c ·x ≤ O(log k)optP ′ . The following claim can then be used to relate

optP ′ and optIP .

Claim 4.2 The optimal value optP ′ of LP (P ′) is at most optIP , the optimal value of (IP ).

Proof. We will show that every inequality in (P ′) can be obtained as a KC-inequality generated for
(IP ). Indeed, consider the hth constraint

∑
i∈Th

αihxi ≥ 1 added to (P ′), say due to the jth constraint∑
i∈Sj

aij · xi ≥ 1 of (IP ). Here Th = Sj \ Fj for some Fj ⊆ Sj , and αih = min
{

1,
aij
b

}
for i ∈ Th with

b = 1−
∑
r∈Fj

arj · ur > 0. In other words, the hth constraint to (P ′) reads
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∑
i∈Sj\Fj

min

1−
∑
r∈Fj

arj · ur, aij

 · xi ≥ 1−
∑
r∈Fj

arj · ur,

which is the KC-inequality from the jth constraint of (IP ) with fixed set Fj . Now since all KC-inequalities
are valid for any integral solution to (IP ), the original claim follows. 2

Now we show how to maintain the approximate dual solution for (P ′), and bound the cost of the primal update
in terms of this dual cost. Note that (P ′) is a covering linear program without variable upper-bounds, and
has row sparsity at most k. So we can apply the analysis from Section 3. However, there is a slight difference
in the primal-update step, namely the presence of an extra factor δ ∈ (0, 1] in line 9 of Algorithm 4.1; this
is needed to ensure variable upper-bounds in (P ). This modification in the update step also requires a small
change in the following analysis.

The dual of (P ′) is:

(D′) max


m′∑
h=1

yh |
∑
h:Th3i

αih · yh ≤ ci ∀i ∈ [n], yh ≥ 0 ∀h ∈ [m′]


The dual update process is similar to that in Section 3. When constraint h to (P ′) is deemed satisfied in
line 13 or line 4, update dual y as follows:

Let dih, dm(h), th be as defined in Algorithm 4.1.

(a) Set yh ← dm(h) · th.

(b) For each dual constraint i such that i ∈ Th (i.e.,
∑
l αilyl ≤ ci), do the following:

(i) If
∑
l<h αilyl ≤ (10 log k) ci, do nothing; else

(ii) Let ki < h be the largest index such that
∑
l≤ki αilyl ≤ (5 log k) ci;

Let Pi = {l ≤ ki | Tl 3 i} be the indices of these first few dual variables active in
dual constraint i, and for all l ∈ Pi set:

ynewl ←
(

1−min{1, th} ·
dm(h)

dih

)
· yoldl .

The only difference from Section 3 is to change
(

1− dm(h)

dih

)
to
(

1−min{1, th}
dm(h)

dih

)
. This is because of the

modification to the primal update step (involving the additional factor δ), due to which th could be much
smaller than one. Here too, each dual variable yh starts off at dm(h)th, and only decreases thereafter.

In the rest of the proof, we omit details that are repeated from Section 3, and only point out differences, if
any. The next six lemmas are similar to the corresponding ones in Section 3.

Lemma 4.1 For any constraint h to (P ′), the value th ≤ 2 log k.

Proof. Observe that after each primal update step corresponding to constraint h, th increases by a value at
most one. Each time that th increases by 1, the process behaves exactly as in Algorithm 3.1; so by Lemma 3.1,
the number of such increases is strictly less than 2 log k (which is an integer since we assumed k is a power
of 2). Also, the first time that th increases by δ < 1, the algorithm adds at least one variable to F ′h, fixes th
and moves on to a new constraint h+ 1. 2

Lemma 4.2 The total increase in
∑
i∈[n] ci · xi due to updates for constraint h to (P ′) is at most 2 th dm(h).

Lemma 4.3 In the dual update for constraint h to (P ′), variable yh increases the left-hand-side of each dual
constraint i by αih · dm(h) · th ≤ (2 log k) · ci.

Lemma 4.4 If the dual update for constraint h to (P ′) reaches step b(ii), then ki is well-defined and the set

Pi is non-empty; moreover,
∑

l∈Pi
αilyl

ci log k ∈ [3, 5].

Lemma 4.5 After the dual update step for constraint h to (P ′), each dual constraint i satisfies
∑
l αilyl ≤

(12 log k) ci. Hence the dual solution is (12 log k)-approximately feasible.
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Proof. As in the proof of Lemma 3.5, consider the update due to constraint h to (P ′) and the ith dual
constraint for some i ∈ Th. If we are in case b(i), Lemma 4.3 implies that

∑
l αilyl ≤ (10 log k)ci + (2 log k)ci.

For case b(ii), the decrease in the left-hand-side
∑
l∈Pi

αilyl of constraint i is at least min{1, th} ·
∑
l∈Pi

αilyl ·
(dm(h)/dih). By Lemma 4.4, the sum

∑
l∈Pi

αilyl ≥ ci (3 log k) and hence the reduction in the left-hand-side
of dual constraint i is at least

min{3 log k, th} ·
dm(h)

dih
· ci = dm(h) · αih ·min{3 log k, th} ≥ dm(h) · αih · th.

The inequality uses Lemma 4.1. Combined with Lemma 4.3 it follows that there is no net increase in the
left-hand-side. Hence we can maintain the invariant that

∑
l αilyl is at most (12 log k) ci. 2

Lemma 4.6 The net increase in dual value after updates for constraint h to (P ′) is at least 1
2 dm(h) · th.

Proof. The increase in the dual value due to yh is dm(h) · th. As in Lemma 3.6, let us bound the decrease
in the other yl’s. Consider any of the k dual constraints i ∈ Th. Again define γil := yl

tl dil
for l < h; since yl

started off at tl · dm(l) and never increased, we have γil ≤ dm(l)/dil ≤ 1. Exactly as in Claim 3.1,

Claim 4.3 If we are in case b(ii) of the dual update, then
∑
l∈Pi

γiltl
αil
≤ 1

2k ·
1
αih

.

Using Claim 4.3 (and calculations as in Lemma 3.6), the decrease in dual objective due to constraint i is:

min{1, th} ·
∑
l∈Pi

dm(h)

dih
· yl ≤ 1

2k
dm(h) ·min{1, th} ≤ 1

2k
dm(h) · th.

Since there are |Th| ≤ k dual constraints we have to consider, the total decrease is at most 1
2dm(h) th.

Subtracting this from the total increase of dm(h) · th gives the lemma. 2

Comparing Lemma 4.6 with Lemma 4.2, while handling the hth constraint in (P ′) the increase in the dual
objective function is at least 1/4 of the increase in the primal objective function c ·x. And Lemma 4.5 implies
that y is an O(log k)-approximately feasible dual to (P ′). Hence:

c · x ≤ 4(1 · y) ≤weak duality O(log k) · optP ′ ≤Claim 4.2 O(log k) · optIP .

This completes the proof of property (iv) in Theorem 4.1.

4.2 Online Rounding We now complete the algorithm for CIPs by showing how to round the online
fractional solution generated by Theorem 4.1, also in an online fashion. This rounding algorithm does
randomized rounding on the incremental change as in [1], but to get a smaller O(log `) loss instead O(logm),
we use the method of randomized rounding with alterations [3, 16]. Recall ` ≤ m is the column-sparsity of
the constraint matrix A, namely, the maximum number of constraints that any variable xi participates in.
Recall that the O(log `) bound for offline CIPs given by [17, 11] uses a derandomization of the Lovász Local
Lemma via pessimistic estimators, and it is not clear how to implement this in the online setting.

Given that the constraints of a CIP arrive online, we run Algorithm 4.1 to maintain vectors x and x with
properties guaranteed by Theorem 4.1. We set the threshold τ in Algorithm 4.1 to 1

8 ·
1

log ` , where ` is the
column-sparsity of the original constraint matrix A. We note that the column-sparsity of the matrix with
additional KC-inequalities (corresponding to CLP (P ′) in Subsection 4.1) may be larger; however, the analysis
here works directly with the original covering constraints and so we only incur an O(log `)-factor loss.

Before any constraints arrive, we pick a uniformly random value ρi ∈ [0, 1] for each variable i ∈ [n]—this is
the only randomness used by the algorithm. We maintain the online fractional solution x from Algorithm 4.1
and a random integer solution Z ∈ Zn≥0 (not necessarily feasible) that corresponds to independently rounding
each variable. For some constraints, the rounded solution Z may not be feasible (nor does it maintain
monotonicity), and in such cases we perform an additional alteration step to obtain the actual (feasible)

integral solution X ≥ Z. Let X(j) denote this solution immediately after primal constraint j has been
satisfied. We start off with X(0) = 0. When the jth constraint arrives and the fractional xi values have been
increased in response to this, we do the following.
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(i) Define the “rounded unaltered” solution:

Zi =


0 if xi < τρi
dxi/τe if τρi ≤ xi < τui
ui if xi ≥ τui

, ∀i ∈ [n].

Observe that this rounding ensures that Zi ∈ {0, 1, . . . , ui} for all i ∈ [n].

(ii) Maintain monotonicity. Define:

Xnew
i = max

{
X

(j−1)
i , Zi

}
, ∀i ∈ [n].

(iii) Perform potential alterations. If we are unlucky and the arriving constraint j is not satisfied by Xnew,

we increase Xnew to cover this constraint j as follows. Let Hj := {i ∈ [n] | x(j)i ≥ τ ·ui} be the frozen
variables in the fractional solution; note that Zi = ui for all i ∈ Hj , so these variables cannot be
increased. Recall that aj(Hj) :=

∑
r∈Hj

arj · ur. Since constraint j is not satisfied, aj(Hj) < 1. The
algorithm now performs the following alteration for constraint j. Consider the residual constraint on
variables [n] \Hj after applying the KC-inequality on Hj , i.e.∑

i∈[n]\Hj

min{aij , 1− aj(Hj)} · xi ≥ 1− aj(Hj).

Set aij = min
{

1,
aij

1−aj(Hj)

}
for all i ∈ [n] \Hj . Consider the following minimum knapsack problem:

min
∑
i∈[n]\Hj

ci · wi (IPK)

subject to:
∑
i∈[n]\Hj

aij · wi ≥ 1

0 ≤ wi ≤ ui, ∀i ∈ [n] \Hj

wi ∈ Z, ∀i ∈ [n] \Hj

Note that there is only one covering constraint in this problem. Let W denote an approximately
optimal integral solution to IPK obtained using the polynomial time approximation scheme (PTAS)
for the minimum knapsack problem [18]. It is clear that W satisfies the residual constraint j on

variables [n] \Hj . Define X(j) as follows.

X
(j)
i =

{
Xnew
i for i ∈ Hi

max {Xnew
i , Wi} for i ∈ [n] \Hj

This completes the description of the algorithm. By construction, it only increases variables and always
maintains a feasible integral solution to the constraints so far. It only remains to bound the expected cost.

Remark: This algorithm does not require knowledge of the final column-sparsity ` in advance. At each step,
we use the current value of `. Notice that this only affects τ and the definition of Z. However, for fixed values
of xi and ρi (any i ∈ [n]) the value of Zi is non-decreasing with `. Since both ` and x are non-decreasing,
vector Z remains monotone over time. We also require a slightly more general version of Theorem 4.1 where
we have multiple thresholds τ1 ≤ τ2 ≤ · · · ≤ τm and replace τ by τj for each j ∈ [m] in condition (iii).
This extension is straightforward and can be verified directly by setting τ := τj when constraint j arrives in
Algorithm 4.1.

Bounding cost of Z. Consider the rounding algorithm immediately after all m constraints have been
satisfied. If xi/τ ∈ [0, 1], then E[Zi] = Pr[ρi ≤ xi/τ ] = xi/τ . If xi/τ ≥ 1, then Zi ≤ dxi/τe ≤ 2xi/τ with
probability 1. Hence:

E

[
n∑
i=1

ci · Zi

]
≤ (2/τ)

n∑
i=1

cixi = O(log k · log `) · optIP ,

where we use 1/τ = O(log `), and Theorem 4.1(iv) to bound
∑
i cixi.

Bounding cost of the difference (X − Z). To account for X − Z, we need to bound the expected cost
of all alterations. In the following, let `j , kj and τj denote the respective values of `, k and τ at the arrival
time of constraint j. When j is clear from context we will drop the subscript.
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Recall that Hj := {i ∈ [n] | x(j)i ≥ τj · ui} are the frozen variables in the fractional solution after handling

constraint j, and note Zi = ui for i ∈ Hj . Define Aj := {i ∈ [n] | x(j)i < τj}. Note that the random choices
{ρi} only play a role in the values of {Zi | i ∈ Aj}, since all variables in [n] \ Aj are deterministically set to

Zi = min
{
dx(j)i /τje, ui

}
. Let Ej denote the event that an alteration was performed for constraint j. The

event Ej occurs exactly when
∑
i∈[n] aij · Xnew

i < 1. Since variables r ∈ Hj have Xnew
r = Zr = ur with

probability 1, event Ej is equivalent to the following two conditions: (i) aj(Hj) < 1 (which is a deterministic
condition), and (ii)

∑
i∈[n]\Hj

aij ·Xnew
i < 1− aj(Hj).

Lemma 4.7 The probability of an alteration for constraint j is Pr[Ej ] ≤ 1
`2j

.

Proof. Let b = 1 − aj(Hj); for Ej to occur we must have b > 0. Set aij = min{aij/b, 1} for i ∈ [n] \Hj .
Now since Z ≤ X and both are integer-valued,

Pr [Ej ] = Pr

 ∑
i∈[n]\Hj

aij ·Xnew
i < b

 ≤ Pr

 ∑
i∈[n]\Hj

aij · Zi < b

 = Pr

 ∑
i∈[n]\Hj

aij · Zi < 1

 .

Theorem 4.1(iii) guarantees that
∑
i∈[n]\Hj

aij · x(j)i ≥ 1. Among i ∈ [n] \Hj , we have

• for i ∈ [n] \ (Hj ∪Aj), Zi = dx(j)i /τe deterministically, and

• for i ∈ Aj , Zi ∈ {0, 1} with E[Zi] = x
(j)
i /τ independently.

So E
[∑

i∈[n]\Hj
aij · Zi

]
≥ 1

τ = 8 log `j . Using a Chernoff bound on the [0, 1]-valued independent random

variables {aij · Zi}, the probability of their sum being less than one is at most 1/`2j . 2

Lemma 4.8 Conditioned on Ej, the cost of incrementing Xnew to X(j) is at most 36
∑
i∈Sj

ci · x(j)i ; here

Sj ⊆ [n] are the non-zero columns in constraint j.

Proof. The fractional solution x(j) satisfies the KC inequality for set Hj , by Theorem 4.1(iii). In particular,

setting w′i = x
(j)
i for i ∈ Sj \Hj (and zero otherwise) gives a feasible fractional solution to the LP relaxation

of the minimum knapsack subproblem (IPK). It now suffices to show that the optimal integral solution
to (IPK) costs at most 18

∑
i∈Sj

ci ·w′i: since our algorithm uses a PTAS for (IPK) in the alteration step, the

lemma would follow. We note that the LP relaxation to minimum knapsack (IPK) has unbounded integrality
gap; however, using the fact that the fractional solution w′ ≤ u/2, we will show that the optimal integral
solution to (IPK) has cost at most O(1) times that of w′.

To upper bound the optimal cost of (IPK) we give a rounding algorithm that obtains an integral solution W′

from w′ with only a factor 18 increase in cost. Set W ′i ∼ Binom(ui, 2w′i/ui) for all i ∈ [n]\Hj—this definition
is valid since w′i ≤ ui/2. Recall that Binom(t, p) for integer t ≥ 1 and p ∈ [0, 1] is the sum of t independent
Bernoulli random variables (each with probability p). Clearly W′ always satisfies the upper bounds ui and
has expected cost 2 c ·w′. Moreover, each W ′i is a binomial random variable and aij ≤ 1, so

∑
i aij ·W ′i can

be viewed as a sum of independent [0, 1]-valued random variables. The expectation E [
∑
i aij ·W ′i ] ≥ 2, so

a Chernoff bound gives Pr [
∑
i aij ·W ′i < 1] ≤ 8/9. Using Markov’s inequality, Pr

[
c ·W′ > 18 c ·w′

]
< 1/9.

So with positive probability, W′ satisfies (IPK), i.e.
∑
i aij ·W ′i ≥ 1, and costs at most 18 c ·w′. This shows

that the optimal cost of (IPK) is at most this cost. 2

Thus the total expected cost of alterations after m constraints is:

m∑
j=1

Pr[Ej ] · 36
∑
i∈Sj

ci · x(j)i ≤ 36

m∑
j=1

1

`2j
·
∑
i∈Sj

ci · x(j)i ≤ 36

n∑
i=1

ci · x(m)
i

 ∑
j:i∈Sj

1

`2j


≤ 36

n∑
i=1

ci · x(m)
i

(
1

12
+

1

22
+ · · ·

)
≤ 6π2

n∑
i=1

ci · x(m)
i .

The second inequality uses the monotonicity of the fractional solution x, and the third inequality uses that
for any i ∈ [n], the value `j is at least q upon arrival of the qth constraint containing variable i.
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Combining the expected cost of O(1) c · x for the alterations with the expected cost of O(log `) · (c · x) for
the initial rounding, and Theorem 4.1(iv), we obtain the main result of this section:

Theorem 4.2 There is an O(log k · log `)-competitive randomized online algorithm for covering integer pro-
grams with row-sparsity k and column-sparsity `.

Again, we note that the algorithm does not assume knowledge of the eventual k or ` values; it works with
the current values after each constraint. Furthermore, the algorithm clearly does not need the entire cost
function in advance: it suffices to know the cost coefficient ci of each variable i at the arrival time of the first
constraint that contains i.

5. Conclusion In this paper, we gave online algorithms for covering linear and integer programs; the
competitive ratios we prove are best possible in terms of their row and column sparsity. Our algorithm was
based on the online primal-dual approach, where we both increased and decreased dual variables over the
course of the algorithm. It would be interesting to find other applications of the online primal-dual approach
that require maintaining non-monotone duals. Another interesting future direction is to design algorithms
for covering LP/IPs with competitive ratios in terms of other natural parameters of the input.
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