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Abstract Consider a random graph model where each possible edge e is present in-
dependently with some probability pe. Given these probabilities, we want to build a
large/heavy matching in the randomly generated graph. However, the only way we
can find out whether an edge is present or not is to query it, and if the edge is indeed
present in the graph, we are forced to add it to our matching. Further, each vertex i is
allowed to be queried at most ti times. How should we adaptively query the edges to
maximize the expected weight of the matching? We consider several matching prob-
lems in this general framework (some of which arise in kidney exchanges and online
dating, and others arise in modeling online advertisements); we give LP-rounding
based constant-factor approximation algorithms for these problems. Our main results
are the following:
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• We give a 4 approximation for weighted stochastic matching on general graphs,
and a 3 approximation on bipartite graphs. This answers an open question from
Chen et al. (ICALP’09, LNCS, vol. 5555, pp. 266–278, 2009).

• We introduce a generalization of the stochastic online matching problem (Feldman
et al. in FOCS’09, pp. 117–126, 2009) that also models preference-uncertainty and
timeouts of buyers, and give a constant factor approximation algorithm.

Keywords Stochastic optimization · Stochastic packing · Online dating · Dependent
rounding

1 Introduction

Motivated by applications in kidney exchanges and online dating, Chen et al. [9]
proposed the following stochastic matching problem: we want to find a maximum
matching in a random graph G on n nodes, where each edge (i, j) ∈ [(n

2

)] exists with
probability pij , independently of the other edges. However, all we are given are the
probability values {pij }. To find out whether the random graph G has the edge (i, j)

or not, we have to try to add the edge (i, j) to our current matching M (assuming that
i and j are both unmatched in our current partial matching)—we call this “probing”
edge (i, j). As a result of the probe, we also find out if (i, j) exists or not—and if
the edge (i, j) indeed exists in the random graph G, it gets irrevocably added to M .
Such policies make sense, e.g., for dating agencies, where the only way to find out
if two people are actually compatible is to send them on a date; moreover, if they do
turn out to be compatible, then it makes sense to match them to each other. Finally,
to model the fact that there might be a limit on the number of unsuccessful dates a
person might be willing to participate in, “timeouts” on vertices are also provided.
More precisely, valid policies are allowed, for each vertex i, to only probe at most ti
edges incident to i. Similar considerations arise in kidney exchanges, details of which
appear in [9].

Chen et al. asked the question: how can we devise probing policies to maximize
the expected cardinality (or weight) of the matching? They showed that the greedy
algorithm that probes edges in decreasing order of pij (as long as their endpoints
had not timed out) was a 4-approximation to the cardinality version of the stochastic
matching problem. Quite recently, Adamczyk has proved that the greedy algorithm
is a 2-approximation for unweighted stochastic matching [1]. However, this greedy
algorithm (and other simple greedy schemes) can be seen to be arbitrarily bad in the
presence of weights, and they left open the question of obtaining good algorithms to
maximize the expected weight of the matching produced. In addition to being a natural
generalization, weights can be used as a proxy for revenue generated in matchmaking
services. (The unweighted case can be thought of as maximizing the social welfare.)
In this paper, we resolve the main open question from Chen et al. [9] by obtaining
constant approximations for the weighted stochastic matching problems.

First, we consider a more general problem, called stochastic k-set-packing, where
we try to pack k-hyperedges with random sizes and profits into a d-dimensional knap-
sack of a given size. The stochastic k-set-packing problem is a direct generalization
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of the stochastic matching problem (for k = 4; See the reduction in Sect. 2). We also
note that this is a slight generalization of the stochastic b-matching problem of [10].
In particular, our model allows correlations between the profit of an item and its
size-vector, whereas in [10] the profit of each item is fixed (or independent of its
size-vector). Indeed, it is the discreteness in the sizes (i.e. 0–1 values) that allows the
LP-based approach to work for stochastic k-set-packing; if the instantiations were
allowed to be in [0,1] then the LP has a large integrality gap even with just one
constraint (see e.g. in Appendix A of [18]). Moreover, our focus is on the situation
where k � d . For this setting of parameters, we improve on the

√
d-approximation

of [10] (which only holds for independent profits and sizes) by showing the following
(Sect. 2).

Theorem 1 There is a 2k-approximation algorithm for the weighted stochastic
k-set-packing problem. When the column outcomes are monotone, there is a k + 1
approximation algorithm.

Our main idea is to use the knowledge of item probabilities to solve a linear pro-
gram where each item e has a variable 0 ≤ ye ≤ 1 corresponding to the probabil-
ity that a strategy packs e (over all possible realizations of the hypergraph). This is
similar to the approach for stochastic packing problems considered by Dean et al.
[10, 11]. Our improved approximation for monotone column outcomes is obtained
using the FKG inequality to strengthen the probability bound. Our usage of the FKG
inequality is similar to that in [29]. The second part of Theorem 1 also implies a sim-
ple 5-approximation for stochastic matching. However, using more structure in the
matching problem, we could obtain the following better approximation ratios.

Theorem 2 There is a 4-approximation algorithm for the weighted stochastic match-
ing problem. For bipartite graphs, there is a 3-approximation algorithm.

The improved approximations use the same linear program as before, but more
involved rounding methods to decide which edges to probe. The rounding procedure
for bipartite graphs uses dependent rounding [14] on the y-values to obtain a set Ê

of edges to be probed, and then probes edges of Ê in a uniformly random order.
For non-bipartite graphs, the algorithm first samples a random bipartite subgraph and
then applies the bipartite rounding algorithm on it.

The probing strategy returned by the algorithm can in fact be made matching-
probing [9]. In this alternative (more restrictive) probing model we are given an ad-
ditional parameter k and edges need to be probed in k rounds, each round being a
matching. It is clear that this matching-probing model is more restrictive than the
usual edge-probing model (with timeouts min{ti , k}) where one edge is probed at a
time. Our algorithm obtains a matching-probing strategy that is only a small constant
factor worse than the optimal edge-probing strategy; hence, we also obtain the same
constant approximation guarantee for weighted stochastic matching in the matching-
probing model. It is worth noting that previously only a logarithmic approximation
in the unweighted case was known [9].
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Theorem 3 There is a 4-approximation algorithm for the weighted stochastic
matching problem in the matching-probing model. For bipartite graphs, there is a
3-approximation algorithm.

Apart from solving these open problems and yielding improved approximations,
our LP-based analysis turns out to be applicable in a wider context.

Online Stochastic Matching with Timeouts In a bipartite graph (A,B;E) of items
i ∈ A and potential buyer types j ∈ B , pij denotes the probability that a buyer of
type j will buy item i. A sequence of n buyers are to arrive online, where the type of
each buyer is an i.i.d. sample from B according to some pre-specified distribution—
when a buyer of type j appears, he can be shown a list L of up to tj as-yet-unsold
items, and the buyer buys the first item on the list according to the given probabilities
p·,j . (Note that with probability

∏
i∈L(1 − pij ), the buyer leaves without buying

anything.) What items should we show buyers when they arrive online, and in which
order, to maximize the expected weight of the matching? Building on the algorithm
for stochastic matching in Sect. 2, we prove the following in Sect. 4.

Theorem 4 There is a 7.92-approximation algorithm for the online stochastic match-
ing problem with timeouts.

This question is an extension of similar online stochastic matching questions con-
sidered earlier in [12]—in that paper, wij ,pij ∈ {0,1} and tj = 1. Our model tries to
capture the facts that buyers may have a limited attention span (using the timeouts),
they might have uncertainties in their preferences (using edge probabilities), and that
they might buy the first item they like rather than scanning the entire list.

A New Proof for Greedy The proof in [9] that the greedy algorithm for stochastic
matching was a 4-approximation in the unweighted case was based on a somewhat
delicate charging scheme involving the decision trees of the algorithm and the opti-
mal solution. We show (Appendix B) that the greedy algorithm, which was defined
without reference to any LPs, admits a simple LP-based analysis.

Theorem 5 The greedy algorithm is a 5-approximation for the unweighted stochastic
matching problem.

Cardinality Constrained Matching in Rounds We also consider the model from [9]
where one can probe as many as C edges in parallel, as long as these C edges form
a matching; the goal is to maximize the expected weight of the matched edges after
k rounds of such probes. We improve on the min{k,C}-approximation offered in [9]
(which only works for the unweighted version), and show in Appendix A:

Theorem 6 There is a constant-factor approximation algorithm for weighted cardi-
nality constrained multiple-round stochastic matching.
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1.1 Related Work

Perhaps the work most directly related to this work are those on stochastic knapsack
problems (Dean et al. [10, 11]) and multi-armed bandits (see [16, 17] and references
therein). Also related is some recent work [6] on budget constrained auctions, which
uses similar LP rounding ideas.

In recent years stochastic optimization problems have drawn much attention from
the theoretical computer science community where stochastic versions of several
classical combinatorial optimization problems have been studied. Some general tech-
niques have also been developed [19, 30]. See [31] for a survey.

The online bipartite matching problem was first studied in the seminal paper by
Karp et al. [23] and an optimal 1 − 1/e competitive online algorithm was obtained.
Katriel et al. [24] considered the two-stage stochastic min-cost matching problem. In
their model, we are given in a first stage probabilistic information about the graph
and the cost of the edges is low; in a second stage, the actual graph is revealed but
the costs are higher. The original online stochastic matching problem was studied
recently by Feldman et al. [12]. They gave a 0.67-competitive algorithm, beating the
optimal 1 − 1/e-competitiveness known for worst-case models [7, 15, 22, 23, 27].
Recently, some improved bounds on this model were obtained [3, 26]. Our model
differs from that in having a bound on the number of items each incoming buyer
sees, that each edge is only present with some probability, and that the buyer scans
the list linearly (until she times out) and buys the first item she likes.

Our problem is also related to the Adwords problem [27], which has applications
to sponsored search auctions. The problem can be modeled as a bipartite matching
problem as follows. We want to assign every vertex (a query word) on one side to a
vertex (a bidder) on the other side. Each edge has a weight, and there is a budget on
each bidder representing the upper bound on the total weight of edges that may be
assigned to it. The objective is to maximize the total revenue. The stochastic version
in which query words arrive according to some known probability distribution has
also been studied [25].

For the k-set packing problem, it is known that the simply greedy algorithm pro-
vides a k-approximation and an improvement in the ratio, to k

2 can be obtained by
a local search heuristic [21], which is also the best known approximation to date.
Recently, O(k)-approximations were obtained for the more general k-column sparse
packing problem (the entries of the matrix can be arbitrary positive numbers rather
than just 0/1) [5]. It is also known that the k-set packing problem can not be effi-
ciently approximated to within a factor of �( k

ln k
) unless P = NP [20]. This is also

a lower bound for our stochastic k-set packing problem. Additionally for LP-based
approaches (as in this paper) k-set packing has an integrality gap of k − 1 + 1

k
[13].

1.2 Preliminaries

For any integer m ≥ 1, define [m] to be the set {1, . . . ,m}. For a maximization prob-
lem, an α-approximation algorithm is one that computes a solution with expected
objective value at least 1/α times the expected value of the optimal solution.

We must clarify here the notion of an optimal solution. In standard worst case
analysis we would compare our solution against the optimal offline solution, e.g. the
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value of the maximum matching, where the offline knows all the edge instantiations
in advance (i.e. which edge will appear when probed, and which will not). However,
it can be easily verified that due to the presence of timeouts, this adversary is too
strong [9]. Consider the following example. Suppose we have a star where each vertex
has timeout 1, and each edge has pij = 1/n. The offline optimum can match an edge
whenever the star has an edge i.e. with probability about 1−1/e, while our algorithm
can only get expected 1/n profit, as it can only probe a single edge. Hence, for all
problems in this paper we consider the setting where even the optimum does not
know the exact instantiation of an edge until it is probed. This gives our algorithms
a level playing field. The optimum thus corresponds to a “strategy” of probing the
edges, which can be chosen from an exponentially large space of potentially adaptive
strategies.

We note that our algorithms in fact yield non-adaptive strategies for the cor-
responding problems, that are only constant factor worse than the adaptive opti-
mum. This is similar to previous results on stochastic packing problems: knapsack
(Dean et al. [10, 11]) and multi-armed bandits (Guha-Munagala [16, 17] and refer-
ences therein).

2 Stochastic k-Set Packing

We first consider a generalization of the stochastic matching problem to hypergraphs,
where each edge has size at most k. Formally, the input to this stochastic k-set packing
problem consists of

• n items/columns, where each item has a random profit vi ∈ R+, and a random
d-dimensional size Si ∈ {0,1}d ; these random values and sizes are drawn from a
probability distribution specified as part of the input. We note that the size-vector
Si and profit vi of each item i are allowed to be correlated (this is what distin-
guishes our model from [10]). The probability distributions for different items are
independent. Additionally, for each item, there is a set Ci of at most k coordi-
nates such that each size vector takes positive values only in these coordinates; i.e.,
Si ⊆ Ci with probability 1 for each item i.

• A capacity vector b ∈ Z
d+ into which the items must be packed.

The parameter k is called the column sparsity of the problem. The instantiation
of any column (i.e., its size and profit) is known only when it is probed. The goal is
to compute an adaptive strategy of choosing items until there is no more available
capacity such that the expectation of the obtained profit is maximized.

Note that the stochastic matching problem can be modeled as a stochastic 4-set
packing problem in the following way: we set d = 2n, and associate the ith and
(n + i)th coordinate with the vertex i—the first n coordinates capture whether the
vertex is free or not, and the second n coordinates capture how many probes have
been made involving that vertex. For any t ∈ [d], let et ∈ {0,1}d denote the indicator
vector with a single 1 in the t th position. Now each edge (i, j) is an item which
has the following distribution: with probability pij the value is wij and size is ei +
ej + en+i + en+j , and with remaining probability 1 − pij the value is 0 and size
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is en+i + en+j . Note that for each item, its size and value are correlated. If we set
the capacity vector to be b = (1,1, . . . ,1, t1, t2, . . . , tn), this precisely captures the
stochastic matching problem. In this special case each size vector has ≤ k = 4 ones.

This stochastic k-set packing problem was studied (among many others) as the
“stochastic b-matching” problem in Dean et al. [10]; however their model assumed
deterministic values of items, so their results do not apply here directly. Moreover the
authors of that work did not consider the ‘column sparsity’ parameter k and instead
gave an O(

√
d)-approximation algorithm for the general case. Here we consider the

performance of algorithms for this problem specifically as a function of the column
sparsity k, and prove Theorem 1.

A quick aside about “safe” and “unsafe” adaptive policies: a policy is called safe
if it can include an item only if there is zero probability of violating any capacity
constraint. In contrast, an unsafe policy may attempt to include an item even if there
is non-zero probability of violating capacity—however, if the random size of the item
causes the capacity to be violated, then no profit is received for the overflowing item,
and moreover, no further items may be included by the policy. The model in Dean et
al. [10] allowed unsafe policies, whereas we are interested in safe policies. However,
due to the discreteness of sizes in stochastic k-set packing, it can be shown that our
approximation guarantee is relative to the optimal unsafe policy (see Sect. 2.2).

For each item i ∈ [n] and constraint j ∈ [d], let μi(j) := E[Si(j)], the expected
value of the j th coordinate in size-vector Si . For each column i ∈ [n], the coordinates
{j ∈ [d] | μi(j) > 0} are called the support of column i. By column sparsity, the
support of each column has size at most k. Also, let wi := E[vi], the mean profit, for
each i ∈ [n]. We now consider the natural LP relaxation for this problem, as in [10].

maximize
n∑

i=1

wi · yi (LP1)

subject to
n∑

i=1

μi(j) · yi ≤ bj ∀j ∈ [d], (1)

yi ∈ [0,1] ∀i ∈ [n]. (2)

The following claim shows that the LP above is a valid relaxation for the stochastic
k-set-packing problem.

Claim 1 The optimal value for (LP1) is an upper bound on any (adaptive) algorithm
for stochastic k-set-packing.

Proof Let pi be the probability that an adaptive strategy A packs item i. To show
the claim, it suffices to show that pis satisfy the constraints (1) for any adaptive
strategy A. Consider the j th constraint. Conditioned on any instantiation of all items,
A can pack at most bj items for which μi(j) = 1, since A is a safe policy. Hence
these constraints hold unconditionally as well, which implies that any valid strategy
satisfies (1). �
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Let y∗ denote an optimal solution to this linear program, which in turn gives us
an upper bound on any adaptive (safe) strategy. Our rounding algorithm proceeds as
follows. Fix a constant α ≥ 1, to be specified later. The algorithm picks a uniformly
random permutation π : [n] → [n] on all columns, and probes only a subset of the
columns as follows. At any point in the algorithm, column c is safe iff there is positive
residual capacity in all the coordinates in the support of c—in other words, irrespec-
tive of the instantiation of Sc, it can be feasibly packed with the previously chosen
columns. The algorithm inspects columns in the order of π , and whenever it is safe to
probe the next column c ∈ [n], it does so with probability yc

α
. Note that the algorithm

skips all columns that are unsafe at the time they appear in π .
We now prove the first part of Theorem 1 by showing that this algorithm is a 2k-

approximation for a suitable value of α. For any column c ∈ [n], let {Ic,�}k�=1 denote
the indicator random variables for the event that the �th constraint in the support of c

is tight at the time when c is considered under the random permutation π . Note that
the event “column c is safe when considered” is precisely

∧k
�=1 ¬Ic,�. By a trivial

union bound, the Pr[ c is safe ] ≥ 1 − ∑k
�=1 Pr[Ic,�].

Lemma 1 For any column c ∈ [n] and index � ∈ [k], Pr[Ic,�] ≤ 1
2α

.

Proof Let j ∈ [d] be the �th constraint in the support of c. Let U
j
c denote the usage

of constraint j , when column c is considered (according to π ). We have:

E[Uj
c ] =

n∑

a=1

Pr[ column a appears before c AND a is probed ] · μa(j),

≤
n∑

a=1

Pr[ column a appears before c ] · ya

α
· μa(j),

=
n∑

a=1

ya

2α
· μa(j),

≤ bj

2α
.

Since Ic,� = {Uj
c ≥ bj }, Markov’s inequality implies that

Pr[Ic,�] ≤ E[Uj
c ]/bj ≤ 1

2α
. �

Again using the trivial union bound, the probability that a particular column c is
safe when considered under π is at least 1 − k

2α
, and thus the probability of actually

probing c is at least yc

α
(1− k

2α
). Finally, by linearity of expectations (since the instan-

tiation of item c is independent of the event that it is probed) the expected profit is at
least 1

α
(1 − k

2α
) · ∑n

c=1 wc · yc. Setting α = k implies an expected profit of at least
1

2k
· ∑c wcyc, which proves the first part of Theorem 1.
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2.1 Special Case: Monotone Column Outcomes

We now consider a special case of stochastic k-set packing where the outcomes of
each column e form a total order w.r.t. the vector dominance relation; i.e. for any
column i ∈ [n] and outcomes a, b ∈ {0,1}d for column i, either a ≤ b or b ≤ a

coordinate-wise. Observe that this is true for the stochastic matching problem. The
algorithm for monotone column outcomes is identical to the one for the general case
when we set parameter α = 1. We show below that this algorithm achieves a k + 1
approximation; this bound nearly matches the LP integrality gap of k − 1 + 1

k
for

even deterministic k-set packing [13].
As above, consider the indicator random variables {Ic,�}k�=1 for each column

c ∈ [n]. The improvement for the monotone-outcome case comes from the follow-
ing strengthened bound on Pr[∧�(¬Ic,�)] which is obtained via the FKG inequality
[2, Theorem 6.2.1]. Given a vector X = {X1, . . . ,Xn} of independent events and an
event F which is a function of X, we say F is an increasing (decreasing) event if
for any vector X that F(X) holds, F(Y ) also holds when Yi ≥ Xi ∀i (Xi ≥ Yi ∀i).
The FKG inequality says that for any collection of increasing (decreasing) events
F1, . . . ,Fk , it holds that Pr[∧k

i=1 Fi] ≥ ∏k
i=1 Pr[Fi].

Lemma 2 For any column c ∈ [n], Pr[∧�(¬Ic,�)] ≥ 1
k+1 .

Proof We can assume that the random permutation π is chosen by the following
random experiment: For each column e, we pick independently and uniformly at
random a real number ae ∈ [0,1]. The columns are then sorted in increasing order of
these numbers to obtain π .

We first condition on ac = x, and bound Pr[∧�(¬Ic,�)|ac = x]. For each column
e ∈ [n] \ {c}, let the random variable Be = 1 if ae ≤ x and Be = 0 otherwise. Let
Ze be the random variable corresponding to the random outcome of column e, with
values consistent with the total-order of its outcomes. Let Ye be the indicator random
variable that is 1 w.p. ye. Observe that random variables {Be,Ze,Ye|e ∈ [n] \ {c}} are
mutually independent. Since the outcomes of each column e forms a total ordering,
we can see that ¬Ic,� (for each � ∈ [k]) is a decreasing function of {Be,Ze,Ye|e ∈
[n] \ {c}}. Therefore, by the FKG inequality, we have

Pr

[∧

�

(¬Ic,�) | ac = x

]
≥

∏

�

Pr[(¬Ic,�) | ac = x]. (3)

Claim 2 For any column c ∈ [n] and index � ∈ [k], Pr[Ic,� | ac = x] ≤ x.

Proof Let j ∈ [d] be the �th constraint in the support of c. Let U
j
c denote the usage

of constraint j , when column c is considered (according to π ). Then,

E[Uj
c | ac = x] =

n∑

e=1

Pr[ae < x AND e is probed ] · μe(j),

=
n∑

e=1

Pr[ae < x ] · ye · μe(j),
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=
n∑

e=1

x · ye · μe(j),

≤ x · bj .

Since Ic,� = {Uj
c ≥ bj }, Markov’s inequality implies that Pr[Ic,� | ac = x] ≤

E[Uj
c |ac=x]
bj

≤ x. �

Now using Inequality (3) and Claim 2, we have that

Pr

[∧

�

(¬Ic,�)

]
=

∫ 1

0
Pr

[∧

�

(¬Ic,�) | ac = x

]
dx ≥

∫ 1

0

∏

�

Pr[(¬Ic,�) | ac = x] dx

≥
∫ 1

0

∏

�

(1 − x)dx ≥
∫ 1

0
(1 − x)k dx = 1

1 + k
.

This completes the proof of Lemma 2. �

Now, the probability of actually probing column c is at least yc · Pr[∧�(¬Ic,�)] ≥
yc

k+1 . Finally, by linearity of expectations (since the instantiation of item c is indepen-

dent of the event that it is probed) the expected profit is at least 1
k+1 · ∑n

c=1 wc · yc.
This proves the second part of Theorem 1.

2.2 Safe Versus Unsafe Policies

Here we show that our algorithm’s policy (which is safe) achieves a good approxi-
mation even relative to the optimal unsafe policy. Recall that an item can be probed
in a safe policy only if there is zero probability of violating any capacity constraint.
Whereas an unsafe policy may probe an item even if there is positive probability of
violating capacity—but if capacity is violated then no profit is received from that
item and the policy ends. For a given set of items (with their distributions) and ca-
pacity vector b′ ∈ Z

d+, let Safe(b′) (resp. Unsafe(b′)) denote the value of the optimal
safe (resp. unsafe) policy with capacity b′; LP(b′) the optimal value of (LP1) with
right hand side in (1) being b′; and ALG(b′) the value obtained by our algorithm. Let
b ∈ Z

d+ denote the capacity vector for the given instance; i.e. bj ≥ 1 for all j ∈ [d]
(if bj was allowed to be 0 then clearly any safe policy gets zero value from items
participating in this constraint j , but an unsafe policy can get positive value). We
have:

Unsafe(b) ≤ Safe(b + 1) ≤ LP(b + 1) ≤ 2 · LP

(⌈
b + 1

2

⌉)
≤ 2 · LP(b)

where 1 is the all-ones vector. The first inequality uses the fact that each size lies
in {0,1}, the second is by Claim 1, the third is by scaling (since b+1

2 ≤ 
 b+1
2 �),

and the last inequality uses b ∈ Z
d+. Finally, the analysis in the previous subsec-

tions implies that ALG(b) ≥ 1
2k

· LP(b) in general; and ALG(b) ≥ 1
k+1 · LP(b) in
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case of monotone column-outcomes. Combined with the above inequality we have
ALG(b) ≥ 1

4k
· Unsafe(b), and ALG(b) ≥ 1

2k+2 · Unsafe(b) in the monotone column-
outcomes case.

3 Stochastic Matching

We consider the following stochastic matching problem. The input is an undirected
graph G = (V ,E) with a weight we and a probability value pe on each edge
e ∈ E. In addition, there is an integer value tv for each vertex v ∈ V (called patience
parameter). Initially, each vertex v ∈ V has patience tv . At each step in the algorithm,
any edge e(u, v) such that u and v have positive remaining patience can be probed.
Upon probing edge e, one of the following happens: (1) with probability pe , vertices
u and v get matched and are removed from the graph (along with all adjacent edges),
or (2) with probability 1−pe, the edge e is removed and the remaining patience num-
bers of u and v get reduced by 1. An algorithm is an adaptive strategy for probing
edges: its performance is measured by the expected weight of matched edges. The
unweighted stochastic matching problem is the special case when all edge-weights
are uniform.

Consider the following linear program: as usual, for any vertex v ∈ V , ∂(v) de-
notes the edges incident to v. Variable ye denotes the probability that edge e = (u, v)

gets probed in the adaptive strategy, and xe = pe · ye denotes the probability that u

and v get matched in the strategy.

maximize
∑

e∈E

we · xe (LP2)

subject to
∑

e∈∂(v)

xe ≤ 1 ∀v ∈ V, (4)

∑

e∈∂(v)

ye ≤ ti ∀v ∈ V, (5)

xe = pe · ye ∀e ∈ E, (6)

0 ≤ ye ≤ 1 ∀e ∈ E. (7)

3.1 Weighted Stochastic Matching: Bipartite Graphs

In this section, we consider the stochastic matching problem on bipartite graphs. In
fact, the algorithm produces a matching-probing strategy whose expected value is a
constant fraction of the optimal value of (LP2) (which was for edge-probing).

Algorithm First, we find an optimal fractional solution (x, y) to (LP2) and round y

to identify a set of interesting edges Ê. Then we use König’s Theorem [28, Chap. 20]
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to partition Ê into a small collection of matchings M1, . . . ,Mh. Finally, these match-
ings are then probed in random order. If we are only interested in edge-probing strate-
gies, probing the edges in Ê in random order would suffice. We will refer to this
algorithm as ROUND-COLOR-PROBE:

1. (x, y) ← optimal solution to (LP2)
2. ŷ ← round y to an integral solution using GKSP
3. Ê ← {e ∈ E : ŷe = 1}
4. M1, . . . ,Mh ← optimal edge coloring of Ê

5. For each M in {M1, . . . ,Mh} in random order, do:
a. probe {(u, v) ∈ M : u and v are unmatched}

The algorithm above uses the GKSP procedure of Gandhi et al. [14], which we
describe next.

The GKSP Algorithm We state some properties of the dependent rounding frame-
work of Gandhi et al. [14] that are relevant in our context.

Theorem 7 (See [14]) Let (A,B;E) be a bipartite graph and ze ∈ [0,1] be frac-
tional values for each edge e ∈ E. The GKSP algorithm is a polynomial-time random-
ized procedure that outputs values Ze ∈ {0,1} for each e ∈ E such that the following
properties hold:

P1. Marginal distribution. For every edge e, Pr[Ze = 1] = ze .
P2. Degree preservation. For every vertex u ∈ A ∪ B ,

∑
e∈∂(u) Ze ≤ 
∑e∈∂u ze�.

P3. Negative correlation. For any vertex u and any set of edges S ⊆ ∂(u):

Pr

[∧

e∈S

(Ze = 1)

]
≤

∏

e∈S

Pr[Ze = 1].

We note that the GKSP algorithm in fact guarantees stronger properties than the
ones stated above. For the purpose of analyzing ROUND-COLOR-PROBE, however,
the properties stated above will suffice.

Feasibility Let us first argue that our algorithm outputs a feasible strategy. If we
care about feasibility in the edge-probing model, we only need to show that each
vertex u is not probed more than tu times. The following lemma shows that:

Lemma 3 For every vertex u, ROUND-COLOR-PROBE probes at most tu edges inci-
dent on u.

Proof Vertex u is matched in |{e ∈ ∂Ê(u)}| matchings. This is an upper bound on the
number of times edges incident on u probed. Hence we just need to show that this
quantity is at most tu. Indeed,

∣∣{e ∈ ∂Ê(u)
}∣∣ =

∑

e∈∂(u)

ŷe ≤
⌈ ∑

e∈∂(u)

ye

⌉
≤ tu,
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where the first inequality follows from the degree preservation property of Theorem 7
and the second inequality from the fact that y is a feasible solution to (LP2). �

Let us argue that the strategy is also feasible under the matching-probing model.
Recall that in the latter model we are given an additional parameter k (which without
loss of generality we can assume to be at most maxv∈V tu) and we can probe edges in
k round, with each round forming a matching. Let Ê be the set of edges in the support
of ŷ, i.e., Ê = {e ∈ E | ŷe = 1}. Let h = maxv∈V degÊ(v) ≤ maxv∈V tv . König’s The-
orem allows us to decomposed Ê into h matchings. Therefore, the probing strategy
devised by the algorithm is also feasible in the matching-probing model.

Performance Guarantee Let us focus our attention on some edge e = (u, v) ∈ E.
Our goal is to show that there is good chance that the algorithm will indeed probe e.
We first analyze the probability of e being probed conditioned on Ê. Notice that the
algorithm will probe e if and only if all previous probes incident on u and v were
unsuccessful; otherwise, if there was a successful probe incident on u or v, we say
that e was blocked.

Let π be a permutation of the matchings M1, . . . ,Mh. We extend this ordering to
the set Ê by listing the edges within a matching in some arbitrary but fixed order. Let
us denote by B(e,π) ⊆ Ê the set of edges incident on u or v that appear before e

in π . It is not hard to see that

Pr[e was not blocked | Ê] ≥ Eπ

[ ∏

f ∈B(e,π)

(1 − pf ) | Ê
]
; (8)

here we assume that
∏

f ∈B(e,π)(1 − pf ) = 1 when B(e,π) = ∅.
Notice that in (8) we only care about the order of edges incident on u and v. Fur-

thermore, the expectation does not range over all possible orderings of these edges,
but only those that are consistent with some matching permutation. We call this type
of restricted ordering random matching ordering and we denote it by π ; similarly, we
call an unrestricted ordering random edge ordering and we denote it by σ . Our plan
is to study first the expectation in (8) over random edge orderings and then to show
that the expectation can only increase when restricted to range over random matching
orderings.

The following simple lemma is useful in several places.

Lemma 4 Let r and pmax be positive real values. Consider the problem of minimizing∏t
i=1(1 − pi) subject to the constraints

∑t
i=1 pi ≤ r and 0 ≤ pi ≤ pmax for i =

1, . . . , t . Denote the minimum value by η(r,pmax). Then,

η(r,pmax) = (1 − pmax)

⌊
r

pmax

⌋(
1 −

(
r −

⌊
r

pmax

⌋
pmax

))
≥ (1 − pmax)

r/pmax .

Proof Suppose the contrary that the quantity is minimized but there are two pis
that are strictly between 0 and pmax. W.l.o.g., they are p1,p2 and p1 > p2 Let
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ε = min(pmax − p1,p2). It is easy to see that

(1 − (p1 + ε))(1 − (p2 − ε))

t∏

i=3

(1 − pi)

−
t∏

i=1

(1 − pi) = ε(p2 − p1 − ε)

t∏

i=3

(1 − pi) < 0.

This contradicts the fact the quantity is minimized. Hence, there is at most one pi

which is strictly between 0 and pmax.
The last inequality holds since 1 − b ≥ (1 − a)b/a for any 0 ≤ b ≤ a ≤ 1. �

Let ∂Ê(e) be the set of edges in Ê incident on either endpoint of e excluding e

itself.

Lemma 5 Let e be an edge in Ê and let σ be a random edge ordering. Let pmax =
maxf ∈Ê pf . Assume that

∑
f ∈∂Ê(e) pf = r . Then,

Eσ

[ ∏

f ∈B(e,σ )

(1 − pf ) | Ê
]

≥
∫ 1

0
η(xr, xpmax) dx.

Proof We claim that the expectation can be written in the following continuous form:

Eσ

[ ∏

f ∈B(e,σ )

(1 − pf ) | Ê
]

=
∫ 1

0

∏

f ∈∂Ê(e)

(1 − xpf )dx.

The lemma easily follows from this and Lemma 4.
To see the claim, we consider the following random experiment: For each edge

f ∈ ∂(e), we pick uniformly at random a real number af in [0,1]. The edges are
then sorted according to these numbers. It is not difficult to see that the experi-
ment produces uniformly random orderings. For each edge f , let the random variable
Af = 1 − pf if f ∈ B(e,σ ) and Af = 1 otherwise. Hence, we have

Eσ

[ ∏

f ∈B(e,σ )

(1 − pf ) | Ê
]

=
∫ 1

0
E

[ ∏

f ∈∂Ê(e)

Af | ae = x

]
dx

=
∫ 1

0

∏

f ∈∂Ê(e)

E[Af | ae = x] dx

=
∫ 1

0

∏

f ∈∂Ê(e)

(
x(1 − pf ) + (1 − x)

)
dx

=
∫ 1

0

∏

f ∈∂Ê(e)

(1 − xpf ) dx.
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The second equality holds since the Af variables, conditional on ae = x, are inde-
pendent. �

Lemma 6 Let ρ(r,pmax) = ∫ 1
0 η(xr, xpmax) dx. For any r,pmax > 0, we have

1. ρ(r,pmax) is convex and decreasing on r .
2. ρ(r,pmax) ≥ 1

r+pmax
· (1 − (1 − pmax)

1+ r
pmax ) > 1

r+pmax
· (1 − e−r ).

Proof To see the first part, let us consider the function values on discrete points r =
pmax,2pmax, . . . . Let F(x) = 1

x
(1−cx) where c = 1−pmax. From Lemma 4, we can

easily get that for integral t ,

ρ(tpmax,pmax) =
∫ 1

0
(1 − xpmax)

t dx = 1

pmax(t + 1)
(1 − ct+1) = 1

pmax
F(t + 1).

The function F(x) is a convex function for any 0 < c < 1. Indeed, it is not hard to

prove that d2

dx2 F(x) = 2
x3 + cx(− 2

x3 + 2 lna

x2 − ln2 a
x

) > 0 for any 0 < c < 1. However,

ρ (tpmax,pmax) only coincides with 1
pmax

F(t + 1) at integral values of t . Now, let
us consider the value of ρ(r,pmax) for γpmax < r < (γ + 1)pmax (for some integer
γ ≥ 0):

ρ(r,pmax) =
∫ 1

0
(1 − xpmax)

γ
(
1 − x(r − γpmax)

)
dx. (9)

The key observation is that for fixed values of pmax and γ the right hand side of (9)
is a just linear function of r . The dependency of ρ in terms of r then becomes clear:
it is a piecewise linear function that takes the value F(t + 1)/pmax at abscissa points
tpmax for t ∈ Z≥0. Therefore, ρ is a convex decreasing function of r .

The second part follows easily from Lemma 4:

ρ(r,pmax) =
∫ 1

0
η(xr, xpmax) dx ≥

∫ 1

0
(1 − xpmax)

r/pmax dx

= 1

r + pmax
· (1 − (1 − pmax)

1+ r
pmax

) ≥ 1

r + pmax
· (1 − e−r

)
. �

Lemma 7 Let e = (u, v) ∈ Ê. Let π be a random matching ordering and σ be a
random edge ordering of the edges adjacent to u and v. Then

Eπ

[ ∏

f ∈B(e,π)

(1 − pf ) | Ê
]

≥ Eσ

[ ∏

f ∈B(e,σ )

(1 − pf ) | Ê

]
.

Proof We can think of π as a permutation of bundles of edges: For each matching,
if there are two edges incident on e, we bundle the edges together; if there is a single
edge incident on e this edge is in a singleton bundle by itself. The random edge
ordering σ can be thought as having all edges incident on e in singleton bundles.

Consider the same random experiment as in Lemma 5 except that we only pick
one random number for each bundle. Let G(e) be the set of all bundles incident on e.
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Using the same argument as in Lemma 5, we have

Eπ

[ ∏

f ∈B(e,π)

(1 − pf ) | Ê
]

=
∫ 1

0

∏

g∈G(e)

(
x ·

∏

f ∈g

(1 − pf ) + (1 − x)

)
dx.

But for any bundle g ∈ G(e) and 0 ≤ x ≤ 1, we claim that

x ·
∏

f ∈g

(1 − pf ) + (1 − x) ≥
∏

f ∈g

(1 − xpf ).

For singleton bundles we actually have equality. For a bundle g = {f1, f2}, we have
x(1 − pf1)(1 − pf2) + (1 − x) = 1 − xpf1 − xpf2 + xpf1pf2 ≥ 1 − xpf1 − xpf2 +
x2pf1pf2 = (1 − xpf1)(1 − xpf2). This completes the proof. �

As we shall see shortly, if
∑

f ∈∂Ê(e) pe is small then the probability that e is
not blocked is large. Because of the marginal distribution property of the GKSP
rounding procedure, we can argue that this quantity is small in expectation since∑

f ∈∂(e) peye ≤ 2 due to the fact that y is a feasible solution to (LP2). This, however,
is not enough; in fact, for our analysis to go through, we need a slightly stronger
property.

Lemma 8 For every edge e,

E

[ ∑

f ∈∂Ê(e)

pf | e ∈ Ê

]
≤

∑

f ∈∂(e)

pf yf .

Proof Let u be an endpoint of e.

E

[ ∑

f ∈∂Ê(u)−e

pf | e ∈ Ê

]
=

∑

f ∈∂(u)−e

Pr[ ŷf = 1 | ŷe = 1] · pf

≤
∑

f ∈∂(u)−e

Pr[ ŷf = 1 ] · pf [by Theorem 7 P3]

=
∑

f ∈∂(u)−e

yf pf [by Theorem 7 P1].

The same bound holds for the other endpoint of e. Adding the two inequalities we
get the lemma. �

Everything is in place to derive a bound the expected weight of the matching found
by our algorithm.

Theorem 8 If G is bipartite then ROUND-COLOR-PROBE is a 1/ρ(2,pmax) approxi-
mation under the edge- and matching-probing model, where ρ is defined in Lemma 6.
The worst ratio is attained at pmax = 1, where it is 3. The ratio tends to 2

1−e−2 as pmax
tends to 0.
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Proof Recall that the optimal value of (LP2) is exactly
∑

e∈E weyexe. The expected
weight of the matching found by the algorithm is

E[ALG] =
∑

e∈E

wepe Pr[e ∈ Ê] · Pr[e was not blocked | e ∈ Ê]

=
∑

e∈E

wepeye · Pr[e was not blocked | e ∈ Ê] [by Theorem 7 P1]

≥
∑

e∈E

wepeye · Eπ

[ ∏

f ∈B(e,π)

(1 − pf ) | e ∈ Ê

]
[by (8)]

≥
∑

e∈E

wepeye · Eσ

[ ∏

f ∈B(e,σ )

(1 − pf ) | e ∈ Ê

]
[by Lemma 7]

≥
∑

e∈E

wepeye · E

[
ρ

( ∑

f ∈∂Ê(e)

pf ,pmax

)
| e ∈ Ê

]
[by Lemma 5]

≥
∑

e∈E

wepeye · ρ
(

E

[ ∑

f ∈∂Ê(e)

pf | e ∈ Ê

]
,pmax

)
[by Jensen’s inequality]

≥
∑

e∈E

wepeye · ρ
( ∑

f ∈∂(e)

yf pf ,pmax

)
[by Lemma 8]

≥
∑

e∈E

wepeye · ρ(2,pmax) [y is feasible for (LP2)].

Notice that we are able to use Jensen’s inequality because, as shown in Lemma 6,
ρ(r,pmax) is a convex and decreasing function of r . The last two inequalities also
use the fact that ρ is decreasing.

It can be checked directly that ρ(2,pmax) is maximized at pmax = 1 where it is 3.
Moreover ρ(2,pmax) → (1 − e−2)/2 as pmax tends to 0. �

This proves the second parts of Theorem 2 and Theorem 3.

3.2 Weighted Stochastic Matching: General Graphs

We now present an algorithm for weighted stochastic matching in general graphs
that builds on the algorithm for the bipartite case. The basic idea is to solve (LP2),
randomly partition the vertices of G into two sets A and B , and then run ROUND-
COLOR-PROBE on the bipartite graph induced by (A,B). For the analysis to go
through, it is crucial that we use the already computed fractional solution instead of
solving again (LP2) for the new bipartite graph in the call to ROUND-COLOR-PROBE.

1. (x, y) ← optimal solution to (LP2)
2. randomly partition vertices into A and B

3. run ROUND-COLOR-PROBE on the bipartite graph and the fractional solution in-
duced by (A,B)

Theorem 9 For general graphs there is a 2/ρ(1,pmax) approximation under the
edge- and matching-probing model, where ρ is defined in Lemma 6. The worst ratio
is attained at pmax = 1, where it is 4. The ratio tends to 2

1−e−1 as pmax tends to 0.



750 Algorithmica (2012) 63:733–762

Proof The analysis is very similar to the bipartite case. Essentially, conditional on a
particular outcome for the partition (A,B), all the lemmas derived in the previous
section hold. In other words, the same derivation done in the proof of Theorem 8
yields:

E[ALG | (A,B)] ≥
∑

e∈(A,B)

wepeye · ρ
( ∑

f ∈∂A,B(e)

pf yf ,pmax

)
,

where ∂A,B(e) = ∂(e) ∩ (A,B).
Hence, the expectation of algorithm’s performance is:

E[ALG ] ≥
∑

e∈E

we pe ye Pr[e ∈ (A,B)]

· E

[
ρ

( ∑

f ∈∂A,B(e)

pf yf , pmax

)
| e ∈ (A,B)

]
,

≥
∑

e∈E

we pe ye

1

2
· ρ

(
E

[ ∑

f ∈∂A,B(e)

pf yf | e ∈ (A,B)

]
, pmax

)
,

≥
∑

e∈E

we pe ye

1

2
· ρ

( ∑

f ∈∂(e)

pf yf

2
, pmax

)
,

≥
∑

e∈E

we pe ye

1

2
· ρ(1, pmax),

where the second inequality follows from Jensen’s inequality and the fact that
ρ(r,pmax) is a convex decreasing function of r . Finally, noting that

∑
e∈E we pe ye is

a lower bound on the value of the optimal strategy, the theorem follows. �

This proves the first parts of Theorem 2 and Theorem 3.

4 Stochastic Online Matching with Timeouts

As mentioned in the introduction, the stochastic online matching with timeouts is
best imagined as selling a finite set of goods to buyers that arrive over time. The input
to the problem consists of a bipartite graph G = (A,B,A × B), where A is the set
of items that the seller has to offer, with exactly one copy of each item, and B is a
set of buyer types/profiles. For each buyer type b ∈ B and item a ∈ A, pab denotes
the probability that a buyer of type b will like item a, and wab denotes the revenue
obtained if item a is sold to a buyer of type b. Each buyer of type b ∈ B also has a
patience parameter tb ∈ Z+. There are n buyers arriving online, with eb ∈ Z denoting
the expected number of buyers of type b, with

∑
eb = n. Let D denote the induced

probability distribution on B by defining PrD[b] = eb/n. All the above information
is given as input.
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The stochastic online model is the following: At each point in time, a buyer ar-
rives, where her type b ∈D B is an i.i.d. draw from D. The algorithm now shows
her up to tb distinct items one-by-one: the buyer likes each item a ∈ A shown to her
independently with probability pab . The buyer purchases the first item that she is
offered and likes; if she buys item a, the revenue accrued is wab . If she does not like
any of the items shown, she leaves without buying. The objective is to maximize the
expected revenue.

We get the stochastic online matching problem of Feldman et al. [12] if we have
wab = pab ∈ {0,1}, in which case we need only consider tb = 1. Their focus was on
beating the 1−1/e-competitiveness known for worst-case models [7, 15, 22, 23, 27];
they gave a 0.67-competitive algorithm that works for the unweighted case with high
probability. On the other hand, our results are for the weighted case (with preference-
uncertainty and timeouts), but only in expectation. Furthermore, in our extension, due
to the presence of timeouts (see Sect. 1.2), any algorithm that provides a guarantee
who must necessarily have a high competitive ratio.

By making copies of buyer types, we may assume that eb = 1 for all b ∈ B , and
D is uniform over B . For a particular run of the algorithm, let B̂ denote the actual
set of buyers that arrive during that run. Let Ĝ = (A, B̂,A × B̂), where for each
a ∈ A and b̂ ∈ B̂ (and suppose its type is some b ∈ B), the probability associated
with edge (a, b̂) is pab and its weight is wab . Moreover, for each b̂ ∈ B̂ (with type,
say, b ∈ B), set its patience parameter to t

b̂
= tb . We will call this the instance graph;

the algorithm sees the vertices of B̂ in random order, and has to adaptively find a
large matching in Ĝ.

It now seems reasonable that the algorithm of Sect. 2 (specialized to stochastic
matching) should work here. But the algorithm does not know Ĝ (the actual in-
stantiation of the buyers) up front, it only knows G, and hence some more work
is required to obtain an algorithm. Further, as was mentioned in the preliminaries,
we use OPT to denote the optimal adaptive strategy (instead of the optimal offline
matching in Ĝ as was done in [12]), and compare our algorithm’s performance with
this OPT.

The Linear Program For a graph H = (A,C,A × C) with each edge (a, c) having
a probability pac and weight wac , and vertices in C having patience parameters tj ,
consider the LP(H):

maximize
∑

a∈A,c∈C

wac · xac (LP3)

subject to
∑

c∈C

xac ≤ 1 ∀a ∈ A, (10)

∑

a∈A

xac ≤ 1 ∀c ∈ C, (11)

∑

a∈A

yac ≤ tc ∀c ∈ C, (12)
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xac = pac · yac ∀a ∈ A, c ∈ C, (13)

yac ∈ [0,1] ∀a ∈ A, c ∈ C. (14)

Note that this LP is very similar to the one in Section 3, but the vertices in A do
not have timeout values. Let LP(H) denote the optimal value of this LP.

The algorithm

1. Before any buyers arrive, solve the LP on the expected graph G to get values y∗.
2. When any buyer b̂ (of type b) arrives online:

a. If b̂ is the first buyer of type b, consider the items a ∈ A in u.a.r. order. One by
one, offer each item a (that is still unsold) to b̂ independently with probability
y∗
ab/α; stop if either tb offers are made or b̂ purchases any item.

b. If b̂ is not the first arrival of type b, do not offer any items to b̂.

In the following, we prove that our algorithm achieves a constant approximation
to stochastic online matching with timeouts. The first lemma show that the expected
value obtained by the best online adaptive algorithm is bounded above by E[LP(Ĝ)].
Lemma 9 The optimal value OPT of the given instance is at most E[LP(Ĝ)], where
the expectation is over the random draws to create Ĝ.

Proof Consider an algorithm that is allowed to see the instantiation B̂ of the buy-
ers before deciding on the selling strategy—the expected revenue of the best such
algorithm is clearly an upper bound on OPT. Given any instantiation B̂ , the expected
revenue of the optimal selling strategy is at most LP(Ĝ) (see e.g. Claim 1). The claim
follows by taking an expectation over B̂ . �

Lemma 10 Our expected revenue is at least (1 − 1
e
) 1

α
(1 − 1

α
− 2

3α2 ) · LP(G).

Proof For any buyer-type b ∈ B , in this proof, b̂ refers to the first type-b buyer (if
any). For each b ∈ B , let r.v. Tb ∈ [n] ∪ {∞} denote the earliest arrival time of a type-
b buyer; if there is no type-b arrival then Tb = ∞. Note that our algorithm obtains
positive revenue only for buyers {b̂ | b ∈ B, Tb < ∞}; let Rb denote the revenue ob-
tained from buyer b̂ (if any). The expected revenue of the algorithm is E[∑b∈B Rb].
We now estimate E[Rb] for a fixed b ∈ B .

Let Ab ≡ (Tb < ∞) denote the event that there is some type-b arrival in the
instantiation B̂ . Since each arrival is i.i.d. from the uniform distribution over B ,
Pr[Ab] = 1 − (1 − 1/n)n ≥ 1 − 1

e
. In the following, we condition on Ab and bound

E[Rb | Ab]. Hence we assume that buyer b̂ exists.
For any vertex a ∈ A, let Ma denote the indicator r.v. that a is already matched

before time Tb; and Oa (resp. M ′
a) the indicator r.v. that b̂ is timed-out (resp. already

matched) when item a is considered for offering to b̂. Now,

Pr[ item a offered to b̂ | Ab ]
= (1 − Pr[Ma ∪ M ′

a ∪ Oa | Ab ]) · yab

α

≥ (1 − Pr[Ma | Ab ] − Pr[M ′
a ∪ Oa | Ab ]) · yab

α
. (15)
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Claim 3 For any a ∈ A and b ∈ B , Pr[Ma | Ab ] ≤ 1
2α

.

Proof For any v ∈ B \ {b}, let I v
b denote the indicator r.v. for the event Tv < Tb . We

have:

Pr[Ma | Ab ] =
∑

v∈B\{b}
Pr[ type-v buyer is matched to a before time Tb | Ab ] (16)

=
∑

v∈B\{b}
Pr[ I v

b | Ab ] · Pr[ v̂ matched to a | I v
b , Ab ] (17)

≤
∑

v∈B\{b}
Pr[ I v

b | Ab ] · xav

α
≤ 1

2

∑

v∈B\{b}

xav

α
≤ 1

2α
, (18)

where the first inequality follows from the fact that even after the algorithm has con-
sidered an edge (a, v), the probability of matching (a, v) is yav

α
· pav , the last in-

equality uses LP-constraint (10) for graph G, and the second last inequality uses
Pr[ I v

b | Ab ] ≤ 1
2 (for v ∈ B \ {b}), which we show next.

Note that event I v
b ∧ Ab corresponds to (Tv < Tb < ∞); and event Ab con-

tains both (Tv < Tb < ∞) and (Tb < Tv < ∞). By symmetry, Pr[Tv < Tb < ∞] =
Pr[Tb < Tv < ∞], which implies:

Pr[ I v
b | Ab ] = Pr[Tv < Tb < ∞]

Pr[Ab] ≤ Pr[Tv < Tb < ∞]
Pr[ (Tv < Tb < ∞) ∨ (Tb < Tv < ∞) ] = 1

2
.

This completes the proof of Claim 3. �

Claim 4 For any a ∈ A and b ∈ B , Pr[M ′
a ∪ Oa | Ab ] ≤ 1

2α
+ 2

3α2 .

Proof It is easy to prove an upper bound of 1
α

via Markov’s inequality. Since

items offered to b̂ are considered in u.a.r. order, we obtain Pr[Oa | Ab ] ≤ 1
2α

and
Pr[M ′

a | Ab ] ≤ 1
2α

, using LP-constraints (12) and (11) respectively. This suffices to
get a weaker constant approximation in Theorem 4.

Proving the stronger bound claimed above requires some case analysis:

• Suppose tb = 1. Here we have M ′
a ⊆ Oa , so Pr[M ′

a ∪ Oa | Ab ] =
Pr[Oa | Ab ] ≤ 1

2α
.

• Suppose tb ≥ 2. In this case we prove Pr[Oa | Ab ] ≤ 2
3α2 using a Chernoff-type

bound (see Claim 5 below). Now by union bound, Pr[M ′
a ∪ Oa | Ab ] ≤ 1

2α
+ 2

3α2 .

In both cases above, the statement in Claim 4 holds. �

Claim 5 Suppose α ≥ e. For any b ∈ B with tb ≥ 2, and any a ∈ A, the probability
that b̂ has timed out when a is considered for offering to b̂ is at most 2

3α2 .

Proof Let t = tb ≥ 2 denote the patience parameter for vertex b, and π the random
order in which items A are considered. Let F = A \ {a}. Then the probability that b̂
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has timed out when a is considered is upper bounded by:
∑

{p1,...,pt }⊆F

Pr[items p1, . . . , pt appear before a in π AND are all offered ] (19)

≤ 1

t ! ·
∑

p1,...,pt∈F

Pr[items p1, . . . , pt appear before f

in π AND are all offered ] (20)

≤ 1

t ! ·
∑

p1,...,pt∈F

Pr[items p1, . . . , pt appear before f in π ] ·
t∏

�=1

yp�

α

(21)

= 1

(t + 1)! ·
∑

p1,...,pt∈F

t∏

�=1

yp�

α
(22)

= 1

(t + 1)! ·
( ∑

p∈F

yp

α

)t

(23)

≤ 1

(t + 1)! ·
(

t

α

)t

. (24)

In the above, the summation in (19) is over unordered t-tuples whereas the subse-
quent ones (20)–(22) are over ordered tuples (with repetition). Inequality (21) uses
the fact that for any item g, the probability of offering g conditioned on π and the
outcomes until g is considered, is at most yg/α. Equation (22) follows from the fact
that probability that f is the last to appear among {p1, . . . , pt , f } in a random per-
mutation π is 1

t+1 . Finally, (24) follows from the LP constraint (12) at b.

Let f (t) := 1
(t+1)! · ( t

α

)t . We claim that f (t) ≤ 2
3α2 when α ≥ e and t ≥ 2, which

would prove the claim. Note that this is indeed true for t = 2 (in fact with equality).
Also f (t + 1) ≤ f (t) for all t ≥ 2 due to:

f (t + 1)

f (t)
=

(
t + 1

t

)t

· t + 1

t + 2
· 1

α
≤ e

α
≤ 1.

Thus we obtain the desired upper bound. �

Now applying Claims 3 and 4 to (15), we obtain:

Pr[ item a offered to b̂ | Ab ] ≥ 1

α

(
1 − 1

α
− 2

3α2

)
· yab.

This implies:

E[Rb | Ab] =
∑

a∈A

wab · pab · Pr[ item a offered to b̂ | Ab ]

≥ 1

α

(
1 − 1

α
− 2

3α2

)∑

a∈A

wab · xab.
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Since Pr[ Ab ] ≥ 1− 1
e
, we also have E[Rb] ≥ (1− 1

e
) 1

α
(1− 1

α
− 2

3α2 )
∑

a∈A wab ·xab .
Finally, the expected revenue obtained by the algorithm is:

∑

b∈B

E[Rb] ≥
(

1 − 1

e

)
1

α

(
1 − 1

α
− 2

3α2

)
· LP(G).

This proves Lemma 10. �

Note that we have shown that E[LP(Ĝ)] is an upper bound on OPT, and that we
can get a constant fraction of LP(G). The final lemma relates these two, namely the
LP-value of the expected graph G (computed in Step 1) to the expected LP-value of
the instantiation Ĝ; the proof uses a simple but subtle duality-based argument.

Lemma 11 LP(G) ≥ E[LP(Ĝ)].

Proof Consider the dual of the linear program (LP3).

min
∑

a∈A

αa +
∑

c∈C

(αc + tc · βc) +
∑

a∈A,c∈C

zac (25)

zac + pac · (αa + αc) + βc ≥ wac · pac ∀a ∈ A, c ∈ C (26)

α,β, z ≥ 0. (27)

Let (α,β, z) denote the optimal dual solution corresponding to graph G; note that its
objective value equals LP(G) by strong duality. For any instantiation Ĝ, define dual
solution (α̂, β̂, ẑ) as follows:

• For all a ∈ A, α̂a = αa .
• For each c ∈ B̂ (of type b), α̂c = αb and β̂c = βb .
• For each a ∈ A and c ∈ B̂ (of type b), ẑac = zab .

Note that (α̂, β̂, ẑ) is a feasible dual solution corresponding to the LP on Ĝ: there is
constraint for each a ∈ A and c ∈ B̂ , which reduces to a constraint for (α,β, z) in
the dual corresponding to G. By weak duality, the objective value for (α̂, β̂, ẑ) is an
upper-bound on LP(Ĝ). For each b ∈ B , let Nb denote the number of type b buyers
in the instantiation B̂; note that E[Nb] = 1 by definition of distribution D. Then the
dual objective for (α̂, β̂, ẑ) satisfies:

∑

a∈A

αa +
∑

b∈B

Nb · (αb + tb · βb) +
∑

a∈A,b∈B

Nb · zab ≥ LP(Ĝ).

Taking an expectation over B̂ , we obtain:

E[LP(Ĝ)] ≤
∑

a∈A

αa +
∑

b∈B

E[Nb] ·
(

αb + tb · βb +
∑

a∈A

zab

)

=
∑

a∈A

αa +
∑

b∈B

(αb + tb · βb) +
∑

a∈A,b∈B

zab = LP(G).

This proves the lemma. �
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Applying Lemmas 9, 10 and 11, and setting α = 2√
3−1

, completes Theorem 4’s
proof.

5 Final Remarks

An extended abstract of this paper appeared in the Proceedings of the 18th Annual
European Symposium on Algorithms [4]. The bounds presented here in Sect. 3 are
slightly better than those claimed in the extended abstract. It remains an open question
to obtain nontrivial lower bounds for the stochastic matching problem.

Acknowledgements We would like to thank Aravind Srinivasan for helpful discussions.

Appendix A: Cardinality Constrained Multiple Round Stochastic Matching

We now consider the cardinality constrained multiple round stochastic matching; this
was also defined in [9]. In this problem, we arrange for at most C disjoint pairs to date
each other simultaneously (constrained by the fact that each person is involved in at
most one date at any time), and have k days in which all these dates must happen—
again, we want to maximize the expected weight of the matched pairs.

More formally, we can probe several edges concurrently—a “round” may involve
probing any set of edges that forms a matching of size at most C. Given k and C,
the goal is to find an adaptive strategy for probing edges in rounds such that we
use at most k rounds, and maximize the expected weight of matched edges during
these k rounds. As before, one can probe edges involving individual i at most ti
times, and only if i is not already matched by the algorithm. In this section, we give a
constant-factor approximation for this problem, improving over the previously known
O(min{k,C})-approximation [9] (which only works for the unweighted case).

Our approach, as in the previous sections, is based on linear programming. Using
the same argument in Claim 1, we can show that the optimal value of the following
LP is an upper bound on any (adaptive) algorithm for the multiple round stochastic
matching problem. Below, MC(G) denotes the convex hull of all matchings in G

having size at most C.

maximize
∑

(i,j)∈E

wij ·
k∑

h=1

xh
ij (LP4)

subject to

k∑

h=1

yh
ij ≤ 1 ∀(i, j) ∈ E, (28)

∑

j∈∂(i)

k∑

h=1

yh
ij ≤ ti ∀i ∈ V, (29)
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yh ∈ MC(G) ∀h ∈ [k], (30)

xh
ij = pij · yh

ij ∀(i, j) ∈ E, h ∈ [k], (31)

∑

j∈∂(i)

k∑

h=1

xh
ij ≤ 1 ∀i ∈ V. (32)

Since there is a linear description for MC(G), for which we can separate in poly-
nomial time [28, Corollary 18.10a]), the above LP can be solved in polynomial time
using the Ellipsoid algorithm. To see that this LP is indeed a relaxation of the original
adaptive problem, observe that setting yh

ij to be “probability that (i, j) is probed in
round h by the optimal strategy” defines a feasible solution to the LP with objective
equal to the optimal value of the stochastic matching instance.

Our algorithm first solves the LP to optimality and obtains solution (x, y). Note
that for each h ∈ [k], using the fact that polytope MC(G) is integral and that the
variables yh ∈ MC(G), we can write yh as a convex combination of matchings of
size at most C; i.e., we can find matchings {Mh

� }� and positive values {λh
� }� such that

each Mh
� is a matching in G of size at most C and yh = ∑

λh
� · χ(Mh

� ), where χ(Mh
� )

denotes the characteristic vector corresponding to the edges that the are present in the
matching. (See, e.g. [8], for a polynomial-time procedure.) Fixing the parameter α to
a suitable value to be specified later, the algorithm does the following.

1. for each round h = 1, . . . , k do
a. define the hth matching

P
h :=

{∅ with probability 1 − 1
α
,

Mh
� with probability

λh
�

α
.

b. Probe all edges in P
h that are safe.

We show that this algorithm is a 20-approximation for α = 10, which proves Theo-
rem 6.

As before, an edge (i, j) ∈ E is said to be safe iff (a) (i, j) has not been probed
earlier, (b) neither i nor j is matched, and (c) neither i nor j has timed out.

Lemma 12 For any edge (i, j) ∈ E, and at round h ∈ [k], Pr[(i, j) is safe in
round h ] ≥ 1 − 5

α
.

Proof We will show that the following three statements hold at round h:

i. Pr[ (i, j) has probed ] ≤ 1
α

.
ii. Pr[vertex i is already timed out ] ≤ 1

α
.

iii. Pr[vertex i is already matched ] ≤ 1
α

.

Since Pr[ (i, j) is not safe in round h ] is at most

Pr[ (i, j) been probed ] + Pr[ i matched ] + Pr[ i timed out ]
+ Pr[ j matched ] + Pr[ j timed out ]
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by the trivial union bound, proving (i)–(iii) will prove the lemma. To prove (i), ob-
serve that for any edge e ∈ E and round g, Pr[ e probed in round g ] ≤ Pr[e ∈ P

g ] =
1
α

y
g
e , and hence Pr[ (i, j) probed before round h ] ≤ 1

α

∑
g<h y

g
e ≤ 1

α
, where the last

inequality uses LP constraint (28).
The proof for (iii) is identical, using the LP constraint (32). Statement (ii) follows

from Markov inequality, noting that the expected number of probes on vertex i is at
most ti

α
. �

Theorem 10 Setting α = 10 gives a 20-approximation for multiple round stochastic
matching.

Proof Using Lemma 12, we have for any edge (i, j) ∈ E and round h ∈ [k],

Pr[ (i, j) probed in round h ]
= Pr[ (i, j) safe in round h ] · Pr[ (i, j) ∈ P

h | (i, j) safe in round h ]

≥
(

1 − 5

α

)
· Pr[ (i, j) ∈ P

h | (i, j) safe in round h ]

=
(

1 − 5

α

)
· yh

ij

α
,

where the equality follows from the fact that events (i, j) ∈ P
h and (i, j) is safe in

round h are independent. Thus the expected value accrued by the algorithm is

∑

e∈E

we ·
k∑

h=1

Pr[ e probed in round h ] · pe ≥ 1

α

(
1 − 5

α

)
·
∑

e∈E

we ·
k∑

h=1

yh
e · pe,

which is 1
α
(1− 5

α
) times the optimal LP-value. Setting α = 10 completes the proof. �

Appendix B: Unweighted Stochastic Matching: A Greedy Algorithm

In this section we consider a greedy algorithm for the unweighted stochastic match-
ing problem: in this unweighted version, all edges have unit weight, and the goal is
to maximize the expected number of matched edges. The greedy algorithm was pro-
posed by Chen et al. [9], and they gave an analysis proving it to be a 4-approximation;
however, the proof was fairly involved. Here, we give a significantly simpler analysis
showing an approximation guarantee of 5. The greedy algorithm we consider is the
following:

1. Let σ denote the ordering of the edges in E by non-increasing pe-values.
2. Consider the edges e ∈ E in the order given by σ

a. If edge e is safe then probe it, else do not probe e.
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Recall that an edge is safe if neither of its endpoints have been matched or timed
out. Note that the expected value of the greedy algorithm is

ALG =
∑

e∈E

Pr[ e is matched ] =
∑

e∈E

Pr[ e is probed ] · pe.

B.1 The Analysis

While the algorithm does not have anything to do with the linear program-
ming relaxation we presented in the previous section, we will use that LP for
our analysis. Consider the optimal LP solution (x∗, y∗), and recall that (x∗, y∗)
satisfy the conditions (4)–(7). (Alternatively, use the fractional solution y∗

e :=
Pr[ e is probed in the optimal strategy ] and x∗

e := Pr[ e is matched in the optimal
strategy ].) For each e = (i, j) ∈ E, define the following three events:

Me := either i or j is matched when e is considered in σ ,

Re := either i or j has timed out when e is considered in σ , and

Be := Me ∨ Re.

By the algorithm, it follows that Pr[ e is probed ] = 1 − Pr[Be] for all e ∈ E. So,

ALG =
∑

e∈E

(1 − Pr[Be])pe ≥
∑

e∈E

(1 − Pr[Be]) · y∗
e pe. (33)

The following two lemmas charge the value accrued by the algorithm in two different
ways to the optimal LP solution.

Lemma 13 2ALG ≥ ∑
g∈E Pr[Mg] · y∗

g · pg .

Proof In the greedy algorithm, whenever edge e = (i, j) gets matched, write value

of
y∗
f ·pf

2 on each edge f ∈ ∂(i) ∪ ∂(j). Note that the total value written when edge
e = (i, j) gets matched is at most:

∑

f ∈∂(i)

y∗
f pf

2
+

∑

f ∈∂(j)

y∗
f pf

2
= 1

2

∑

f ∈∂(i)

x∗
f + 1

2

∑

f ∈∂(j)

x∗
f ≤ 1,

where the inequality follows from (4). Recall that in any possible execution of
Greedy, an edge is matched at most once. Thus the expected total value written (on
all edges) is at most

∑
e∈E Pr[ e is matched ] = ALG.

On the other hand, whenever event Mg occurs in the greedy algorithm (at some

edge g = (a, b) ∈ E), read
y∗
g ·pg

2 value from g. Consider any outcome where event
Mg occurs: it must be that either a or b was already matched (say via edge e); this

in turn means that
y∗
g ·pg

2 value was written on edge g at the time when e got matched
(since g is adjacent to e). Thus the value read from an edge (at any point) is at most



760 Algorithmica (2012) 63:733–762

the value already written on it. Thus the expected total value read from all edges is
∑

g∈E Pr[Mg] · y∗
g pg

2 ≤ E[total value written] ≤ ALG. �

Lemma 14 2ALG ≥ ∑
g∈E Pr[Rg] · y∗

g · pg .

Proof Consider the execution of the greedy algorithm, with a value αe defined on
each edge e ∈ E (initialized to zero). Whenever an edge e = (i, j) gets probed, do
(where σe denotes the edges in E that appear after e in σ ):

1. For each f ∈ ∂(i) ∩ σe, increase αf by
y∗
f pf

2ti
.

2. For each f ∈ ∂(j) ∩ σe, increase αf by
y∗
f pf

2tj
.

Let A := ∑
e∈E αe. Note that the increase in A when edge e = (i, j) gets probed is:

∑

f ∈∂(i)∩σe

y∗
f pf

2ti
+

∑

f ∈∂(j)∩σe

y∗
f pf

2tj
≤ pe

2

(
1

ti

∑

f ∈∂(i)∩σe

y∗
f + 1

tj

∑

f ∈∂(j)∩σe

y∗
f

)
≤ pe,

where for the first inequality we use the greedy property that pe ≥ pf for all f ∈ σe

and the second inequality follows from (5). Thus the expected value of A at the end
of the greedy algorithm is E[A at the end of Greedy] ≤ ∑

e∈E Pr[ e is probed ] · pe =
ALG. (Recall that in any possible execution of Greedy, an edge is probed at most
once.)

On the other hand, whenever event Rg occurs in the greedy algorithm (at some
edge g = (a, b) ∈ E), read the value αg from g. Consider any outcome where event
Rg occurs: it must be that either a or b was already timed out (say vertex a). This
means that ta edges from ∂(a) have already been probed. By the updates to α-
values defined above, since g is adjacent to each edge in ∂(a), the current value

αg ≥ ta · y∗
g pg

2 ta
= y∗

g pg/2. So whenever Rg occurs, the value read αg ≥ y∗
g pg/2. I.e.

the expected total value read is at least
∑

g∈E Pr[Rg] · y∗
g pg

2 . However, the total value
read is at most the value A at the end of the greedy algorithm. This implies that
∑

g∈E Pr[Rg] · y∗
g pg

2 ≤ E[total value read] ≤ E[A at the end of Greedy] ≤ ALG. �

Proof of Theorem 5 Adding the expressions from Lemmas 13 and 14, we get

4 ALG ≥
∑

e∈E

(Pr[Me] + Pr[Re]) · y∗
e pe ≥

∑

e∈E

Pr[Be] · y∗
e pe,

where the second inequality uses the definition Be = Me ∨ Re. Adding this to (33),
we obtain 5 ALG ≥ ∑

e∈E y∗
e ·pe, which is the optimal LP objective. Thus, the greedy

algorithm is a 5-approximation. �
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