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Abstract

We study a multiple-vehicle routing problem with a minimum makespan objective and com-
patibility constraints. We provide an approximation algorithm and a nearly-matching hardness
of approximation result. We also provide computational results on benchmark instances with
diverse sizes showing that the proposed algorithm (i) has a good empirical approximation factor,
(ii) runs in a short amount of time and (iii) produces solutions comparable to the best feasible
solutions found by a direct integer program formulation.
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1 Introduction

Vehicle Routing Problems (VRPs) are classical and extensively studied combinatorial optimization
problems, which aim to find the optimal routing decisions for one or multiple vehicles traveling from
the depot(s) to serve demands at various locations. Depending on specific applications, various types
of VRPs are formulated and solved by exact or heuristic approaches. We refer the interested readers
to [31] and [23] for comprehensive surveys of models and algorithms for different VRPs, and review
the ones that are the most relevant to this paper below.

A significant amount of VRP literature focus on single-vehicle VRPs, where only one vehicle
is allowed. Without any additional constraints, a basic single-vehicle VRP problem is equivalent
to the classic Traveling Salesmen Problem (TSP) [see, 2]. There exist many heuristic approaches,
approximations, and exact algorithms for the TSP and 3

2 is the best known approximation factor
[14]. Some other single-VRPs are the orienteering problem [21, 13], TSP with time window [7, 6],
Prize-collecting TSP [5] and k-TSP [19].

For multiple-vehicle VRPs, different variants are studied, including multiple TSP [26], capaci-
tated VRP [10, 11], VRP with time windows [29], and the dial-a-ride problem [16]. The objective
in all these studies is to minimize the total traveling cost of all vehicles.

However, with multiple vehicles, a natural objective is to minimize the makespan of the system,
i.e., the maximum travel distance among all vehicles. This objective has received relatively less
attention, see, e.g., [1, 18, 3, 24].

∗A preliminary version of this paper appeared as [32].
†Corresponding Author: Prof. Siqian Shen, 2793 IOE, 1205 Beal Avenue, Ann Arbor, MI, USA 48109-2011, E-mail:

siqian@umich.edu
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In this paper, we study a multiple-vehicle routing problem with a minimum makespan objective
where each vehicle can only serve a subset of the locations. Such “compatibility constraints” arise
in applications such as medical home care delivery. Here one needs to dispatch shared vehicles to
visit patients at their homes. Each patient may require different skill-sets from medical teams, who
are conveyed by different vehicles, and we also need to balance the workload of different medical
staff teams dispatched with the vehicles [28].

1.1 Problem Definition and Formulation

In this paper, we study the minimum makespan VRP with compatibility constraints (VRPCC).
Given a graph G = (V,E) with node set V = {0, 1, . . . , n} and edge set E = {(i, j) : i ∈ V, j ∈ V },
we assume that the depot is located at node 0 and customers are located at the nodes in V + =
V \ {0}. Each edge (i, j) ∈ E has a non-negative length cij , which follows triangle inequality, i.e.,
cij ≤ cil+clj for all i, j, l ∈ V . We assume that the minimum distance is at least 1 and edge lengths
are symmetric, i.e., cij = cji for all (i, j) ∈ E. A fleet K of vehicles with K = {0, 1, . . . ,m− 1} is
located at the depot, and each can visit a subset of customers in V +. (Our results also extend easily
to the case of multiple depots, but we focus on the single depot case for simplicity.) We assume
that each vehicle k ∈ K can only visit a subset of nodes Vk ⊂ V +, based on matches of vehicles
and customers’ service types. Our goal is to find a routing decision to assign each vehicle a route
such that: (a) the nodes visited by vehicle k ∈ K are in the set Vk; (b) each node must be visited
exactly once; and (c) the maximum traveling cost over all vehicles is minimized.

Let (xkij , (i, j) ∈ E) be a binary vector of decision variables, such that xkij = 1 if we assign

vehicle k ∈ K to visit node j ∈ V right after node i ∈ V , and 0 otherwise. Let (uki , i ∈ V ) be
the indicator vector parameter, such that uki = 1 if i ∈ Vk, and uki = 0 otherwise. VRPCC can be
formulated as the following integer program.

MIP: minimize
x, τ

τ (1)

subject to
∑

(i,j)∈E

cijx
k
ij ≤ τ ∀k ∈ K (2)

∑
(0,j)∈E

xk0j = 1 ∀k ∈ K (3)

∑
(i,v)∈E

xkiv −
∑

(v,j)∈E

xkvj = 0 ∀v ∈ V, ∀k ∈ K (4)

∑
k∈K

∑
(i,j)∈E

xkij = 1 ∀j ∈ V + (5)

xkij ≤ ukj ∀(i, j) ∈ E, j ∈ V +, ∀k ∈ K (6)∑
i,j∈S, i6=j

xkij ≤ |S| − 1 ∀S ⊂ V +, ∀k ∈ K (7)

xkij ∈ {0, 1} ∀(i, j) ∈ E,∀k ∈ K. (8)

In the above formulation, constraints (2) set τ as the maximum traveling cost among all vehicles;
constraints (3) ensure that each vehicle leaves the depot; constraints (4) ensure that the same number
of vehicles arrive at and depart from each customer node; constraints (5) ensure that each node in
V + will be visited exactly once; constraints (6) ensure that each vehicle can only visit the nodes
in its compatibility set; constraints (7) are sub-tour elimination constraints avoiding cycles that do
not contain the depot; finally, x is a binary decision vector according to constraints (8).

Although there are exponentially many constraints in (7), this can be addressed by constraint
generation as follows. We initially start with no sub-tour elimination constraints in the model.
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When the solver finds a feasible solution satisfying all the current constraints, we detect cycles that
do not pass the depot. (This can be found very efficiently by a simple graph search.) If we do not
find such cycles then the MIP model (1)–(8) is already solved. Otherwise, we add the corresponding
sub-tour elimination constraints from (7), and the solver continues solving this new modified model.
We iterate this process until a valid solution is found.

In our computations, we solve this MIP model (1)–(8) using a state-of-the-art solver (Gurobi),
and compare its performance to our approximation algorithm. We also use MIP to compute lower
bounds for VRPCC.

Recall that an α-approximation algorithm for a minimization (resp. maximization) problem
always produces a solution of objective at most (resp. at least) α times the optimal.

1.2 Main Results

In this paper, we focus on the approximability of the VRPCC.

Theorem 1. VRPCC cannot be approximated to within a factor of (1−o(1)) · lnn, unless NP = P.

Theorem 2. There is a 2dlnne+1-approximation algorithm for VRPCC.

Both the hardness result and the algorithm are based on relations to the set cover problem,
which is known to have a tight approximability threshold of lnn [see, 15, 17]. Recall that the set
cover problem involves selecting the smallest number of sets from a given collection so as to cover
all elements of a ground set. The main idea for Theorem 1 is to reduce the min-sum objective in
set-cover to the min-max objective in VRPCC. This is done by making several copies of the set-
cover instance and “rotating” the set-element relations in each of these instances so as to balance
the load across all sets used in an optimal solution. See Section 2 for details.

Theorem 2 is based on applying the set-cover greedy algorithm on an implicit set system: such
an approach has been used in a number of approximation algorithms, e.g., [25, 30]. However,
the “max coverage” subproblem that we need to solve is different in order to handle the min-max
objective. This corresponds to the maximum coverage problem with group budgets [12, 27] (we will
define it formally later), and we can apply their approach using an approximation algorithm for the
orienteering problem [13]. We observe that using an approximation algorithm for the related k-TSP
problem [20] leads to a slightly better constant (2 instead of 2 + ε) in the approximation ratio, but
more importantly this approach is far easier to implement. See Section 3 for details.

Our computational results show that the empirical approximation factor (solution value from
the approximation algorithm divided by the best lower bound found) is much smaller than the
theoretical one. Moreover, the running time of the approximation algorithm is much smaller than
MIP: the time taken is less than 2 minutes on almost all instances. Also, the solution found by our
approximation algorithm is very close (or better) than the best solution found by MIP even after
2 hours. See Section 4 for details.

1.3 Related Work

For VRPs with a min-max objective, most current literature focuses on heuristic methods [see,
e.g., 9, 22] and approximation algorithms [see, e.g., 3, 18, 24]. In particular, constant-factor ap-
proximation algorithms are known for min-max (unrooted) path/tour cover [3], min-max (rooted)
path/tour cover [18] and min-max TSP with non-uniform speeds [24]. To the best of our knowledge,
approximation algorithms for min-max VRPs with compatibility constraints have not been studied,
and this paper aims to fill this gap. Compared to these previous results, we show that the problem
with compatibility constraints does not admit any constant-factor approximation.
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In this paper, we use a set cover based technique to derive our algorithm. Set cover and maximum
coverage problems are classic problems in combinatorial optimization with wide applications in
various settings. A greedy algorithm that repeatedly picks the set covering the maximum number of
uncovered elements, yields a (lnn)-approximation for the set cover problem and e

e−1 -approximation
for the maximum coverage problem [see, 15]. This is also known to be best-possible unless NP = P
[17]. Our algorithm relies on the framework of maximum coverage with group budgets, introduced
by [12]; the approximation ratio was recently improved in [27]. A crucial subroutine in implementing
this framework for VRPCC is the k-TSP problem, which finds a rooted tour with minimum total
cost covering k nodes in a given graph. A constant-factor approximation algorithm for k-TSP was
given by [8] and later improved by [19], [4], and [20] to 3, 2 + ε and 2, respectively.

2 Hardness of Approximation for VRPCC

We prove the Theorem 1 by showing the set cover problem is polynomial-time reducible to VRPCC,
and therefore VRPCC is at least as hard as the set cover problem.

Proof of Theorem 1. In a set cover instance, we are given a ground set U and a family S of subsets
of U . A cover is a subfamily C ⊆ S of sets whose union is U . The objective is to find a cover that
uses the fewest sets in S. Let [t] denote the integer set {0, 1, . . . , t− 1} for any t ≥ 1.

Given an input (U ,S) of set cover, we index elements in U as 0, 1, . . . , n−1 and let the collection
of subsets be S = {Si : i ∈ [m]}. The reduction constructs a graph with mn + 1 nodes that are
partitioned into a depot-node r and m disjoint groups Wi = {uij , j ∈ [n]} for each i ∈ [m]. There
are edges of cost 0 between each pair of nodes in the same group {Wi}i∈[m] and an edge of cost 0.5
between r and all other nodes. There are no edges between nodes of different groups. Let T denote
this edge-weighted graph and ca,b the shortest path distance between nodes a and b in T .

The VRPCC instance has m vehicles, so K = [m]. The compatibility constraints {Vk : k ∈ [m]}
are based on “rotating” the sets in S and are defined as follows. For any vehicle k ∈ [m], group
i ∈ [m] and j ∈ [n], node uij ∈ Vk if and only if j ∈ Sk′ , where k′ = (k + i) mod m. Figure 1
shows an example for an instance with m = 4 and n = 5 where the relationship in W0 represents
the original collection S. This reduction is clearly polynomial time in m and n.
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(a) Group W0
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Figure 1: An illustration of compatibility constraints on different groups.

We argue that solving the set cover instance (U ,S) is equivalent to solving the above VRPCC
instance. Let SC∗ and CC∗ denote corresponding optimal solutions to set cover and VRPCC,
respectively. Let c(SC∗) and c(CC∗) denote corresponding optimal objectives.
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We first show that c(CC∗) ≤ c(SC∗). Let C contain indices of all sets in SC∗. Then, we
construct the following solution to VRPCC. We define Ci := {(c − i) mod m | c ∈ C} for each
group i ∈ [m]. Note that by definition of the compatibility constraints in group i, the vehicles in
Ci can cover all nodes in Wi. So the VRPCC solution involves routing each vehicle k ∈ [m] to the
groups {i ∈ [m] : k ∈ Ci}. The total cost for any vehicle k ∈ [m] is then |{i ∈ [m] : k ∈ Ci}| = |C|.
So the VRPCC objective is also |C| = c(SC∗). This implies c(CC∗) ≤ c(SC∗).

Conversely, we show that c(SC∗) ≤ c(CC∗). Consider the optimal VRPCC solution CC∗.
As c(CC∗) is the maximum cost over all m vehicles, the total cost to cover all nodes is at most
m × c(CC∗). This implies that there exists a group, say Wi, which is visited by at most c(CC∗)
vehicles. Let Di ⊆ [m] denote the set of vehicles that visit group Wi; note |Di| ≤ c(CC∗). Then it
follows (due to the compatibility constraints for Wi) that D = {(d + i) mod m | d ∈ Di} forms a
valid set-cover, i.e. ∪`∈DS` = U . So the optimal set-cover value c(SC∗) ≤ |D| = |Di| ≤ c(SC∗).

Combining both, we conclude that c(CC∗) = c(SC∗). The result in Theorem 1 now follows from
the hardness for set-cover that there is no (1− o(1)) · lnn approximation algorithm unless P = NP
[17]. This completes the proof.

3 An O(log n)-Approximation Algorithm

In this section, we propose an approximation algorithm to VRPCC. Our algorithm starts with a
“guess” B on the optimal value, which can be verified within a binary search scheme (see Algo-
rithm 2). Then it iteratively picks a route for each vehicle that covers (approximately) the maximum
number of new nodes. We iterate this process until all nodes are covered.

We start by introducing the maximum coverage problem with group budgets (MCG). Here, we
are given a ground set for MCG, X, and a collection of subsets of X, C = {S1, S2, . . . , Sm}. We
are also given a partition of C into k groups G1, G2, . . . , Gk. A solution to MCG is a subset H ⊂ C
such that |Gi ∩H| ≤ 1 for all i = 1, . . . , k, i.e. at most one set can be chosen from each part. The
objective is to maximize the number of elements in X covered by H.

Example: Consider X = {1, 2, 3, 4, 5}, S1 = {1, 2, 3}, S2 = {4, 5}, S3 = {1, 2, 5}, S4 = {1, 5} and
k = 2. Suppose that G1 = {S1, S3} and G2 = {S2, S4}. Then the optimal solution is H = {S1, S2}
which covers all 5 elements.

[12] gave a greedy algorithm to solve MCG by iteratively picking one set from each part that
covers the maximum number of uncovered elements. Crucially, the algorithm works with an oracle
model O that takes as input a ground set X ′ and an index i and outputs a set Sj ∈ Gi such that
|Sj ∩X ′| is maximized. They showed that this greedy algorithm is a 1

1+ρ -approximation algorithm

for MCG given a 1
ρ -approximate oracle. Later, [27] proposed a better (1 − e−1/ρ)-approximation

algorithm, given a 1
ρ -approximate oracle, based on a linear program rounding algorithm. However,

this algorithm relies on using the ellipsoid method to solve LPs, which is not practical for our
purpose.

Specializing MCG to the VRPCC setting, we obtain the following.

Problem. MCG-VRP
Input: A node subset X ⊂ V , a fleet K of vehicles and a budget B ≥ 0.
Output: Routes {Ai ⊆ Vi : i ∈ K} for each vehicle with each route of cost at most B.
Objective: maximize | ∪i∈K Ai ∩X|, the number of nodes covered.

In this case, the oracle O corresponds to the orienteering problem. Formally, O(Y,B, i) involves
computing a route for vehicle i ∈ K (originating from r) with cost at most B that covers the
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maximum number of nodes in Y . The compatibility constraints are enforced in the definition of
this oracle instance. The complete algorithm is described in Algorithm 1.

Algorithm 1: Greedy Algorithm for MCG-VRP

input : A fleet K of vehicles, a subset X ⊂ V and a budget B
output: A set H of routes with cost at most B, one route for each vehicle

1 X ′ ← X
2 for i ∈ K do
3 Ai = O(X ′ ∩ Vi, B, i)
4 X ′ ← X ′\Ai
5 end
6 return H = {Ai : i ∈ K}

Theorem 3 (Corollary 1 in [12]). Algorithm 1 is a 1
1+ρ -approximation algorithm for the MCG-VRP,

assuming a 1
ρ -approximate oracle O.

The current best approximation ratio for the orienteering problem is (2 + ε) with running time
nO(1/ε2) [13]; so this is polynomial time only for constant ε > 0. However, this algorithm as well
other constant-factor approximation algorithms for orienteering are rather complex to implement.
To simplify the implementation, we instead use a (1, β)-bicriteria approximation algorithm for
orienteering, which violates the cost by a factor β ≥ 1 but covers the optimal number of nodes
(for a cost B route). This corresponds to the k-TSP problem: given a graph with root r and
target k, find a min-cost route (originating from r) that covers at least k nodes. Given a β-
approximation algorithm for k-TSP, we can obtain a (1, β)-bicriteria approximation for orienteering
by just running a binary search on k to output the route having highest k and cost at most βB. The
best approximation ratio for k-TSP is β = 2 from [20]. This algorithm is also much more efficient
than those for orienteering: in fact it is used as a subroutine in all algorithms for orienteering. Using
Theorem 3, we obtain:

Corollary 4. If we use a (1, β)-bicriteria approximation algorithm for oracle O, then Algorithm 1
is a (12 , β)-bicriteria approximation algorithm for MCG-VRP.

Finally, we use Algorithm 1 iteratively until all nodes are covered, and perform a binary search
on the “guess” B. The details are displayed in Algorithm 2.

The following lemma shows VRPCC can be solved by iterating Algorithm 1 at most dlog2 ne
times for the correct guess of B.

Lemma 5. If we use a (1, β)-bicriteria approximation algorithm for oracle O then Algorithm 2
achieves a (1 + ε)βdlog2 ne approximation ratio for VRPCC.

Proof. By the definition of upper/lower bounds (u and l) and the binary-search on B, it is clear
that the parameter Solve is true (resp. false) at the end of the inner while-loop (line 9) when B is
set to u (resp. l). Note also that for any B where Solve is true at the end of the inner while-loop,
Algorithm 1 must have produced (in each iteration of the inner while-loop) a solution that covers at
least half of the current set X: as each iteration adds makespan at most βB (by Corollary 4), the
resulting VRPCC solution has makespan at most (βdlog2 ne) ·B. In particular, for the choice B = u
at the end of the algorithm, we obtain that the makespan of Algorithm 2 is ALG ≤ βdlog2 ne · u.

Suppose the optimal value for VRPCC is B∗ and consider any B ≥ B∗. Note that the optimal
value of the MCG-VRP instance (X,B,K) is |X| for any X ⊆ V +: hence using Corollary 4,
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Algorithm 2: Approximation Algorithm for VRPCC

input : A network G = (V,E), a fleet K of vehicles
output: Routing assignment for each vehicle in i ∈ K

1 Initialize routes τi = ∅ for all i ∈ K, X ← V +.
2 Initialize upper-bound u = 2

∑
(i,j)∈E cij , lower-bound l = 0, and a tolerance threshold ε for

the binary search.
3 while u− l ≥ ε do
4 B ← u+l

2 , Solve← true
5 while X 6= ∅ do
6 {Ai : i ∈ K} = solution from Algorithm 1 for MCG-VRP with input K,X,B
7 if | ∪i∈K Ai ∩X| < |X|/2 then Solve← false, break
8 Update X ← X \ (∪i∈KAi) and τk ← τk ◦Ak for all k ∈ K
9 end

10 if Solve then u← B
11 else l← B

12 end
13 return routes in τi for i ∈ K

Algorithm 1 covers at least half the nodes in X. So Solve is true at the end of inner while-loop for
any B ≥ B∗. As Solve is false at the end when B = l, we obtain B∗ ≥ l. So we have:

ALG ≤ βdlog2 ne · u ≤ βdlog2 ne(l + ε) ≤ βdlog2 ne(B∗ + ε) ≤ (βdlog2 ne)(1 + ε)B∗.

The last inequality uses the fact that B∗ ≥ 1 as all distances are assumed to be at least one.
Therefore, Algorithm 2 is a (1 + ε)βdlog2 ne-approximation algorithm.

Using β = 2 and ε ≤ 1
n , we obtain a 2dlog2 ne+1-approximation algorithm for VRPCC. Instead

of the greedy approach from [12], if we used the LP-based approach in [27] to solve MCG-VRP, we
obtain a (2 lnn+1)-approximation algorithm. This completes the proof of Theorem 2.

For the computational results, we only tested the greedy approach which has a slightly worse
approximation ratio, but is a lot simpler to implement.

The time complexity of Algorithm 2 depends on the complexity of the oracle O. Suppose the
complexity of O is T (n), then the complexity of Algorithm 1 is O(mT (n)). For Algorithm 2, the
inner while loop executes at most dlog ne as we halve the size of X in each loop. The outer loop is
used to conduct binary search for optimal budget, which takes log2

C
ε steps where C = 2

∑
(i,j)∈E cij .

Therefore, the overall complexity of Algorithm 2 is O
(
log2(

C
ε ) · log2(n) ·m · T (n)

)
.

4 Computational Results

To evaluate the performance of the proposed approximation algorithm, we conduct numerical studies
on tailored instances generated from Solomon’s benchmark for VRPs [29]. First, we compare the
proposed approximation algorithm against the MIP on small instances with up to 25 customers.
Then, we extend our experiments to the instances with up to 100 customers.

There are three categories of the original instances based on the nodes distribution: the R type
where nodes are randomly distributed, the C type where nodes are distributed in clusters, and
the RC type where some nodes are randomly distributed and the rest are clustered. We only use
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the node location from Solomon’s benchmark and customize our instances as follows. We sample
the desired number of nodes from the benchmark instances and compute the distance matrix. We
consider two types of VRPCC instances: one with tight compatibility constraints where each node
can be visited by few numbers of vehicles, and the other with relaxed compatibility constraints
where each node can be visited by more number of vehicles. In our tailored instances, we randomly
generate compatibility constraints such that we allow one vehicle to visit a node with 30% probability
for tight instances and 70% probability for relaxed instances. Each instance is labeled by its type
R/C/RC, number n of nodes and number k of vehicles.

To implement the approximation algorithm, we use the 5-approximation algorithm for k-TSP
problem from [19] to serve as our oracle O. Although the best known result is a 2-approximation
from [20], the one that we use has an easier implementation while achieving satisfactory empirical
results in our tests. We use ε = 10−3 in Algorithm 1. After solving the problem, we perform local
search, including 2-opt [31] and relocation, to improve the solutions. The relocation procedure used
in the local search works as follows. After we finish the 2-opt, we attempt to reassign the nodes
in the most lengthy tour to another compatible vehicle and insert them to the best position of the
tour. We repeat this process until no improvements can be made.

We code our algorithm in Java and execute the tests on a computer with an Intel Core i7-3770
CPU running at 3.4 GHz and 8 GB of RAM. We use Gurobi 7.5.1 as the mixed integer programming
solver. We report the results with 10 minutes and 2 hours (120 minutes) time limits for MIP solver.

We evaluate the proposed algorithm against the MIP on small instances with up to 26 nodes
and large instances with up to 101 nodes. For each test instance, we report the lower bounds, LB1

(LB2), upper bounds, UB1 (UB2), found by MIP within the 10 minutes (2 hours) time limit, the
CPU time for MIP in seconds (Time) if the problem is solved within the time limit, the solution
found by approximation algorithm (Obj), the CPU time for the approximation algorithm in seconds
(Time), the empirical approximation ratio computed by Obj

LB2
, and the ratio between the objective

from the approximation algorithm and the best upper bound from MIP, Obj
UB2

. In the second MIP
run (2 hours limit), we highlight (with bold font) those lower/upper bounds that were improved
from the first MIP run (10 minutes limit).

We first test our proposed algorithms on small instances with up to 25 customers (i.e., 26 nodes)
and different compatibility constraints. We refer to Tables 1 and 2 in [33] for detailed results and
summarize key observations below. First, solving VRPCC through MIP is challenging for the state-
of-art solver and the instances with relaxed compatibility constraints are more difficult to solve. Out
of twelve instances each, two and six instances cannot be solved to optimality within the time limit
for instances with tight and relaxed compatibility constraints, respectively. Our proposed algorithm
works well for these small instances as most of them can be solved within one second. Comparing
the best lower bound found by MIP, our proposed algorithm yields good empirical approximation
ratios: The ratios are within 1.16 for all instances with tight compatibility constraints and within
2 for ten out of twelve instances with relaxed compatibility constraints.

Tables 1 and 2 summarize the results for instances with up to 100 customers (i.e., 101 nodes)
and different compatibility constraints. It becomes very difficult to solve for good lower bound by
using the state-of-art solver for MIP, even given a two-hour time limit. Regarding the runtime, our
proposed algorithm is capable of solving two types of instances with 101 nodes in 15 seconds and
270 seconds, respectively. The empirical approximation ratios are maintained within 8: we think
that this is a pessimistic bound as the lower bounds from MIP seem poor. In addition, our results
are comparable to the best MIP solutions found within the time limit as ratios Obj

UB2
, are close to

1: in fact in many cases the approximation algorithm finds a better solution.
Acknowledgement. S. Shen’s work was partially supported by National Science Foundation
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Table 1: Numerical results for instances with up to 101 nodes and tight compatibility constraints

Instance MIP (10 minutes) MIP (2 hours) Approximation

LB1 UB1 Time (s) LB2 UB2 Time (s) Obj Time (s) Obj
LB2

Obj
UB2

C-n21-k6 87.30 87.30 5.79 87.30 87.30 6.47 87.30 0.01 1.00 1.00
C-n41-k10 109.70 114.30 600.03* 114.30 114.30 1772.48 114.50 0.09 1.00 1.00
C-n61-k14 55.07 – 600.15* 55.35 102.70 7200.15* 102.90 1.50 1.86 1.00
C-n81-k18 72.69 – 600.02* 72.79 125.50 7200.25* 117.40 2.82 1.61 0.94
C-n101-k22 32.13 – 600.02* 32.39 – 7200.22* 122.70 15.44 3.79 –
R-n21-k6 120.70 120.70 3.23 120.70 120.70 4.10 124.90 0.02 1.03 1.03
R-n41-k10 100.70 103.20 600.05* 101.90 103.00 7200.05* 149.70 0.28 1.47 1.45
R-n61-k14 77.80 121.10 600.04* 81.20 120.10 7200.08* 126.80 1.03 1.56 1.06
R-n81-k18 54.02 – 600.04* 54.88 – 7200.52* 117.60 3.73 2.14 –
R-n101-k22 51.80 – 600.05* 56.40 – 7200.26* 121.30 11.27 2.15 –
RC-n21-k6 138.80 138.80 0.80 138.80 138.80 1.01 138.80 0.03 1.00 1.00
RC-n41-k10 194.90 194.90 277.41 194.90 194.90 295.56 194.90 0.33 1.00 1.00
RC-n61-k14 108.40 257.30 600.03* 114.00 146.30 7200.11* 170.50 2.09 1.50 1.17
RC-n81-k18 49.81 – 600.03* 50.34 – 7200.17* 170.60 4.67 3.39 –
RC-n101-k22 47.08 – 600.04* 47.61 – 7200.97* 178.50 9.32 3.75 –

*: computation reaches time limit; –: no upper bounds found by MIP within time limit

Table 2: Numerical results for instances with up to 101 nodes and relaxed compatibility constraints

Instance MIP (10 minutes) MIP (2 hours) Approximation

LB1 UB1 Time (s) LB2 UB2 Time (s) Obj Time (s) Obj
LB2

Obj
UB2

C-n21-k6 29.85 82.80 600.10* 41.85 81.60 7200.38* 80.60 0.06 1.93 0.99
C-n41-k10 18.25 129.20 600.08* 18.44 86.50 7200.18* 89.00 3.70 4.83 1.03
C-n61-k14 15.06 – 600.30* 15.43 – 7200.09* 90.40 32.31 5.86 –
C-n81-k18 13.36 – 600.07* 15.48 – 7200.39* 117.00 100.65 7.56 –
C-n101-k22 14.00 – 600.47* 14.00 – 7200.25* 117.00 262.38 8.35 –
R-n21-k6 56.58 79.90 600.03* 65.09 79.90 7200.05* 82.60 0.29 1.27 1.03
R-n41-k10 42.22 181.60 600.07* 43.14 107.80 7200.16* 97.80 3.08 2.27 0.91
R-n61-k14 35.83 – 600.24* 36.48 – 7200.09* 94.30 24.85 2.58 –
R-n81-k18 29.09 – 600.10* 32.53 – 7200.11* 103.90 89.01 3.19 –
R-n101-k22 26.18 – 600.19* 26.18 – 7200.05* 99.80 231.50 3.81 –
RC-n21-k6 90.20 90.20 141.53 90.20 90.20 142.03 90.40 0.27 1.00 1.00
RC-n41-k10 17.77 228.50 600.11* 19.89 125.20 7200.18* 160.50 4.41 8.07 1.28
RC-n61-k14 26.44 – 600.09* 26.82 – 7200.19* 117.50 31.39 4.38 –
RC-n81-k18 24.93 – 600.07* 29.23 – 7200.22* 121.00 114.88 4.14 –
RC-n101-k22 23.91 – 600.15* 23.91 – 7200.40* 124.20 268.86 5.19 –

*: computation reaches time limit; –: no upper bounds found by MIP within time limit

grants CMMI-1636876, 1727618. V. Nagarajan’s work was supported in part by NSF CAREER
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