IOE 691: Approximation & Online Algorithms

Lecture Notes: Stochastic Optimization

Instructor: Viswanath Nagarajan

In many situations involving uncertain input, there is some prior information available, for example
from historical data. In such cases, using an online model may be overly pessimistic because it
completely ignores the prior information and prepares for the worst possible input. Stochastic
optimization is a popular approach to model such applications, where we work with a (known)
probability distribution over inputs. Solutions to stochastic problems are “policies” or decision trees
that map the current state (i.e., all decisions and observations so far) to the next decision.

1 Framework

In stochastic combinatorial optimization, some of the input parameters are random variables with
known probability distributions. While the algorithm does know the distribution of each such
random variable X, the actual outcome of X is unknown until a corresponding decision is made. We
will assume that all random variables are independent. An algorithm makes decisions sequentially
and observes realizations associated with these decisions. Crucially, the algorithm can react and be
adaptive to the observed random outcomes. Therefore, any solution is a sequential decision process,
which can be represented by a decision tree. (Solutions in the stochastic setting are also referred to
as policies.) The goal now is to optimize the expected objective while satisfying some constraints.
We will compare our algorithms to an optimal policy, and measure the algorithm’s performance
using the approximation ratio. For a minimization objective, this is:
expected objective of the algorithm on [

su .
instarf)ce ; expected objective of the optimal policy on I

Note that an instance I for a stochastic problem also specifies the probability distributions of all
its random parameters.

To formalize these concepts, consider a generic stochastic problem involving n binary decisions
indexed ¢ € {1,2,---n}. Let O denote the space of possible random outcomes for any single decision.
For example, if each decision has a random (integer) cost between 0 and C' then O = {0,1,---C}.
The random outcome corresponding to any decision i € [n] is only observed if and when the policy
selects i (i.e., a “yes” decision is made on ). In order to define a solution/policy, we need to
introduce the state space, which consists of the decisions made so far along with their observed
random outcomes. So the state represents the current information at any point in the solution.
The state space is denoted 2 = (O U {x})". We say that a policy is currently in state w € Q if for
each decision i € [n]:

e w; = * if and only if decision ¢ has not been selected so far, and
e if w; # * then the random outcome observed at decision i is wj.

Adaptive Policies. A solution or policy is a mapping 7 : 2 — [n] which specifies the next selec-
tion decision to be made at any state. In particular, if the solution is currently at state w then it will



next select decision m(w). Note that this definition allows the policy to fully utilize all the observed
random outcomes. So, such a policy is said to be adaptive. Moreover, an adaptive policy may even
require exponential space to describe: this is because the number of states |Q2] is exponential in the
number of decisions n. Therefore, we are interested in obtaining efficiently computable policies T,
where given any state w the next decision m(w) can be computed in polynomial time. Note that
the running time of an efficient policy is always polynomial (under any set of random outcomes).
We note that the optimal policy may not be efficiently computable. Nevertheless, we will compare
the performance of our efficient policies to the optimal adaptive policy.

Decision tree representation. It is often convenient (for analysis) to view an adaptive policy
explicitly as a decision tree. Nodes in the decision tree represent the complete sequence of prior
decisions and outcomes. Branches in the decision tree correspond to the observed random outcome
of the policy’s current decision. Note that each node corresponds to a ‘state’ by just ignoring the
sequence in which prior decisions were made. When the policy is implemented, it follows a random
path from the root of the decision tree to some leaf (based on the observed random outcomes).

Non-adaptive Policies. One drawback of adaptive policies is that they require incremental
computation before each decision, which may be too slow for certain applications (even if the policy
runs in polynomial time). An alternative approach is to use non-adaptive policies that specify
upfront a static sequence o of the n decisions. The non-adaptive policy then makes selection
decisions in the fized order o until some (simple) stopping rule. The stopping rule is usually
very efficient to check; for example, checking if the total reward exceeds a threshold. As minimal
computation is needed between decisions, non-adaptive policies can be implemented very efficiently.
For some stochastic problems, we will focus on obtaining good non-adaptive policies (relative to
the optimal non-adaptive policy). The table below summarizes these two types of policies.

Table 1: Comparing adaptive and non-adaptive policies.
optimal value | running time

Adaptive better worse

Non-adaptive worse better

Adaptivity Gap. Surprisingly, for many stochastic problems we can achieve the best of both
worlds: non-adaptive policies that have objective value comparable to the optimal adaptive policy.
In order to quantify the relative strength of these two types of policies, we define the adaptivity gap
to be the worst-case ratio between the expected objectives of optimal adaptive and non-adaptive
policies. For a minimization objective,

optimal non-adaptive value on [

adaptivity gap =  sup

instance ;  optimal adaptive value on 1

2 Series Testing

We first consider a fundamental (and simple) stochastic problem. There are n independent compo-
nents in some system (e.g., car or airplane). Each component i € [n] may fail independently with
probability (w.p.) p;. We also use ¢; := 1 — p; to denote the probability of working. We use the



random variable (r.v.) X; to denote the status of each component:

X, = { 0 if component ¢ working ’ vi € [n].

1 if component ¢ failed

In order to determine the status of any component i, one needs to perform a test that incurs cost
¢;. The goal is to determine if there is any failed component. Equivalently, we want to determine
whether/not >""" | X; > 1. This is called series testing because it corresponds to systems that only
function when all their components are working: such a system can be viewed as one where the n
components are connected in series. It is often possible to determine this without having to test
all components. Therefore, a natural objective is to minimize the expected cost of testing.

Any policy for series testing is just a permutation of the components: tests will be performed until
a failure is observed (or all components are tested). So, these are non-adaptive (the stopping rule
is observing a failure).

Greedy policy. A simple algorithm for series testing is to perform tests in increasing order of
;372. It turns out that this is optimal.

Theorem 2.1 The greedy policy is optimal for series testing.

Proof: Notice that any policy for series testing is merely given by a permutation 7 of the n
components: the policy then performs tests in that sequence until some failure. Let us re-number
the components so that

P11 P2 Pn
So, the greedy ordering is just (1,2,---n). We will prove that the greedy ordering is optimal by
an exchange argument. Suppose that the optimal ordering m contains a pair of consecutive tests
b, a such that ;—Z > ;—Z; ie, ™= (I,b,a,0) where I UO = [n]\ {a,b}. Then, consider swapping a
and b to obtain ordering 7’ = (I, a,b,O). We will show that E[cost(n’)] < E[cost(w)]. Using this
argument iteratively, we can show that greedy is optimal (left as exercise). We have:

E[cost(n")] — E[cost(m)] = cq (Pr[n’ tests a] — Pr[r tests a]) + ¢, (Pr[r’ tests b] — Pr[r tests b])
=caJa- (=) + ][ (-1 = []a- (caro — copa) < 0.

el el i€l
We use the fact that a policy tests a component only if all previous components are working.

For any realization X = (X,---X,,), we define

[0 Y, X;=0
¢(X)_{ LS XG>
which denotes the outcome of testing. Given a policy 7 and realization X, we use ¢(m, X) to denote

the total cost of testing under realization X when policy 7 is used. We actually have the following
stronger result.

Theorem 2.2 The greedy policy minimizes Elc(m, X)|¢p(X) = 1] over all policies .



Proof: For any policy w, we have by conditional expectations,

Ele(m, X)] = E[e(m, X)[¢(X) = 1] - Pr[p(X) = 1] + E[e(m, X)[¢(X) = 0] - Pr{op(X) = 0]

= Ele(m, X)|¢(X) = 1] - Pr[¢(X) = 1] + Pr[p(X) = 0] - ) ¢
=1

The last equality uses the fact that if ¢(X) = 0 then any policy must test all components. No-
tice that only the term E[c(m, X)|¢(X) = 1] depends on the chosen policy. Therefore, minimizing
Ele(m, X)] is equivalent to minimizing E[c(m, X)|¢(X) = 1]. The result now follows from Theo-
rem 2.1. n

3 Testing k-of-n Functions

We now consider a more general problem, where the goal is to identify whether/not there are at
least k failed components. In particular, we want to evaluate the function:

(0 WY X <k-—1
w(X)_{l it Y X >k ’

where X denotes the realization.
For k > 1, we can no longer assume that all policies are non-adaptive (as we did for series testing).

Indeed, adaptive policies may perform strictly better that non-adaptive ones as shown next.

Adaptivity gap example. Consider n =3 and k£ = 2 with r.v.s X; =1 w.p. %, Xo=1w.p. €
and X3 =1 w.p. 1 —e€. Here, ¢ - 0. Notice that v is just the “majority” function in this case.
The optimal adaptive policy is as follows:

1. Test X;.

2. If X7 =0 then test Xo followed by X3 (only if Xo = 1).

3. If X7 =1 then test X3 followed by X5 (only if X9 = 0).
The expected cost is 2 + e.
On the other hand, any non-adaptive policy costs at least 2.5. This can be checked directly. This
implies that the adaptivity gap is at least 1.25.

We first consider the (simpler) task of verifying the function value, where we condition on ¢(X) = 1
and need to find & failed components. In this setting, it turns out that the greedy (non-adaptive)
policy is still optimal. Then, we discuss the evaluation problem that does not know v, for which
we provide an optimal adaptive policy.

Verification problem. We will show that the greedy policy that tests components in the 1,2,---n
order (which is increasing in ¢;/p;) is optimal. Formally,

Theorem 3.1 The greedy policy minimizes Elc(m, X)|¢(X) = 1] over all policies 7 that verify
V(X)) =1 (i.e., find k failures).



Proof: We first claim that there is an optimal policy that tests component 1 w.p. one. Let w
be an optimal policy that minimizes the above conditional expectation. We mark all states in 7
where k — 1 failures have been observed. Consider any marked state w and let T C [n] be the
already-tested components at this state. The remaining task at w is to find one failure among
[n] \ T (conditioned on some failure occurring). Using Theorem 2.2, it follows that the greedy
policy on [n]\ T" minimizes the expected testing cost, conditioned on w. We ensure this property at
all marked states w, by modifying policy 7 if necessary. Note that = is still optimal. Now, at any
marked state w, we either have 1 € T or 1 will be the next component tested at w. In either case,
component 1 will be tested by policy 7. Finally, observe that some marked state must be reached
under every realization X because we conditioned on 1(X) = 1. Hence, component 1 is tested by
policy 7 w.p. one.

Given the above property, we can modify the optimal policy 7 by testing component 1 first. This
does not increase the expected cost as 7 always tests component 1.

We can now complete the proof by induction on n. If X; = 0 then policy m needs to minimize
the conditional expectation of finding & failures among [n] \ {1}: by induction the greedy policy
(2,3, --n) is optimal for this. If X; = 1 then policy 7 needs to minimize the conditional expectation
of finding k — 1 failures among [n] \ {1}: again, (2,3,---n) is optimal by induction. So, the greedy
policy (1,2, ---n) minimizes the conditional expectation for the instance on n components.

Let o denote the permutation such that:

Co(1) _ o) _ .

ds(1) ds(2) do(n) .

Note that this is the greedy ordering to find n — k 4+ 1 working components, which would prove
Y(X) = 0. Using the “complements” 1 — X; (and appropriately changed k), Theorem 3.1 implies
the following.

The non-adaptive policy ¢ minimizes E[c(m, X )|y (X ) = 0] over all policies 7 that verify
P(X) =0 (i.e., find n — k + 1 working components).

Below, we refer to the order (1,2,---n) as list L; as it is used to verify ¢(X) = 1. Similarly the
order o is called list Lo as it verifies /(X)) = 0. For any list L and integer ¢, we use L[{] to denote
the f-prefix of L, i.e., the first £ components in L.

The adaptive policy for evaluation. We now consider the k-of-n evaluation problem, where
(X) must be determined. We describe the adaptive policy A([n], k) in a recursive manner. It
combines both lists Ly and L; as follows.

1. Select any i € Li[k] N Lo[n — k + 1] and observe X;.
2. If X; = 0 recurse on A([n] \ i, k).
3. If X; =1 recurse on A([n] \ i,k —1).

Notice that the lists do not need to be re-computed for each step: we simply drop component
from both Ly and L to obtain the lists for the recursive instances. We will show:

Theorem 3.2 The above adaptive policy is optimal for k-of-n evaluation.

Lemma 3.1 For any realization X such that A observes k failed components (with X; = 1) and



t > 0 working components (with X; = 0), the components tested by A are precisely L1[k+t]. Hence,
Elc(A, X)[¢(X) = 1] = E[e(L1, X)[¢(X) = 1].

Proof: Let i denote a component tested in the adaptive policy A. If X; = 0 then the relevant
prefixes for the recursive instance A([n] \ 4, k) are Li[k + 1] \ ¢ and Lo[n — k + 1] \ i: so the Ly
prefix increases by one but the Lo prefix remains the same. Similarly, if X; = 1 then the relevant
prefixes for the recursive instance A([n]\ i,k —1) are L1[k] \ ¢ and Lo[n — k + 2]\ i: so the Ly prefix
increases by one but the L prefix remains the same. Using this fact inductively, if follows that the
components tested under realization X are precisely L[k + t] because we observe X; = 0 exactly ¢
times. This proves the first statement.

For the second statement, notice that for any such realization X, we must have Zfif X, =k
otherwise .4 would not stop after testing L;[k + t]. Moreover, Zk+t 'Xi=k—1and Xy = 1,
as otherwise A would have stopped sooner. Hence, the components tested by the L; greedy policy
under X are exactly Li[k + t|. Finally, every realization X with ¢(X) = 1 has the form stated in
the lemma (for some ¢ > 0). So, E[c(A, X)|¥(X) = 1] = E[e(L1, X)|y(X) = 1]. ]

Similarly,

Lemma 3.2 For any realization X such that A observes n — k + 1 working components (with
X; =0) and t > 0 failed components (with X; = 1), the components tested by A are precisely
Lo[n —k+1+t]. Hence, E[c(A, X)|Y(X) = 0] = E[e(Lo, X)|¢(X) = 0].

Let 7* be an optimal policy for k-of-n. We can now complete the proof of Theorem 3.2:

Elc(A, X)] = Ele(A, X)[¢(X) = 1] - Pr[$(X) = 1] + E[e(A, X)[y(X) = 0] - Pr(X) = 0]
= Ele(Ly, X)[¢(X) = 1] - Prip(X) = 1] + E[e(Lo, X)[$(X) = 0] - Pr[(X) = 0]
< Ele(7, X)p(X) = 1] - Pr{p(X) = 1] + Ele(7™, X)|(X) = 0] - Pr{y(X) = 0]
= Ele(7*, X)].

Here, we used that the optimal policy 7* verifies both (X ) = 1 and (X) = 0: so it can be used
in Lemma 3.1 for both ¢¥(X) =1 and ¢(X) =

4 Maximum Value Problem

In the maximum value problem (MVP), there are n non-negative random variables (r.v.s) X1, -- X,
with known distributions. In order to observe the value of any r.v., an algorithm needs to probe it.
Moreover, for each probed r.v., the algorithm needs to immediately accept or reject it (after seeing
its value). The algorithm may probe any subset of r.v.s, but it can accept only one r.v. The goal
is to probe the r.v.s sequentially (possibly adaptively) and make reject/accept decisions so as to
maximize the expected value of the accepted r.v. We will assume that all the r.v.s have continuous
distributions. (With additional work, the results also extend to discrete distributions.)

A non-adaptive policy involves probing r.v.s in a fixed order m, along with a stopping rule that
decides when to accept. An adaptive policy may vary the order of probing based on observed
outcomes. It can be shown that:

Theorem 4.1 The adaptivity gap of the maximum value problem is one.

So, it suffices to focus on non-adaptive policies. We will use the following simple upper bound on



the optimal value of any policy:
E* := E[Xpmas] = E [m%lx Xi] .
1=

Note that E* is the best value achievable even in the “clairvoyant” setting where one is allowed to
observe all the r.v.s before accepting. For this reason, E* is also called the prophet bound. We will
provide non-adaptive policies that achieve a good approximation relative to E*. Such relations are
called prophet inequalities: they bound the performance of a sequential algorithm relative to the
prophet.

Furthermore, we will focus on “single threshold” policies. These are non-adaptive policies (i.e.,
given by some permutation 7) with a threshold 7 that corresponds to a very simple stopping rule:
accept the first r.v. in 7 that exceeds 7.

Arbitrary probing order. Our first policy actually works for any probing order, say 1,2,---n.
The algorithm doesn’t even need to know the order. This policy uses threshold 7 such that:

Pr[X oz > 7] = = (1)

Theorem 4.2 The non-adaptive policy that considers r.v.s in an arbitrary order and uses threshold
T has expected value at least % - B

Proof: We re—number the r.v.s so that they are probed in the order X7, X, -- X,,. Let & denote
the event that max;;ll X; < 7, which corresponds to probing r.v. X;. We can write the policy’s
objective as:

E[ALG] = 7 -Pr[ALG accepts some r.v.] + ZE [(Xi — )" AL(E)]
i=1

= 7-Pr[Xpmaz > 7]+ zn:E [(Xi —7)" AL(E)]

=1

= T. Pr[Xmax > 7‘] —+ ZE [(Xz — 7')+] . PI‘[(C/‘Z] (2)
=1

> T PI‘[Xmax > T] + Zn:E [(Xz — 7')+] -Pr [Xma:c < T] (3)
=1

| =

_y (HZE[(XZ._TN). (@)
=1

Above, (2) uses the fact that & is independent of X; and (3) uses Pr[&;] > Pr[X,nq. < 7]. Finally,
(4) uses the choice of threshold 7 from (1). We can now relate to E* using:

E*<74E[(Xmee —7)T] <7 + ilﬁ: [(Xi — 7). (5)
i=1

The theorem now follows. ]

It can also be shown that if the ordering is fixed (i.e., cannot be changed by the algorithm) then
no policy can achieve expected value more than % - E*.



Random probing order. We now consider the setting where the policy probes r.v.s in a uni-
formly random order. We will show that one can obtain a better approximation ratio. Again, the
policy uses a single threshold, this time given by 7 such that

1
Pr[Xae > 7] =1— e (6)
Theorem 4.3 The non-adaptive policy that probes r.v.s in a uniformly random order with threshold

T from (6) has expected value at least (1 — 1) - E*.

Proof: Let o denote a u.a.r. permutation of [n]. We use j < i to denote that r.v. X; appears
before r.v. X; in the order o. Let & denote the event that max;.; X; < 7, which corresponds to
probing r.v. X; when we use order o. By (2),

E[ALG] = 7 - Pr[Xppae > 7] + Zn:E [(Xi —7)F] - Pr&i].
i=1

We will show that Pr[&;] > 1— 2 for each i € [n]. Combined with (5) and (6), this would imply the
theorem.

We now focus on bounding Pr[&;]. It will be convenient to represent permutation o as follows. Each
J € [n] picks a number t; € [0,1] w.a.r. and independently. (There are no ties with probability
one.) Then, o orders the r.v.s by increasing ¢; values. We will show that

Pri&lt; =t >e™t, Vte0,1], Vi€ [n]. (7)

This would imply
t

t
1
Pr[&-] = / Pr[5i|ti = t]dt Z / e_tdt =1- g,
t=0 t=0

as desired.
To prove (7), we fix i € [n] and ¢t € [0,1], and condition on ¢; = t. Then, we can write the

event
(Eilti=1) = Njra (X <7) V (85 > 1))

Letting a; := Pr[X; < 7], it follows that

Priglti=t] = [[1—t-a) > JJ(1—t-a;) = e=ima™-1e)
i j=1
Z etZ?:I In(1—ay) — e—t.

Above, the inequality uses the fact that In(1 —¢-y) > ¢-In(1 — y) for all t,y € [0,1]. The last

equality uses 37, In(1 — a;) = —1, which follows from the choice of threshold (6) and the fact
that Pr[Xye, > 7] =1 - [[}_;(1 —a;) = 1 - e2i=1"(1=%) " This completes the proof of (7) and
hence the theorem. [ |

5 Constrained Maximum Value (Non Adaptive)

We now consider a variant where there is a limit on the number of probed r.v.s. Formally, the input
consists of n independent non-negative r.v.s X1, -+ X, and a bound k < n. We will assume that



all r.v.s X; are discrete and described explicitly via a list of values along with their probabilities.
With some extra work, the results can be extended to continuous distributions as well.

An algorithm is allowed to probe at most k r.v.s. The goal is to maximize the expected maximum
value among the probed r.v.s. Here, we focus on the non-adaptive setting, where the set of probed
r.v.s is fixed upfront. In contrast, an adaptive solution may select the next r.v. to probe based
on the outcomes of previous r.v.s: we will consider adaptive policies later. So, the non-adaptive
problem can be expressed as:

max E [max Xi] . (8)
SCIn]:|S|<k €S

Unlike the unconstrained maximum value problem (seen earlier), here we do not require the algo-
rithm to make immediate accept/reject decisions on each probed r.v. So, the objective value is just
the maximum over all probed r.v.s.

A naive approach to solving (8) is to probe the k r.v.s with largest means E[X;]. However, as the
following example shows, the approximation ratio of this algorithm is at least (k). Consider k r.v.s
each of which has value k w.p. % (and value 0 otherwise), and k other r.v.s that have value 2 (w.p.
1). The mean of the first type r.v.s is 1 whereas the mean of the second type r.v.s is 2. The above
algorithm probes all k r.v.s of the second type, and obtains objective value 2. On the other hand, the
solution that probes all k r.v.s of the first type has objective k- (1 — (1 — 1/k)¥) > (1—1)-k.

Our approach is to handle the stochastic objective in (8) by re-formulating it as a different (and more
complex) deterministic problem. In particular, we define a set function f : 2" — R where

i€S

F(S) = E [maXXi] , VS C[nl. (9)

Observe that the stochastic aspect is completely captured in the definition of f, and (8) reduces to
maxg; s|<k f(5). Crucially, the value f(S) can be calculated exactly for any subset S.

Lemma 5.1 For any S C [n], the value f(S) can be computed in time polynomial in n and the
mazimum support-size of the r.v.s {X;}7 ;.

Proof: Let G denote the union of the support of all r.v.s {X;}I" ;. Let 0 < vy < vp < --- v, denote
the (sorted) values in G; also let vy = 0. Note that g = |G| is polynomial in n and the maximum
support-size. For each r.v. X; and value v, let ¢;; := Pr[X; < v;]. For any S C [n], we have

g
f(8) = E [f?ggXXi] = Z(vj —vj_1)Pr{die S: X; > vj]

j=1

= (vj — vj-1) (1 - H%) : (10)
=1

J i€S

Clearly, this can be computed in time polynomial in n and g. [

We now show that function f is monotone and submodular.
Lemma 5.2 For any subsets A C B C [n], we have f(A) < f(B).

Proof: This follows directly from the definition (9) because all r.v.s are non-negative. ®



10

Lemma 5.3 For any subsets A C B C [n]| and e € [n], we have
f(AUe) — f(A) = f(BUe) — f(B).

Proof: We make use of the description of f in (10). Recall the definitions of values {v; }?zl and
the probabilities ¢;; for i € [n] and j € [g]. For any S C [n], we have

g g
f(8) = Z(Uj — vj-1) (1 - H%‘) = (5 —v-1)$;(9),

j=1 ieS Jj=1

where ¢;(S5) := 1—][;cq ¢ for all j and S C [n]. We will show that for each j, function ¢; satisfies
the property in the lemma, i.e.,

6;(AUc) — §;(4) > 6;(BUe) — 6;(B), VAC B, Ve € [n]. (11)

By taking a non-negative linear combination of these inequalities (with coefficient v; —v;_ for ¢;),
this would prove the lemma.

In order to prove (11), fix any j, subsets A C B C [n] and e € [n]. Let a = [[,c4 @i, b = [Licp %)
and ¢ = g.;. As A C B and all the g;; € [0, 1], we obtain a > b. Hence,

pj(AUe) —¢j(A) —¢p;(BUe) +¢j(B) =a—aq+bg—0b
=(a—-b)(1-q) = 0,

where the inequality uses ¢ > b and ¢ < 1. [

Using the above properties of f, we can apply the greedy algorithm for maximizing a monotone
submodular function over a cardinality constraint, to obtain:

Theorem 5.1 There is a 1 — % approzimation for non-adaptive constrained mazximum value.

6 Constrained Maximum Value (Adaptive)

We now consider the adaptive constrained maximum value problem and obtain a constant-factor
approximation algorithm. Through this, we will also introduce a general technique for solving
adaptive stochastic optimization problems. The idea is to write a linear program (LP) relaxation
for adaptive policies, using variables of the form x; = Pr[policy chooses decision i|. Although such
an LP does not exactly represent adaptive policies, it suffices to obtain approximately optimal
policies for many problems. Interestingly, we can often obtain non-adaptive policies by “rounding”
such LPs, which also provides a bound on the adaptivity gap.

Recall the constrained maximum value problem. Given n independent r.v.s X, - -+ X,, (non-negative
and discrete valued) and a bound k < n, the goal is to probe at most k r.v.s so as to maximize the
expected maximum value among the probed r.v.s. Here, we focus on the adaptive setting, where
the solution may use the outcomes of previously probed r.v.s to decide on the next r.v. to probe.
This differs from the non-adaptive setting studied in the previous section. It is also known that
the adaptivity gap is at least some constant ¢ > 1.

Let G denote the set of all possible values taken by the r.v.s. As the r.v.s are discrete, G is a finite
set. For any i € [n] and v € G let p;, = Pr[X; = v]. Our algorithms will require running time
polynomial in n and |G]|.



11

Linear program relaxation for adaptive policies. Representing an arbitrary adaptive policy
requires exponential space because the state space is exponential in n. (The state space corresponds
to the subset of already-probed r.v.s along with their observed values.) Nevertheless, we can write a
polynomial-size relaxation that uses variables corresponding to the marginal probabilities of various
decisions. In particular, let

x; = Pr[adaptive policy probes r.v. X;], Vi€ [n].
For any ¢ € [n] and value v € G, let
Yiv = Pr [policy observes X; = v /\ X, is the maximum observed Value} .

In case of ties in the maximum observed value, we break ties arbitrarily so that exactly one X; has
the maximum observed value.

We now have the following linear program (LP) relaxation.

max 3 g (12

i=1 veg

Zl‘i <k, (13)
=3

i=1 vegG

0<z<1,y=>0.
Lemma 6.1 The optimal value of the above LP is at least the optimal adaptive value.

Proof: Let A denote an optimal adaptive policy. Define the following r.v.s associated with the
policy. For each i € [n] and v € G,

Z; := 1| A probes i] and Y, := 1[A probes i, observes X; = v and ¢ is the maximizer].

We say that i is the maximizer if X; is the maximum value among all probed r.v.s (we break ties
arbitrarily, say by prioritizing larger indexed r.v.s). Consider the fractional solution x; = E[Z;] and
Yiv = E[Y},] for all i and v. Note that the expected objective of A is just E[>", >~ v - Yj,] which is
the LP objective. We will show that it is feasible in the above LP.

Clearly, > 7" | Z; < k as A cannot probe more that k r.v.s. Moreover, Y . > ¥;, <1 as only one
index is declared to be the maximizer. Taking expectations, it follows that LP constraints (13) and
(15) are satisfied. Finally, Y;, < Z; - 1[X; = v], which yields

Yiv = E[Y;] < E[Z; - 1[X; = v]] = E[Z;] - Pr[X; = v] = 2; - Di,

where we use the fact that Z; (decision to probe 7) is independent of X;: this is because the decision
to probe i only depends on the values of previously probed r.v.s. This shows that LP constraint
(14) is satisfied and completes the proof. |

Our algorithm first solves this LP to obtain a fractional solution (x,y). Then, it “rounds” the
fractional solution into a policy for the stochastic problem. In fact, we will obtain a (randomized)



12

non-adaptive policy. Such a policy considers r.v.s in some fixed order m. When r.v. X is considered,
the policy randomly decides whether/not to probe it. At the end of the policy, its objective is the
maximum probed value. In order to be feasible, the number of probed r.v.s must always be at most
k. We first provide a policy that considers r.v.s in an arbitrary order. Then, we provide a better
policy that considers r.v.s in a uniformly random order.

6.1 Arbitrary order policy
Let v € (0, 1] denote a constant value that will be fixed later. For each i = 1,2,---n:
If less than k r.v.s have been probed so far, then probe X; w.p. a - x;.

We will show that:

Theorem 6.1 The above algorithm is a %—approximation algorithm for adaptive constrained mazx-

imum value.

A key part of the analysis is in lower bounding the maximum value of the probed r.v.s, which is
not a linear function. To this end, we explicitly mark one probed r.v. and use the value of this
marked r.v. as a lower-bound on the maximum value. Algorithm 1 describes the marking process
along with the rest of the algorithm.

Algorithm 1 Adaptive constrained maximum value

for each i € [n] do
set R; + 1 w.p. ax; (and R; < 0 otherwise)
if less than k r.v.s have been probed and R; = 1, probe X;
let X; = v be the observed value (happens w.p. p;y)
set Sip <= 1 w.p. %2 (and Sj, < 0 otherwise)
if no r.v. has been marked and S;, = 1 then mark (X;,v)

Clearly, the expected value of the algorithm is at least the expected marked value, i.e.,

ALG > Y ) v Pr[(X;,v) marked].
i=1 vegG
We will prove that
Pr[(X;,v) marked] > a(l —2q) - yi, Vi,v. (16)
Setting o = i, this would imply Theorem 6.1.

Proof of (16). Fix any ¢ € [n] and v € G. Let B; denote the event that at least k r.v.s have
been probed before i is considered. Let M; be the even that some r.v. has been marked before @
is considered. Note that (X;,v) is marked exactly when the following events occur:

Ri=1 X;=v, Sp=1, =B; M,
We now have

Pr[(X;,v) marked] = Pr[R; =1AX; =vAS;y =1A-B; A =M]

= QX " Pip * xy;} - Pr [—|Bz VAN —|Mi | Ri = 1, XZ' =, S@'v = 1] (17)
= ayiy - Pr[=B; A = M;] (18)

> ayiy - Pr[-B A -M]. (19)



13

Above, B = B,, corresponds to the event that at least k r.v.s are probed by the end of the algorithm.
Similarly, M = M,, is the event that some r.v. is marked in the algorithm. (17) uses the facts
that Pr[R; = 1] = az;, Pr[X; = v] = pi, and Pr[S;, = 1] = szﬂ (18) follows from the fact that

T

events B; and M; are independent of R;, X; and Sj,. Finally,z(Tg) uses the fact that B,, 2 B; and
M, D M,;.

Bounding Pr[B] and Pr[M]. Observe that event B corresponds to > .- ; R; > k. Using E[R;] =
azx; and Markov’s inequality,

Pr(B) < ;ZE[RZ-] =Y m<a, (20)

where the last inequality uses the LP constraint (13).

We bound Pr[M] in a similar manner. For any i € [n] and v € G,
Pr[(X;,v) marked] < Pr[X; = v A R; = 1A Siy = 1] = ayi.

By a union bound,

PrM] < ZZPr[(X,-,w marked] < aZZyw < q, (21)

i=1 veg i=1 veG
where the last inequality uses the LP constraint (15).
Wrapping up. Combining (20) and (21), we get Pr[BV M] < 2a. Plugging this into (19), we
obtain (16).
6.2 Random order policy

Let o be a uniformly random permutation on [n]; we use j < i to denote that j appears before i in
o. Let a € (0, 1] denote a constant value that will be fixed later. Our algorithm considers r.v.s in
the order given by o. When r.v. X; is considered, we do the following:

If less than k r.v.s have been probed so far, then probe X; w.p. a - ;.
We will show that:

Theorem 6.2 The above algorithm is a %—approximatz’on algorithm for adaptive constrained maz-
imum value.

Again, we will use the marking process in Algorithm 1 to lower-bound the maximum value. The
only difference is that we now consider r.v.s in the order o (rather than an arbitrary order). Here,
we will show:

Pr[(X;,v) marked] > (1 — ) yin, Vi,v. (22)

We note that the above probability is over all the randomness in the algorithm (including the
permutation o). Setting o = %, this would imply Theorem 6.2.



14

Proof of (22). Fix any ¢ € [n] and v € G. As before, let B; denote the event that at least k
r.v.s have been probed before i is considered, and M; be the even that some r.v. has been marked
before i is considered. Using (18) from the previous analysis, we have

Pr [(X;,v) marked] > ay;, - Pr[-B; A = M;] (23)

Bounding Pr[B;] and Pr[M;]. Observe that event B; corresponds to )
J € [n], the event j < i is independent of R;. Now, by Markov’s inequality,

_kZPr]<z O;Ci

=iy = k. For any

(24)

M\Q

where the equality uses Pr[j < i] = 1 and E[R;] = ax;; the last inequality uses LP constraint (13).

We bound Pr[M;] in a similar manner. For any j € [n] and u € G,
Pr[(X;,u) marked] < Pr[X; =u A Rj = 1A Sjy = 1] = ayju.

By a union bound,

ZZPr[j < i/\(Xj,u> marked]

PrM;] <
j=1veg
« n (0%
< 5223/]@ < bR (25)
j=1ueg

where the last inequality uses the LP constraint (15).
Combining (24) and (25), we get Pr[B; V M;] < a. Plugging this into (23), we obtain (22).

6.3 Further Improvement
We now obtain an even better approximation ratio:

— €)-approximation algorithm for adaptive

Theorem 6.3 For any constant € > 0, there is a (%

constrained mazximum value.

First, we will show that when k£ > =, the random-order probing algorithm achieves an improved

% — € approximation. Then, we will shovv that an optimal adaptive policy can be found (by dynamic

programming) when k < %

Algorithm for large k. Recall that the random-order algorithm considers r.v.s in the order o
and probes each X; w.p. a-x; (if less than k r.v.s have been probed so far). Here, we set & = 1. As
before, we will use the marking process in Algorithm 1 to lower-bound the maximum value. The
key step in the analysis is to show:

1
Pr[(X;,v) marked] > <2—e_k/6> Yivs Vi, 0. (26)

1

This implies a 5 — € approximation ratio for k& > GIOg%



15

We now prove this for any fixed ¢ and v. Again, using (23), it suffices to upper bound Pr[B;] and
Pr[M;]. We use the previous bound Pr[M;] < ¢ = % from (25). The new ingredient is a better
bound on Pr[B;], shown next.

For any j € [n], let I; = 1;-; denote the indicator that j appears before i in the order . Note that
ther.v.s {I;, Rj};-; are mutually independent. So, r.v.s Z; := I;-R; (for j # i) are also independent.
Moreover, event B; corresponds to Z := ., Z; > k. Note that E[Z;] = - E[Rj] = 5 so0
E[Z] = %Zj# zrj < %, where we used LP constraint (13). As the Z;s are 0 — 1 valued and
independent, applying Chernoff bound, we obtain Pr[Z > k] < e */6. Hence, Pr[B;] < e */¢ and
Pr(B; VM| <4+ e~*/6. Combined with (23), we obtain (26).

Algorithm for small k. Here, we simply solve the constrained maximum value problem as a
stochastic dynamic program. Such an approach suffices because the size of the state-space remains
polynomial for constant k. Recall that the state space () represents the current decisions made by
a policy (along with the corresponding random outcomes). For constrained maximum value, the
state space is 2 C (G U {*})". A state w represents the following for each i € [n]:

e if w; = * then r.v. X; has not been probed yet.
e if w; # * then r.v. X; has already been probed, and we observed X; = w;.

Moreover, the maximum number of allowed probes is k. So, the number of feasible states || =

Z;‘;l (?) -|GP < 2n¥|G|*, which is polynomial for k < 6log 1 = O(1).

We now describe a dynamic program that finds the optimal adaptive value. For any state w, let
k(w) = |{i € [n] : w; # *}| be the number of already-probed r.v.s; note that 0 < k(w) < k. Define
the “value function” V(w) to be the maximum expected max-value from probed r.v.s given state w
subject to probing at most k r.v.s in total. Observe that the optimal adaptive value is exactly V(s),
where s = (x,---*) is the initial state (with zero probed r.v.s). We will compute V' (w) recursively,
as follows. The “base case” involves states with k probed r.v.s, and

V(w) = max w;, Yw € : k(w)=k.

Liw; F*
Then, for each £ < k — 1, we compute:
V(w) = max Y pjy-V(wp), YweQ:kw) =2,
]:wj:*
veG

where wj, is the state that has value v in coordinate j and coincides with w on all coordinates
except j. The above recursion is well-defined because k(wj,) = k(w) + 1. To summarize:

Theorem 6.4 There is a polynomial-time algorithm that finds an optimal adaptive policy for con-
strained mazximum value for constant k.

Using this algorithm when k£ < 6 log% and the % — ¢ approximation above for k£ > 6log %, we obtain
Theorem 6.3.



